( 您好!臺灣時間:2023/01/31 04:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):TUNG, YI-JU
論文名稱(外文):Evaluating the new watershed configuration in SWAT+ model and its improvement forhydrological simulation within reservoir watershed
指導教授(外文):CHU, TZYY-WOEI
外文關鍵詞:SWAT+ modelspatial objectslandscape unitwatershedhydrological modelling
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
水資源管理一直都是全球研究與關注之議題,特別是集水區之逕流管理與非點源汙染控制,而數理模式以成為水資源管理非常有效的工具。SWAT模式係一集水區非點源汙染管理模式,曾廣泛應用於國內外許多集水區,而SWAT+(Soil and Water Assessment Tool+)模式則為原SWAT模式開發團隊於2019年在原本模式基礎上加以改良並修正後推出之新版本。

Water management has always been a primary issue of global concern, especially the storm water management and the nonpoint source pollution control in watershed. To deal with it, mathematical models have been validated as highly effective tools for water management. The SWAT model is a watershed-scale and nonpoint source pollution management model, which has been successfully used worldwide. The successor, SWAT+(Soil and Water Assessment Tool+) model, developed by the SWAT development team, was initially released in 2019 on the basis of the original model with improvements and enhanced capabilities.
This study aims to depict the SWAT+ model for the maror modifications and the new spatial watershed configuration in a concise way. Moreover, the comparisons between SWAT and SWAT+ will be accomplished including the parameter definitions and equation modifications. Eventually, the SWAT+model has been applied to FeiTsui Reservoir Watershed comprised of new spatial objects and manages to evaluate the performance of streamflow simulation.
The results show that the SWAT+model largely underestimates the streamflow for annual simulation with the efficiency coefficients of near zero during both of calibration and validation. In addition, monthly streamflow simulation only presents efficiency coefficients of 0.07 and 0.09 for calibration and validation, respectively. Further investigation found that the SWAT’s performance in monthly surface runoff simulation is quite reasonable with efficiency as high as 0.89 and 0.88 for calibration and validation, respectively. This success indicates that the SWAT+ model distributes surface runoff appropriately in landscape unit configuration. However, the model thoroughly underestimates that aquifer water that recharges back to the channel, resulting in the low base flow and leading to underestimates of streamflow simulation. Finally, further analysis of main factors involving poor groundwater routing is discussed via two related literatures. The guidelines of simulation improvement are proposed to provide further directions for successive study.

摘 要 i
誌 謝 v
目 錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1前言 1
1.2研究動機及目的 2
1.3研究架構及流程 4
第二章 文獻回顧 6
2.1 SWAT模式過去研究與應用 6
2.2 SWAT+模式空間物件變動 9
2.3 SWAT+模式結合MODFLOW模式演算地下水 11
2.4 SWAT+模式其他功能擴充 14
第三章 研究方法 16
3.1 SWAT與SWAT+模式介紹 16
3.1.1 水體(water body)成空間物件 18
3.1.2 水庫設置 19
3.1.3 地景單元LSU(Landscape Unit) 21
3.1.4 水文反應單元HRU(Hydrologic Response Unit) 23
3.1.5 水文過程 24
3.2 研究區域 33
3.2.1 地文資料收集 34
3.2.2 氣象資料收集 40
3.2.3 集水區內流量測站 42
3.4 檢定驗證程序 43
3.5 配適度檢定 47
第四章 成果與討論 50
4.1 模式參數檢定成果 50
4.2 模擬成果與討論 51
4.2.1 SWAT+模式河川流量模擬成果 53
4.2.2 SWAT+模式地表逕流量模擬成果 59
4.2.3 SWAT+模式含水層補注至河川模擬成果 65
4.2.4 SWAT+模式模擬地表逕流疊加坪林站基流成果 71
4.3 綜合討論 77
4.3.1 SWAT+地下水模組相關之文獻討論 78
4.3.2 地下水流模擬成效不彰之分析 80
第五章 結論與建議 82
5.1結論 82
5.2建議 83
參考文獻 85
1.Ahmed Abu El-Nasr, Jeffrey G. Arnold, Jan Feyen & Jean Berlamont. (2005). Modelling the hydrology of a catchment using a distributed and a semi-distributed model. Hydrological Processes, Volume 19(Issue 3), pp.573-587.
2.Anders Nielsen, Karsten Bolding, Fenjuan Hu & Dennis Trolle. (2017). An open source QGIS-based workflow for model application and experimentation with aquatic ecosystems. Environmental Modelling & Software, Volume 95, pp.358-364.
3.Anna M. Jalowska & Yongping Yuan. (2019). Evaluation of SWAT Impoundment Modeling Methods in Water and Sediment Simulations. JAWRA Journal of the American Water Resources Associatio, Volume 55(No. 1), pp.209-227.
4.Brian Leonard Mcglynn, Jeffrey McDonnell, Jan Seibert & Carol Kendall. (2004). Scale effects on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations. WATER RESOURCES RESEARCH, Volume 40(Issue 7).
5.Celray James Chawanda, Jeffrey Arnold, Wim Thiery & Ann van Griensven. (2020). Mass balance calibration and reservoir representations for large-scale hydrological impact studies using SWAT+. Climatic Change, Volume 163(Issue 3). pp.1307-1327.
6.Congsheng Fu, April L. James & Huaxia Yao. (2014). SWAT-CS: Revision and testing of SWAT for Canadian Shield catchments. Journal of Hydrology, Volume 511. pp.719-735.
7.David D Bosch, Jeffrey G. Arnold, Martin Volk & Peter M. Allen. (2010). Simulation of a low-gradient coastal plain watershed using the SWAT landscape model. Transactions of the ASABE, Volume 53(Issue 3), pp1445-1456.
8.Daniel Moriasi, Jeffrey G. Arnold, Michael W. Van Liew, Ron Bingner, R. D. Harmel & Tamie L. Veith. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, Volume 50(Issue 3), pp. 885-900.
9.Eugenio Molina-Navarro, Anders Nielsen & Dennis Trolle. (2018). A QGIS plugin to tailor SWAT watershed delineations to lake and reservoir waterbodies. Environmental Modelling & Software, Volume 108, pp.67-71.
10.Hendrik Rathjens, Katrin Bieger, Indrajeet Chaubey, Jeffrey G. Arnold, Peter M. Allen, Raghavan Srinivasan, David D Bosch & Martin Volk. (2016). Delineating floodplain and upland areas for hydrologic models - A comparison of methods. Hydrological Processes, Volume 30(Issue 23), pp.4367-4383.
11.II Moon Chung, Nam Won Kim, Jeongwoo Lee & Marios Sophocleous. (2010). Assessing distributed groundwater recharge rate using integrated surface water-groundwater modelling : Application to Mihocheon watershed, South Korea. Hydrogeology Journal, Volume 18(Issue 5), pp.1253-1264.
12.In-Young Yeo, Sangchul Lee, Megan W. Lang, Omer Yetemen, Gregory W. McCarty, Ali M. Sadeghi & Grey Evenson. (2019). Mapping landscape-level hydrological connectivity of headwater wetlands to downstream waters : A catchment modeling approach - Part 2. Science of the Total Environment, Volume 652, pp.1557-1570.
13.Isared Kakarndee & Ekasit Kositsakulchai. (2020). Comparison between SWAT and SWAT+ for simulating streamflow in a paddy-field-dominated basin, northeast Thailand. E3S Web of Conferences, Volume 187(Issue 3). doi: 10.1051/e3sconf/202018706002.
14.Jaclyn Tech. (2019). SWAT+ Editor 1.2.0 Documentation.
15.Jaclyn Tech. (2021). SWAT+ Editor 2.0 Documentation.
16.Jeffrey G. Arnold, Peter M. Allen, Martin Volk & J.R. Williams. (2010). Assessment of different representations of spatial variability on SWAT model performance. Transactions of the ASABE, Volume 53(Issue 5), pp1433-1443.
17.Jeffrey G. Arnold, Katrin Bieger, Michael J. White, Raghavan Srinivasan, John A. Dunbar & Peter M. Allen. (2018). Use of decision tables to simulate management in SWAT+. MDPI Journal of Water, Volume 10(Issue 6).
18.Jeffrey G. Arnold & Nicola Fohrer. (2005). SWAT2000 : Current capabilities and research opportunities in applied watershed modelling. Hydrological Processes, Volume 19(Issue 3). pp.563-572
19.Jeffrey G. Arnold, James R Kiniry, Raghavan Srinivasan, J.R. Williams, E.B. Haney & S.L. Neitsch. (2012). Soil mand Water Assement Tool Input/Output Documentation Version 2012.
20.Jingwen Wu, Haw Yen, Jeffrey G. Arnold, Y.C. Ethan Yang, Ximing Cai, Michael J. White, Chinnasamy Santhi, Chiyuan Miao & Raghavan Srinivasan .(2020). Development of reservoir operation functions in SWAT+ for national environmental assessments. Journal of Hydrology, Volume 583.
21.Johan van Tol, George van Zijl & Stefan Julich. (2020). Importance of Detailed Soil Information for Hydrological Modelling in an Urbanized Environment. MDPI Journal of Hydrology 2020, Volume 7(Issue 2).
22.Johan van Tol, Katrin Bieger & Jeffrey G. Arnold. (2021). A hydropedological approach to simulate streamflow and soil water contents with SWAT+. Hydrological Processes, Volume 35(Issue 6).
23.Katrin Bieger, Jeffrey G. Arnold, Hendrik Rathjens, Michael J. White, David D. Bosch, Peter M. Allen, Martin Volk & Raghavan Srinivasan. (2016). Introduction to SWAT+, A completely restructured version of the Soil and Water Assessment Tool. JAWRA Journal of the American Water Resources Associatio, Volume 53(No. 1), pp. 115-130.
24.Katrin Bieger, Jeffrey G. Arnold, Hendrik Rathjens, Michael J. White, David D. Bosch & Peter M. Allen. (2019). Representing the connectivity of upland areas to floodplains and streams in SWAT+. JAWRA Journal of the American Water Resources Associatio, Volume 55(No. 5), pp. 578-590.
25.Lingling Hua, Wenchao Li, Limei Zhai, Haw Yen, Qiuliang Lei, Hongbin Liu, Tianzhi Ren, Ying Xia, Fulin Zhang & Xianpeng Fan. (2019). An innovative approach to identifying agricultural pollution sources and loads by using nutrient export coefficients in watershed modeling. Journal of Hydrology, Volume 571, pp.322-331.
26.Linh Hoang, Ann van Griensven & Arthur Mynett. (2017). Enhancing the SWAT model for simulating denitrification in riparian zones at the river basin scale. Environmental Modelling & Software, Volume 93, pp. 163-179.
27.Louise J. Bracken, J. Wainwright, Genevieve Ali, Doerthe Tetzlaff, Mark William Smith, Sim Reaney & A.G. Roy. (2013). Concepts of hydrological connectivity : Research approaches, pathways and future agendas. Earth-Science Reviews, Volume 119, pp.17-34.
28.Lvyang Xiong, Xu Xu, Dongyang Ren, Quanzhong Huang & Guanhua Huang. (2019). Enhancing the capability of hydrological models to simulate the regional agro-hydrological processes in watersheds with shallow groundwater: Based on the SWAT framework. Journal of Hydrology, Volume 572, pp.1-16.
29.Martin Plus, Isabelle La Jeunesse, Fayal Bouraoui, Jose-Manuel Zaldivar, Annie Chapelle & Pascal Lazure. (2006). Modelling water discharges and nitrogen inputs into a Mediterranean lagoon Impact on the primary production. Ecological Modelling, Volume 193, pp.69-89.
30.Michael Antoine, Mathieu Javaux & Charles Bielders. (2009). What indicators can capture runoff-relevant connectivity properties of the micro-topography at the plot scale?. Advances in Water Resources, Volume 32(Issue 8), pp.1297-1310.
31.Thomas J. Mulvany. (1851) On the use of self-registering rain and flood gauges in making observations of the relations of rain fall and of flood discharges in a given catchment. Transactions of the Institution of Civil Engineers of Ireland, Volume 4(Issue 2), pp.18-33.
32.Nam Won Kim, II Moon Chung, Yoo Seung Won & Jeffrey G. Arnold. (2008). Development and application of the integrated SWAT–MODFLOW model. Journal of Hydrology, Volume 356(Issue 1-2), pp.1-16.
33.Nikita Shivhare, Prabhat Kumar Singh Dikshit & Shyam Bihari Dwivedi. (2018). A comparison of SWAT Model calibration techniques for hydrological modeling in the Ganga River Watershed. Engineering, Volume 4(Issue 5), pp. 643-652.
34.Philip Gassman, Jeffrey G. Arnold, Ragahavan Srinivasan & Manuel Reyes Reyes. (2010). The worldwide use of the SWAT Model technological drivers. 21st Century Watershed Technology: Improving Water Quality and Environment Conference Proceedings.
35.Philip Gassman, Ali M. Sadeghi & Raghavan Srinivasan. (2014). Applications of the SWAT Model Special Section : Overview and Insights. Journal of Environmental Quality, Volume 43(Issue 1), pp.1-8.
36.Philip Gassman, Manuel Reyes Reyes, Colleen H.M. Green & Jeffrey G. Arnold. (2007). The soil and water assessment tool : historical development, applications and future research directions. Transactions of the ASABE, Volume 50(Issue 4), pp.1211-1250.
37.Rajith Mukundan, Linh Hoang, Rakesh K Gelda, Myeong-Ho Yeo & Emmet M Owens. (2020). Climate change impact on nutrient loading in a water supply watershed. Journal of Hydrology, Volume 586(Issue 5).
38.Maheswaran Rathinasamy, R. Khosa, Ashvani K. Gosain, Sankalp Lahari, S.K. Sinha, Bhagu R. Chahar & Dhanya C T. (2016). Regional scale groundwater modelling study for Ganga River basin. Journal of Hydrology, Volume 541(part B), pp.727-741.
39.Ryan T. Bailey, Tyler C. Wible, Mazdak Arabi, Rosemary M. Records & Jeffrey Ditty. (2016). Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. HYDROLOGICAL PROCESSES, Volume 30, pp.4420-4433.
40.Ryan T. Bailey, Hendrik Rathjens, Katrin Bieger, Indrajeet Chaubey & Jeffrey G. Arnold. (2017). SWATMOD-Prep : Graphical User Interface for Preparing Coupled SWAT-MODFLOW Simulations. JAWRA Journal of the American Water Resources Association, Volume 53(Issue 2), pp.400-410.
41.Ryan T. Bailey, Katrin Bieger, Jeffrey G. Arnold & David D. Bosch. (2020). A new physically-based spatially-distributed groundwater flow module for SWAT+. MDPI Journal of Hydrology 2020, Volume 7(Issue 4) . doi:10.3390/hydrology7040075.
42.Ryan T. Bailey, Seonggyu Park, Katrin Bieger, Jeffrey G. Arnold & Peter M. Allen. (2020). Enhancing SWAT+ simulation of groundwater flow and groundwater-surface water interactions using MODFLOW routines. Environmental Modelling & Software, Volume 126(Issue 1).
43.Samuel S. Guug, Shaibu Abdul-Ganiyu & Raymond A. Kasei. (2020). Application of SWAT hydrological model for assessing water availability at the Sherigu catchment of Ghana and Southern Burkina Faso. HydroResearch, Volume 3, pp. 124-133.
44.Seonggyu Park, Anders Nielsen, Ryan T. Bailey, Dennis Trolle & Katrin Bieger. (2019). A QGIS-based graphical user interface for application and evaluation of SWAT-MODFLOW models. Environmental Modelling & Software, Volume 111(Issue 1), pp.493-497.
45.S. L. Neitsch, Jeffrey G. Arnold, James R Kiniry & J. R. Williams. (2011). Soil and Water Assessment Tool Theoretical Documentation Version 2009.
46.Takashi Gomi, Roy Sidle, Shusuke Miyata, Ken’ichirou Kosugi & Yuichi Onda. (2008). Dynamic runoff connectivity of overland flow on steep forested hillslopes : Scale effects and runoff transfer. WATER RESOURCES RESEARCH, Volume 44(Issue 8).
47.Vijay P. Singh. (2018). Hydrologic modeling : progress and future directions. Geoscience Letters, Volume 5(Issue 1) . doi:10.1186/s40562-018-0113-z.
48.Wei Ouyang, Peng Wei, Xiang Gao, R. Srinivasan, Haw Yen, Xianhong Xie, Lianhua Liu & Hongbin Liu. (2020). Optimization of SWAT-Paddy for modeling hydrology and diffuse pollution of large rice paddy fields. Environmental Modelling & Software, Volume 130.
49.Wuletawu Abera. (2009). Spatial Aggregation Rainfall on Flood Modelling and Description of Runoff Propagation Processes.
50.Yihun Dile, Prasad Daggupati, Chris George, Raghavan Srinivasan & Jeffrey G. Arnold. (2016). Introducing a new open source GIS user interface for the SWAT model. Environmental Modelling & Software, Volume 85(Issue 6), pp. 129-138.
51.Yihun Dile, Raghavan Srinivasan & Chris George. (2019). QGIS Interface for SWAT+: QSWAT+ Version 1.2.2.
52.Yihun Dile, Raghavan Srinivasan & Chris George. (2021). QGIS Interface for SWAT+: QSWAT+ Version 2.0.
61.潘丁平(2011年),以SWAT模式評估土地利用變遷對河川流量及泥砂產量的影響-以Phu Luong集水區為例,國立屏東科技大學熱帶農業暨國際合作系所碩士論文,屏東。

電子全文 電子全文(網際網路公開日期:20270217)
第一頁 上一頁 下一頁 最後一頁 top