跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/09 09:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭博駿
研究生(外文):CHENG, PO-CHUN
論文名稱:以U型鎳鈦形狀記憶合金吸振器組成可調式超穎平板之減振研究
論文名稱(外文):Study on Vibration-reduction of a Tunable Metamaterial Plate Incorporating U-shaped Nitinol Shape Memory Alloy Absorbers
指導教授:李春穎李春穎引用關係
指導教授(外文):LEE, CHUN-YING
口試委員:蕭俊祥林有鎰李春穎
口試委員(外文):XIAO, JUN-XIANGLIN, YEOU-YIHLEE, CHUN-YING
口試日期:2022-08-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機械工程系機電整合碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:76
中文關鍵詞:形狀記憶合金超穎平板吸振器有限元素分析頻率阻帶
外文關鍵詞:shape memory alloymetamaterial plateabsorberfinite element analysisfrequency stopband
相關次數:
  • 被引用被引用:1
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
超穎材料為一種具有特殊結構設計的人工製造材料,因其特殊物理和機械特性,使得超穎材料在相關工業應用上具有相當大的潛力。本研究提出一種頻率可調式超穎平板以阻隔振動來達到減振的效果。相較於傳統超穎材料的固定頻率阻帶,雖然近幾年的文獻中有提到可調整頻率的超穎材料,但結構多半複雜且製造困難,因此難以實際應用。故在本研究設計鎳鈦形狀記憶合金(Shape Memory Alloy, SMA)與聚乳酸(Poly Lactic Acid, PLA)所結合而成的吸振器,並使用週期陣列排列裝置於鋁製平板組合成超穎平板。首先使用有限元素軟體,對超穎平板的振動情形以及頻率阻帶(stopband)分布和變化進行設計與分析,再製作實驗模型將超穎平板四周邊界固定進行動態特性量測,最後與分析之結果進行比較。研究結果顯示,可以透過改變記憶合金相變,獲得可調整頻率阻帶之超穎平板,調整範圍可達大約600 Hz,並可配置不同相態吸振器,可以得到多個頻率阻帶,或者將吸振器根據振動模態配置於適當位置,可以得到較大的頻率阻帶,因此對於工業上減振之應用有所幫助。
Metamaterials are artificial materials with special structural design. Due to their unusual physical and mechanical properties, metamaterials have great potential for related industrial applications. In this study, tunable metamaterials plate is proposed to achieve vibration reduction. Although there were references to tunable metamaterials in the literature in recent years, most of the proposed structures were complicated and difficult to manufacture. Therefore, they are usually difficult to be applied in practice. In this study, comparing with conventional metamaterials with a fixed frequency stopband, we use a combination of nitinol shape memory alloy (SMA) and poly lactic acid (PLA) to form a vibration absorber unit and combine with aluminum plate with a periodic array of the absorber units to form a metamaterials plate. The experimental model was constructed to measure the dynamic characteristics of the metamaterials plate by fixing the boundaries around the plate and comparing the results with the analysis. The results show that the frequency stopband can be adjusted by changing the phase state of the shape memory alloy, and the frequency stopband can be adjusted up to about 600 Hz. This metamaterial plate can be configured with different phase state absorbers to obtain multiple frequency stopbands, or to obtain a larger frequency stopband by placing the absorbers at appropriate positions, which is useful for industrial applications in vibration reduction.
摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表 目 錄 vii
圖 目 錄 viii
1 第一章 前言 1
1.1 背景介紹 1
1.2 研究動機及目的 2
1.3 研究方法 2
1.4 論文架構 3
2 第二章 文獻回顧與基礎理論 4
2.1 超穎材料 4
2.1.1 可調式超穎材料 6
2.1.2 等效質量 8
2.2 形狀記憶合金 10
2.2.1 形狀記憶效應 10
2.2.2 超彈性 12
2.3 吸振器 13
2.3.1 SMA吸振器 13
2.3.2 吸振器之簡諧運動方程式 15
3 第三章 超穎平板設計 17
3.1 U型SMA吸振器 17
3.1.1 SMA吸振器之尺寸設計 17
3.1.2 SMA吸振器之動態特性 19
3.2 超穎平板設計 20
3.2.1 平板 20
3.2.2 超穎平板 23
3.3 有限元素分析 25
3.3.1 分析環境設定 25
3.3.2 網格收斂分析 26
3.3.2.1 鋁製平板 26
3.3.2.2 SMA吸振器 28
4 第四章 實驗架構與設備 30
4.1 SMA吸振器製作 30
4.2 SMA相變溫度量測 33
4.3 SMA吸振器單元之動態特性量測 34
4.4 超穎平板之製作 35
4.5 超穎平板之動態特性量測 36
5 第五章 結果與討論 37
5.1 有限元素分析結果 37
5.1.1 驗證有限元素模型之正確性 37
5.1.2 完整配置吸振器之超穎平板動態特性 39
5.1.2.1 全部麻田散體 40
5.1.2.2 全部沃斯田體 41
5.2 SMA相變溫度 43
5.3 SMA吸振器單元之動態特性 45
5.4 超穎平板之動態特性 49
5.4.1 單一相態之超穎平板 51
5.4.2 複合相態之超穎平板 58
5.4.2.1 平均配置 58
5.4.2.2 第一頻率阻帶 62
5.4.2.3 第二頻率阻帶 65
5.4.2.4 三種相態 69
6 第六章 結論與未來展望 71
6.1 結論 71
6.2 未來展望 72
參考文獻 74

1.Dalela, S., P.S. Balaji, and D.P. Jena, A review on application of mechanical metamaterials for vibration control. Mechanics of advanced materials and structures, 2021. p. 1-26.
2. Chen, S., et al., A review of tunable acoustic metamaterials. Applied Sciences, 2018, 8(9): p. 1480.
3. Xi, S., et al., Experimental verification of reversed Cherenkov radiation in left-handed metamaterial. Physical Review Letters, 2009. 103(19): p. 194801.
4. Fang, N., et al., Ultrasonic metamaterials with negative modulus. Nature Materials, 2006. 5(6): p. 452-456.
5.Qureshi, A., B. Li, and K.T. Tan, Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials. Scientific Reports, 2016. 6(1): p. 1-10.
6.Langfeldt, F. and W. Gleine, Membrane-and plate-type acoustic metamaterials with elastic unit cell edges. Journal of Sound and Vibration, 2019. 453: p. 65-86.
7.Airoldi, L. and M. Ruzzene, Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos. New Journal of Physics, 2011. 13(11): p. 113010.
8.Akl, W. and A. Baz, Analysis and experimental demonstration of an active acoustic metamaterial cell. Journal of Applied Physics, 2012. 111(4): p. 044505.
9.Sugino, C., et al, An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures. Smart Materials and Structures, 2017, 26: p. 055029.
10.Akl, W. and A. Baz, Experimental characterization of active acoustic metamaterial cell with controllable dynamic density. Journal of Applied Physics, 2012. 112(8): p. 084912.
11.Wang, P., J. Shim, and K. Bertoldi, Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals. Physical Review B, 2013. 88(1): p. 014304
12.Lee, K.J.B, M.K. Jung, and S.H. Lee, Highly tunable acoustic metamaterials based on a resonant tubular array. Physical Review B, 2012. 86(18): p. 184302.
13.Langfeldt, F., et al., A membrane-type acoustic metamaterial with tunable acoustic properties. Journal of Sound and Vibration, 2016. 373: p. 1-18.
14.Ma, G., et al., Shaping reverberating sound fields with an actively tunable metasurface. Proceedings of the National Academy of Sciences, USA, 2018. 115: p. 6638–6643.
15.de Melo Filho, N.G.R., et al., Dynamic mass based sound transmission loss prediction of vibro-acoustic metamaterial double panels applied to the mass-air-mass resonance. Journal of Sound and Vibration, 2019. 442: p. 28-44.
16.Tadaki, T., K. Otsuka, and K. Shimizu, Shape memory alloys, Annual Review Material Science, 1988. 81(1): p. 25-45.
17.Jani, J.M., et al., A review of shape memory alloy research, applications and opportunities. Materials & Design, 2014. 56: p. 1078-1113.
18.蘇國倫,形狀記憶合金應用集,台北:工業技術研究院出版,1990。
19.Tarng, W., et al., Application of virtual reality for learning the material properties of shape memory alloys. Applied Sciences, 2019. 9(3): p. 580.
20.Brojan, M., et al., Shape memory alloys in medicine. RMZ – Materials and Geoenvironment, 2008. 55(2): p. 173.
21.Kela, L. and P. Vahaojaa, Recent Studies of Adaptive Tuned Vibration Absorbers/Neutralizers. Applied Mechanics Reviews, 2009. 66(2): p. 060801-1 ~060801-9.
22.Brennan, M.J., Some Recent Developments in Adaptive Tuned Vibration Absorbers/Neutralizers. Shock and Vibration, 2006. 13(4-5): p. 531-543.
23. Mani, Y. and M. Senthilkumar, Shape memory alloy-based adaptive-passive dynamic vibration absorber for vibration control in piping applications. Journal of Vibration and Control, 2015. 21(9): p. 1838-1847.
24. Wu, Y.T., H.L. Hu, and C.Y. Lee, Finite Element Analysis of an Acoustic Metamaterial Plate Incorporating Tunable Shape Memory Cantilever Absorbers. Journal of Physics: Conference Series, 2020. 1509(1): p. 012002
25.Shaw, J.S. and Wang, C.A., Design and control of adaptive vibration absorber for multimode structure. Journal of Intelligent Materials Systems and Structures, 2019. 30(7): p. 1043-105217.
26.Rustighi, E., M.J. Brennan, and B.R. Mace, A shape memory alloy adaptive tuned vibration absorber: design and implementation. Smart Materials and Structures. 2004. 14(1): p. 19.
27.Seo, J., Y.C. Kim, and J.W. Hu, Pilot study for investigating the cyclic behavior of slit damper systems with recentering shape memory alloy (SMA) bending bars used for seismic restrainers. Applied Sciences, 2015. 5(3): p. 187-208.
28.W.T. Thomson, Theory of Vibration with Applications, Prentice-Hall, Englewood Cliffs ,1972
29.Xu, T., Y.T. Wu, and C.Y. Lee, Design and noise-reduction simulation of an acoustic metamaterial plate incorporating tunable shape memory cantilever absorbers. Journal of Vibroengineering, 2022. 24(4): p. 793-805.
30.Blevins, R.D., Formulas for natural frequency and mode shape., New York, USA: Van, Nostrand Reinhold Company, 1979.
31. Kugelstadt, Thomas., Active filter design techniques. Op amps for everyone. Newnes, 2009. p. 365-438.
32.Wu, S.K., and H.C. Lin, Damping Characteristics of TiNi Binary and Ternary Shape Memory Alloys. Journal of Alloys and Compounds, 2003. 355(1-2): p. 72-78.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊