1.Ahmed Abu El-Nasr, Jeffrey G. Arnold, Jan Feyen & Jean Berlamont. (2005). Modelling the hydrology of a catchment using a distributed and a semi-distributed model. Hydrological Processes, Volume 19(Issue 3), pp.573-587.
2.Anders Nielsen, Karsten Bolding, Fenjuan Hu & Dennis Trolle. (2017). An open source QGIS-based workflow for model application and experimentation with aquatic ecosystems. Environmental Modelling & Software, Volume 95, pp.358-364.
3.Anna M. Jalowska & Yongping Yuan. (2019). Evaluation of SWAT Impoundment Modeling Methods in Water and Sediment Simulations. JAWRA Journal of the American Water Resources Associatio, Volume 55(No. 1), pp.209-227.
4.Brian Leonard Mcglynn, Jeffrey McDonnell, Jan Seibert & Carol Kendall. (2004). Scale effects on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations. WATER RESOURCES RESEARCH, Volume 40(Issue 7).
5.Celray James Chawanda, Jeffrey Arnold, Wim Thiery & Ann van Griensven. (2020). Mass balance calibration and reservoir representations for large-scale hydrological impact studies using SWAT+. Climatic Change, Volume 163(Issue 3). pp.1307-1327.
6.Congsheng Fu, April L. James & Huaxia Yao. (2014). SWAT-CS: Revision and testing of SWAT for Canadian Shield catchments. Journal of Hydrology, Volume 511. pp.719-735.
7.David D Bosch, Jeffrey G. Arnold, Martin Volk & Peter M. Allen. (2010). Simulation of a low-gradient coastal plain watershed using the SWAT landscape model. Transactions of the ASABE, Volume 53(Issue 3), pp1445-1456.
8.Daniel Moriasi, Jeffrey G. Arnold, Michael W. Van Liew, Ron Bingner, R. D. Harmel & Tamie L. Veith. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, Volume 50(Issue 3), pp. 885-900.
9.Eugenio Molina-Navarro, Anders Nielsen & Dennis Trolle. (2018). A QGIS plugin to tailor SWAT watershed delineations to lake and reservoir waterbodies. Environmental Modelling & Software, Volume 108, pp.67-71.
10.Hendrik Rathjens, Katrin Bieger, Indrajeet Chaubey, Jeffrey G. Arnold, Peter M. Allen, Raghavan Srinivasan, David D Bosch & Martin Volk. (2016). Delineating floodplain and upland areas for hydrologic models - A comparison of methods. Hydrological Processes, Volume 30(Issue 23), pp.4367-4383.
11.II Moon Chung, Nam Won Kim, Jeongwoo Lee & Marios Sophocleous. (2010). Assessing distributed groundwater recharge rate using integrated surface water-groundwater modelling : Application to Mihocheon watershed, South Korea. Hydrogeology Journal, Volume 18(Issue 5), pp.1253-1264.
12.In-Young Yeo, Sangchul Lee, Megan W. Lang, Omer Yetemen, Gregory W. McCarty, Ali M. Sadeghi & Grey Evenson. (2019). Mapping landscape-level hydrological connectivity of headwater wetlands to downstream waters : A catchment modeling approach - Part 2. Science of the Total Environment, Volume 652, pp.1557-1570.
13.Isared Kakarndee & Ekasit Kositsakulchai. (2020). Comparison between SWAT and SWAT+ for simulating streamflow in a paddy-field-dominated basin, northeast Thailand. E3S Web of Conferences, Volume 187(Issue 3). doi: 10.1051/e3sconf/202018706002.
14.Jaclyn Tech. (2019). SWAT+ Editor 1.2.0 Documentation.
15.Jaclyn Tech. (2021). SWAT+ Editor 2.0 Documentation.
16.Jeffrey G. Arnold, Peter M. Allen, Martin Volk & J.R. Williams. (2010). Assessment of different representations of spatial variability on SWAT model performance. Transactions of the ASABE, Volume 53(Issue 5), pp1433-1443.
17.Jeffrey G. Arnold, Katrin Bieger, Michael J. White, Raghavan Srinivasan, John A. Dunbar & Peter M. Allen. (2018). Use of decision tables to simulate management in SWAT+. MDPI Journal of Water, Volume 10(Issue 6).
18.Jeffrey G. Arnold & Nicola Fohrer. (2005). SWAT2000 : Current capabilities and research opportunities in applied watershed modelling. Hydrological Processes, Volume 19(Issue 3). pp.563-572
19.Jeffrey G. Arnold, James R Kiniry, Raghavan Srinivasan, J.R. Williams, E.B. Haney & S.L. Neitsch. (2012). Soil mand Water Assement Tool Input/Output Documentation Version 2012.
20.Jingwen Wu, Haw Yen, Jeffrey G. Arnold, Y.C. Ethan Yang, Ximing Cai, Michael J. White, Chinnasamy Santhi, Chiyuan Miao & Raghavan Srinivasan .(2020). Development of reservoir operation functions in SWAT+ for national environmental assessments. Journal of Hydrology, Volume 583.
21.Johan van Tol, George van Zijl & Stefan Julich. (2020). Importance of Detailed Soil Information for Hydrological Modelling in an Urbanized Environment. MDPI Journal of Hydrology 2020, Volume 7(Issue 2).
22.Johan van Tol, Katrin Bieger & Jeffrey G. Arnold. (2021). A hydropedological approach to simulate streamflow and soil water contents with SWAT+. Hydrological Processes, Volume 35(Issue 6).
23.Katrin Bieger, Jeffrey G. Arnold, Hendrik Rathjens, Michael J. White, David D. Bosch, Peter M. Allen, Martin Volk & Raghavan Srinivasan. (2016). Introduction to SWAT+, A completely restructured version of the Soil and Water Assessment Tool. JAWRA Journal of the American Water Resources Associatio, Volume 53(No. 1), pp. 115-130.
24.Katrin Bieger, Jeffrey G. Arnold, Hendrik Rathjens, Michael J. White, David D. Bosch & Peter M. Allen. (2019). Representing the connectivity of upland areas to floodplains and streams in SWAT+. JAWRA Journal of the American Water Resources Associatio, Volume 55(No. 5), pp. 578-590.
25.Lingling Hua, Wenchao Li, Limei Zhai, Haw Yen, Qiuliang Lei, Hongbin Liu, Tianzhi Ren, Ying Xia, Fulin Zhang & Xianpeng Fan. (2019). An innovative approach to identifying agricultural pollution sources and loads by using nutrient export coefficients in watershed modeling. Journal of Hydrology, Volume 571, pp.322-331.
26.Linh Hoang, Ann van Griensven & Arthur Mynett. (2017). Enhancing the SWAT model for simulating denitrification in riparian zones at the river basin scale. Environmental Modelling & Software, Volume 93, pp. 163-179.
27.Louise J. Bracken, J. Wainwright, Genevieve Ali, Doerthe Tetzlaff, Mark William Smith, Sim Reaney & A.G. Roy. (2013). Concepts of hydrological connectivity : Research approaches, pathways and future agendas. Earth-Science Reviews, Volume 119, pp.17-34.
28.Lvyang Xiong, Xu Xu, Dongyang Ren, Quanzhong Huang & Guanhua Huang. (2019). Enhancing the capability of hydrological models to simulate the regional agro-hydrological processes in watersheds with shallow groundwater: Based on the SWAT framework. Journal of Hydrology, Volume 572, pp.1-16.
29.Martin Plus, Isabelle La Jeunesse, Fayal Bouraoui, Jose-Manuel Zaldivar, Annie Chapelle & Pascal Lazure. (2006). Modelling water discharges and nitrogen inputs into a Mediterranean lagoon Impact on the primary production. Ecological Modelling, Volume 193, pp.69-89.
30.Michael Antoine, Mathieu Javaux & Charles Bielders. (2009). What indicators can capture runoff-relevant connectivity properties of the micro-topography at the plot scale?. Advances in Water Resources, Volume 32(Issue 8), pp.1297-1310.
31.Thomas J. Mulvany. (1851) On the use of self-registering rain and flood gauges in making observations of the relations of rain fall and of flood discharges in a given catchment. Transactions of the Institution of Civil Engineers of Ireland, Volume 4(Issue 2), pp.18-33.
32.Nam Won Kim, II Moon Chung, Yoo Seung Won & Jeffrey G. Arnold. (2008). Development and application of the integrated SWAT–MODFLOW model. Journal of Hydrology, Volume 356(Issue 1-2), pp.1-16.
33.Nikita Shivhare, Prabhat Kumar Singh Dikshit & Shyam Bihari Dwivedi. (2018). A comparison of SWAT Model calibration techniques for hydrological modeling in the Ganga River Watershed. Engineering, Volume 4(Issue 5), pp. 643-652.
34.Philip Gassman, Jeffrey G. Arnold, Ragahavan Srinivasan & Manuel Reyes Reyes. (2010). The worldwide use of the SWAT Model technological drivers. 21st Century Watershed Technology: Improving Water Quality and Environment Conference Proceedings.
35.Philip Gassman, Ali M. Sadeghi & Raghavan Srinivasan. (2014). Applications of the SWAT Model Special Section : Overview and Insights. Journal of Environmental Quality, Volume 43(Issue 1), pp.1-8.
36.Philip Gassman, Manuel Reyes Reyes, Colleen H.M. Green & Jeffrey G. Arnold. (2007). The soil and water assessment tool : historical development, applications and future research directions. Transactions of the ASABE, Volume 50(Issue 4), pp.1211-1250.
37.Rajith Mukundan, Linh Hoang, Rakesh K Gelda, Myeong-Ho Yeo & Emmet M Owens. (2020). Climate change impact on nutrient loading in a water supply watershed. Journal of Hydrology, Volume 586(Issue 5).
38.Maheswaran Rathinasamy, R. Khosa, Ashvani K. Gosain, Sankalp Lahari, S.K. Sinha, Bhagu R. Chahar & Dhanya C T. (2016). Regional scale groundwater modelling study for Ganga River basin. Journal of Hydrology, Volume 541(part B), pp.727-741.
39.Ryan T. Bailey, Tyler C. Wible, Mazdak Arabi, Rosemary M. Records & Jeffrey Ditty. (2016). Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. HYDROLOGICAL PROCESSES, Volume 30, pp.4420-4433.
40.Ryan T. Bailey, Hendrik Rathjens, Katrin Bieger, Indrajeet Chaubey & Jeffrey G. Arnold. (2017). SWATMOD-Prep : Graphical User Interface for Preparing Coupled SWAT-MODFLOW Simulations. JAWRA Journal of the American Water Resources Association, Volume 53(Issue 2), pp.400-410.
41.Ryan T. Bailey, Katrin Bieger, Jeffrey G. Arnold & David D. Bosch. (2020). A new physically-based spatially-distributed groundwater flow module for SWAT+. MDPI Journal of Hydrology 2020, Volume 7(Issue 4) . doi:10.3390/hydrology7040075.
42.Ryan T. Bailey, Seonggyu Park, Katrin Bieger, Jeffrey G. Arnold & Peter M. Allen. (2020). Enhancing SWAT+ simulation of groundwater flow and groundwater-surface water interactions using MODFLOW routines. Environmental Modelling & Software, Volume 126(Issue 1).
43.Samuel S. Guug, Shaibu Abdul-Ganiyu & Raymond A. Kasei. (2020). Application of SWAT hydrological model for assessing water availability at the Sherigu catchment of Ghana and Southern Burkina Faso. HydroResearch, Volume 3, pp. 124-133.
44.Seonggyu Park, Anders Nielsen, Ryan T. Bailey, Dennis Trolle & Katrin Bieger. (2019). A QGIS-based graphical user interface for application and evaluation of SWAT-MODFLOW models. Environmental Modelling & Software, Volume 111(Issue 1), pp.493-497.
45.S. L. Neitsch, Jeffrey G. Arnold, James R Kiniry & J. R. Williams. (2011). Soil and Water Assessment Tool Theoretical Documentation Version 2009.
46.Takashi Gomi, Roy Sidle, Shusuke Miyata, Ken’ichirou Kosugi & Yuichi Onda. (2008). Dynamic runoff connectivity of overland flow on steep forested hillslopes : Scale effects and runoff transfer. WATER RESOURCES RESEARCH, Volume 44(Issue 8).
47.Vijay P. Singh. (2018). Hydrologic modeling : progress and future directions. Geoscience Letters, Volume 5(Issue 1) . doi:10.1186/s40562-018-0113-z.
48.Wei Ouyang, Peng Wei, Xiang Gao, R. Srinivasan, Haw Yen, Xianhong Xie, Lianhua Liu & Hongbin Liu. (2020). Optimization of SWAT-Paddy for modeling hydrology and diffuse pollution of large rice paddy fields. Environmental Modelling & Software, Volume 130.
49.Wuletawu Abera. (2009). Spatial Aggregation Rainfall on Flood Modelling and Description of Runoff Propagation Processes.
50.Yihun Dile, Prasad Daggupati, Chris George, Raghavan Srinivasan & Jeffrey G. Arnold. (2016). Introducing a new open source GIS user interface for the SWAT model. Environmental Modelling & Software, Volume 85(Issue 6), pp. 129-138.
51.Yihun Dile, Raghavan Srinivasan & Chris George. (2019). QGIS Interface for SWAT+: QSWAT+ Version 1.2.2.
52.Yihun Dile, Raghavan Srinivasan & Chris George. (2021). QGIS Interface for SWAT+: QSWAT+ Version 2.0.
53.大氣水文資料庫(2009~2018年),氣象站每小時資料。
54.王又田、蔡瑞彬、張良正、蕭金財、江崇榮、李長諺(2016年),建構服務導向之地下水模擬輔助資訊系統,農業工程學報63(1),59-87。
55.內政部20公尺網格數值地形模型資料(2020年),全臺灣20公尺網格間距的數值地形模型。
56.台北翡翠水庫管理局(2009~2018年),翡翠水庫操作年報。
57.吳蕙雯(2016年),應用SWAT模式模擬來社溪集水區土砂與逕流之產出,國立中興大學水土保持學系所碩士論文,台中。58.陳麒文(2018),水庫集水區營養鹽負荷與水生昆蟲生態模擬之研究,國立臺北科技大學土木與防災研究所碩士論文,台北。59.張君葳(2018),氣候變遷情境下於翡翠水庫集水區之總最大日負荷規劃,國立臺北科技大學土木與防災研究所碩士論文,台北。60.黃宇齊(2010),翡翠水庫及水庫集水區水文暨水質模擬與其不確定性,國立臺北科技大學土木與防災研究所碩士論文,台北。61.潘丁平(2011年),以SWAT模式評估土地利用變遷對河川流量及泥砂產量的影響-以Phu Luong集水區為例,國立屏東科技大學熱帶農業暨國際合作系所碩士論文,屏東。62.鐘閔光、林俐玲(2015年),土壤水文評估模式之介紹,水土保持學報,47(4),1539–1550。