|
1.Dalela, S., P.S. Balaji, and D.P. Jena, A review on application of mechanical metamaterials for vibration control. Mechanics of advanced materials and structures, 2021. p. 1-26. 2. Chen, S., et al., A review of tunable acoustic metamaterials. Applied Sciences, 2018, 8(9): p. 1480. 3. Xi, S., et al., Experimental verification of reversed Cherenkov radiation in left-handed metamaterial. Physical Review Letters, 2009. 103(19): p. 194801. 4. Fang, N., et al., Ultrasonic metamaterials with negative modulus. Nature Materials, 2006. 5(6): p. 452-456. 5.Qureshi, A., B. Li, and K.T. Tan, Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials. Scientific Reports, 2016. 6(1): p. 1-10. 6.Langfeldt, F. and W. Gleine, Membrane-and plate-type acoustic metamaterials with elastic unit cell edges. Journal of Sound and Vibration, 2019. 453: p. 65-86. 7.Airoldi, L. and M. Ruzzene, Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos. New Journal of Physics, 2011. 13(11): p. 113010. 8.Akl, W. and A. Baz, Analysis and experimental demonstration of an active acoustic metamaterial cell. Journal of Applied Physics, 2012. 111(4): p. 044505. 9.Sugino, C., et al, An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures. Smart Materials and Structures, 2017, 26: p. 055029. 10.Akl, W. and A. Baz, Experimental characterization of active acoustic metamaterial cell with controllable dynamic density. Journal of Applied Physics, 2012. 112(8): p. 084912. 11.Wang, P., J. Shim, and K. Bertoldi, Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals. Physical Review B, 2013. 88(1): p. 014304 12.Lee, K.J.B, M.K. Jung, and S.H. Lee, Highly tunable acoustic metamaterials based on a resonant tubular array. Physical Review B, 2012. 86(18): p. 184302. 13.Langfeldt, F., et al., A membrane-type acoustic metamaterial with tunable acoustic properties. Journal of Sound and Vibration, 2016. 373: p. 1-18. 14.Ma, G., et al., Shaping reverberating sound fields with an actively tunable metasurface. Proceedings of the National Academy of Sciences, USA, 2018. 115: p. 6638–6643. 15.de Melo Filho, N.G.R., et al., Dynamic mass based sound transmission loss prediction of vibro-acoustic metamaterial double panels applied to the mass-air-mass resonance. Journal of Sound and Vibration, 2019. 442: p. 28-44. 16.Tadaki, T., K. Otsuka, and K. Shimizu, Shape memory alloys, Annual Review Material Science, 1988. 81(1): p. 25-45. 17.Jani, J.M., et al., A review of shape memory alloy research, applications and opportunities. Materials & Design, 2014. 56: p. 1078-1113. 18.蘇國倫,形狀記憶合金應用集,台北:工業技術研究院出版,1990。 19.Tarng, W., et al., Application of virtual reality for learning the material properties of shape memory alloys. Applied Sciences, 2019. 9(3): p. 580. 20.Brojan, M., et al., Shape memory alloys in medicine. RMZ – Materials and Geoenvironment, 2008. 55(2): p. 173. 21.Kela, L. and P. Vahaojaa, Recent Studies of Adaptive Tuned Vibration Absorbers/Neutralizers. Applied Mechanics Reviews, 2009. 66(2): p. 060801-1 ~060801-9. 22.Brennan, M.J., Some Recent Developments in Adaptive Tuned Vibration Absorbers/Neutralizers. Shock and Vibration, 2006. 13(4-5): p. 531-543. 23. Mani, Y. and M. Senthilkumar, Shape memory alloy-based adaptive-passive dynamic vibration absorber for vibration control in piping applications. Journal of Vibration and Control, 2015. 21(9): p. 1838-1847. 24. Wu, Y.T., H.L. Hu, and C.Y. Lee, Finite Element Analysis of an Acoustic Metamaterial Plate Incorporating Tunable Shape Memory Cantilever Absorbers. Journal of Physics: Conference Series, 2020. 1509(1): p. 012002 25.Shaw, J.S. and Wang, C.A., Design and control of adaptive vibration absorber for multimode structure. Journal of Intelligent Materials Systems and Structures, 2019. 30(7): p. 1043-105217. 26.Rustighi, E., M.J. Brennan, and B.R. Mace, A shape memory alloy adaptive tuned vibration absorber: design and implementation. Smart Materials and Structures. 2004. 14(1): p. 19. 27.Seo, J., Y.C. Kim, and J.W. Hu, Pilot study for investigating the cyclic behavior of slit damper systems with recentering shape memory alloy (SMA) bending bars used for seismic restrainers. Applied Sciences, 2015. 5(3): p. 187-208. 28.W.T. Thomson, Theory of Vibration with Applications, Prentice-Hall, Englewood Cliffs ,1972 29.Xu, T., Y.T. Wu, and C.Y. Lee, Design and noise-reduction simulation of an acoustic metamaterial plate incorporating tunable shape memory cantilever absorbers. Journal of Vibroengineering, 2022. 24(4): p. 793-805. 30.Blevins, R.D., Formulas for natural frequency and mode shape., New York, USA: Van, Nostrand Reinhold Company, 1979. 31. Kugelstadt, Thomas., Active filter design techniques. Op amps for everyone. Newnes, 2009. p. 365-438. 32.Wu, S.K., and H.C. Lin, Damping Characteristics of TiNi Binary and Ternary Shape Memory Alloys. Journal of Alloys and Compounds, 2003. 355(1-2): p. 72-78.
|