跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/09 09:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳揚明
研究生(外文):CHEN, YANG-MING
論文名稱:鳥類排遺對於湖泊總磷濃度之影響- 以金門陽明湖為例
論文名稱(外文):The Effect of Bird Dropping on The Concentration of Total Phosphorus in Lakes, Taking Kinmen Yangming Lake for Example.
指導教授:林鎮洋林鎮洋引用關係
指導教授(外文):LIN, JEN-YANG
口試委員:陳起鳳徐宗宏林鎮洋
口試委員(外文):CHEN, CHI-FENGHSU, TSUNG-HUNGLIN, JEN-YANG
口試日期:2022-07-04
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:土木工程系土木與防災碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:92
中文關鍵詞:水庫優養化VollenweiderHSPF總磷鳥類排遺
外文關鍵詞:Reservoir eutrophicationVollenweiderHSPFTotal phosphorusBird dropping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
水庫用於調節枯豐期水量,穩定水源供給需求。但水庫因氣候、地形及人為開發等影響常面臨水庫優養化問題,尤其離島水庫集水區、水文以及水質特性與本島水庫差異甚大,且多位於中下游,因此離島水庫水質比本島水庫表現差,常年屬優養化狀態。
研究場址陽明湖,2002年至2012年卡爾森指數(CTSI)為52 ~ 78.9,總磷濃度為12 ~ 96 μg/L,屬於長年優養化嚴重之水庫。另外金門位於東亞-澳大利亞鳥類遷徙線(East-Asian-Australasian Flyway),因此當地候鳥資源豐富,而離島水庫生態圈恰巧滿足候鳥食物來源與休憩地點,其中當地民眾與專家學者提出疑問;鳥類於湖畔中覓食與休憩時產生的排遺,是否會影響陽明湖水庫水質,因此本研究透過現地水質與鳥糞採樣分析2021年至2022年水質濃度變化與排遺內總磷含量,並透過水質模式模擬陽明湖總磷濃度變化與計算鳥類總磷占陽明湖負荷量來源之比例,釐清排遺對於陽明湖總磷濃度之影響。
本研究現地採樣結果,陽明湖平均總磷濃度較歷史平均濃度高出5倍,濃度為108 ~ 387 μg/L;排遺內總磷重量百分比為4.6 ~7.7%;從現地採樣照片比對中,樹上排遺可能會受到降雨沖刷至湖庫內造成短時間濃度增加。模式模擬結果鸕鶿排遺占陽明湖污染負荷來源70%,並且會影響陽明湖總磷濃度,尤其在低蓄水量時濃度變化更為顯著。
Reservoirs are used to regulate the volume of water in the dry season to stabilize water supply needs. However, due to climate, topography and human development, reservoirs are often exposed to reservoir eutrophication. Especially since the catchment, hydrology and water quality characteristics of outlying island reservoirs are very different from those of local island reservoirs located in the middle and lower reaches.
The Carlson Index (CTSI) of Yangming Lake, the study site, ranged from 52-78.9, and the total phosphorus concentration from 2002-2012 is ranged from 12-96 μg/L, making it a severely eutrophic reservoir for many years. In addition, Kinmen is located in the East Asian Australasian Flyway, which is rich in local migratory birds, and the outlying island reservoir ecosystem happens to meet the food source and resting place for migratory birds. The local people, experts and scholars questioned; when birds forage and rest at the lake, whether the excrement produced by birds foraging and resting at the lake would affect the water quality of Yangming Lake reservoir. Therefore, this study analyzed the changes in water quality and total phosphorus content in the bottom sediment of Yangming Lake from 2021 to 2022 by sampling local water quality, bird droppings, and simulated the changes in total phosphorus concentration in Yangming Lake.Through a water quality model, calculating the proportion of total phosphorus in Yangming Lake as a loading source and determine the effect of discharge on total phosphorus concentration in Yangming Lake.
In this study, the average concentration of total phosphorus in Yang Ming Lake was five times higher than the historical average, with concentrations ranging from 108 to 387 μg/L. The weight percentages of total phosphorus in the excreta ranged from 4.6 to 7.7%. Comparison of field sampling photographs suggests that tree excretion may have been washed into the lake reservoir by rainfall, resulting in short-term increases in concentrations. Model simulations showed that cormorant excretion accounted for 70% of the pollution load in Yangming Lake and influenced the total phosphorus concentration in Yangming Lake, especially when the reservoir capacity was low.
摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 章節介紹 2
第二章 文獻回顧 4
2.1 水庫優養化 4
2.2 鳥類排遺與水質影響 6
2.2.1 水體中負荷量推估 6
2.2.2 相關研究成果 8
2.3 地面水體水質模式 11
2.3.1 HSPF集水區模式 12
2.3.2 Vollenweider水質模式 15
2.4 模式判定指標 17
第三章 材料與方法 20
3.1 研究區域背景概述 20
3.1.1 地理環境 20
3.1.2 水文與水質 23
3.1.3 歷史水質 25
3.1.4 鳥類調查 28
3.2 現地採樣 30
3.2.1 水質採樣 30
3.2.2 鳥糞採樣 31
3.3 模式介紹 33
3.3.1 BASINS集水區管理系統 33
3.3.2 HSPF模擬架構 34
3.3.3 Vollenweider模擬架構 44
3.3.4 模式判定指標 46
3.4 蓄水與入滲量計算 48
第四章 結果與討論 52
4.1 現地採樣結果分析 52
4.1.1 水質 57
4.1.2 水質與鳥類相關性 62
4.1.3 排遺量推估 63
4.2 模式建置 64
4.3 模式率定驗證 67
4.3.1 HSPF 68
4.3.2 Vollenweider 73
4.4 鳥類與水質優養化關係 78
4.4.1 污染負荷貢獻量 79
4.4.2 水質影響 80
4.5 情境設定 81
4.5.1 情境模擬結果 82
4.5.2 結果分析 83
第五章 結論與建議 86
5.1 結論 86
5.2 建議 87
參考文獻 88


英文文獻
1. Albek, M., Albek, E. A., Göncü, S., & Şimşek Uygun, B. (2019). Ensemble streamflow projections for a small watershed with HSPF model. Environmental Science and Pollution Research, 26(35), 36023-36036.
2. Bildstein, K. L., Blood, E., & Frederick, P. (1992). The relative importance of biotic and abiotic vectors in nutrient transport. Estuaries, 15(2), 147-157. http://www.jstor.org/stable/1352688.
3. Borah Deva, K., Ahmadisharaf, E., Padmanabhan, G., Imen, S., & Mohamoud Yusuf, M. (2019). Watershed Models for Development and Implementation of Total Maximum Daily Loads. Journal of Hydrologic Engineering, 24(1), 03118001.
4. Carlson, R. E. (1977). A trophic state index for lakes 1. Limnology and oceanography, 22(2), 361-369.
5. Chang, C. L., & Yu, Z. E. (2020). Application of water quality model to analyze pollution hotspots and the impact on reservoir eutrophication. Environmental Monitoring and Assessment, 192(8), 1-11.
6. Chapra, S. C. (1975). Comment on ‘An empirical method of estimating the retention of phosphorus in lakes’ by WB Kirchner and PJ Dillon. Water Resources Research, 11(6), 1033-1034.
7. Chapra, S. C., & Tarapchak, S. J. (1976). A chlorophyll a model and its relationship to phosphorus loading plots for lakes. Water Resources Research, 12(6), 1260-1264.
8. Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., ... & Likens, G. E. (2009). Controlling eutrophication: nitrogen and phosphorus. Science, 323(5917), 1014-1015.
9. Das, B.M. (2002). Principles of Geotechnical Engineering, 5th ed., Pacific Grove, CA.
10. Dessborn, L., Hessel, R., & Elmberg, J. (2016). Geese as vectors of nitrogen and phosphorus to freshwater systems. Inland Waters, 6(1), 111-122. https://doi.org/10.5268/IW-6.1.897.
11. Di Toro, D. M. (2001). Sediment flux modeling (Vol. 116). New York: Wiley-Interscience.
12. Dillon, P. J., & Rigler, F. H. (1975). A simple method for predicting the capacity of a lake for development based on lake trophic status. Journal of the Fisheries Board of Canada, 32(9), 1519-1531.
13. Duda, P. B., Hummel, P. R., Donigian Jr, A. S., & Imhoff, J. C. (2012). BASINS/HSPF: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1523-1547.
14. Ebbinge, B., Canters, K., & Drent, R. (1975). Foraging routines and estimated daily food intake in Barnacle Geese wintering in the northern Netherlands. Wildfowl, 26(26), 5-19.
15. Göncü, S., & Albek, E. (2010). Modeling climate change effects on streams and reservoirs with HSPF. Water resources management, 24(4), 707-726.
16. Gwiazda, R., Woźnica, A., Łozowski, B., Kostecki, M., & Flis, A. (2014). Impact of waterbirds on chemical and biological features of water and sediments of a large, shallow dam reservoir. Oceanological and Hydrobiological Studies, 43(4), 418-426.
17. Hahn, S., Bauer, S., & Klaassen, M. (2007). Estimating the contribution of carnivorous waterbirds to nutrient loading in freshwater habitats. Freshwater Biology, 52(12), 2421-2433. https://doi:10.1111/j.1365-2427.2007.01838.x.
18. Huo, S. C., Lo, S. L., Chiu, C. H., Chiueh, P. T., & Yang, C. S. (2015). Assessing a fuzzy model and HSPF to supplement rainfall data for nonpoint source water quality in the Feitsui reservoir watershed. Environmental Modelling & Software, 72, 110-116.
19. Hwang, S. J. (2020). Eutrophication and the ecological health risk. International Journal of Environmental Research and Public Health, 17(17), 6332.
20. Karasov, W. H., & Levey, D. J. (1990). Digestive system trade-offs and adaptations of frugivorous passerine birds. Physiological Zoology, 63(6), 1248-1270.
21. Kim, T. G., & Choi, K. S. (2020). A study on water quality change by land use change using HSPF. Environmental Engineering Research, 25(1), 123-128.
22. Kitchell, J. F., Schindler, D. E., Herwig, B. R., Post, D. M., Olson, M. H., & Oldham, M. (1999). Nutrient cycling at the landscape scale: the role of diel foraging migrations by geese at the Bosque del Apache National Wildlife Refuge, New Mexico. Limnology and Oceanography, 44(3part2), 828-836.
23. Lee, J. H., Bang, K. W., Ketchum Jr, L. H., Choe, J. S., & Yu, M. J. (2002). First flush analysis of urban storm runoff. Science of the total environment, 293(1-3), 163-175.
24. Lewis, C. D. (1982). Industrial and Business Forecasting Methods. London.
25. Liu, Z., & Tong, S. T. Y. (2015). Using HSPF to model the hydrologic and water quality impacts of riparian land-use change in a small watershed. Journal of Environmental Informatics, 17(1), 15-24.
26. Loucks, D. P., & Van Beek, E. (2017). Water resource systems planning and anagement: An introduction to methods, models, and applications: Springer.
27. Mandaville, S. (2000), Limnology- Eutrophication and Chemistry, Carrying Capacities, Loadings, Benthic Ecology, and Comparative Data. Project F-1. Soil & Water Conservation Society of Metro Halifax. xviii, Synopses 1, 3.
28. Manny, B. A., Johnson, W. C., & Wetzel, R. G. (1994). Nutrient additions by waterfowl to lakes and reservoirs: predicting their effects on productivity and water quality. In Aquatic Birds in the Trophic Web of Lakes (pp. 121-132). Springer, Dordrecht.
29. Martín‐Vélez, V., Sánchez, M. I., Shamoun‐Baranes, J., Thaxter, C. B., Stienen, E. W., Camphuysen, K. C., & Green, A. J. (2019). Quantifying nutrient inputs by gulls to a fluctuating lake, aided by movement ecology methods. Freshwater biology, 64(10), 1821-1832. https://doi.org/10.1111/fwb.13374.
30. Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763-1785.
31. Morkūnė, R., Petkuvienė, J., Bružas, M., Morkūnas, J., & Bartoli, M. (2020). Monthly abundance patterns and the potential role of waterbirds as phosphorus sources to a hypertrophic Baltic lagoon. Water, 12(5), 1392. https://doi.org/10.3390/w12051392.
32. Moustafa, M. Z. (1998). Long‐term equilibrium phosphorus concentrations in the everglades as predicted by a vollenweider‐type model 1. JAWRA Journal of the American Water Resources Association, 34(1), 135-147.
33. Nasr, A., Bruen, M., Jordan, P., Moles, R., Kiely, G., & Byrne, P. (2007). A comparison of SWAT, HSPF and SHETRAN/GOPC for modelling phosphorus export from three catchments in Ireland. Water research, 41(5), 1065-1073.
34. Nixon, S. W. (2009). Eutrophication and the macroscope. In Eutrophication in Coastal Ecosystems (pp. 5-19). Springer, Dordrecht.
35. Otero, X. L., Tejada, O., Martín-Pastor, M., De La Peña, S., Ferreira, T. O., & Pérez-Alberti, A. (2015). Phosphorus in seagull colonies and the effect on the habitats. The case of yellow-legged gulls (Larus michahellis) in the Atlantic Islands National Park (Galicia-NW Spain). Science of the total environment, 532, 383-397.
36. Petkuviene, J., Vaiciute, D., Katarzyte, M., Gecaite, I., Rossato, G., Vybernaite-Lubiene, I., & Bartoli, M. (2019). Feces from piscivorous and herbivorous birds stimulate differentially phytoplankton growth. Water, 11(12), 2567.
37. Post, D. M., Taylor, J. P., Kitchell, J. F., Olson, M. H., Schindler, D. E., & Herwig, B. R. (1998). The role of migratory waterfowl as nutrient vectors in a managed wetland. Conservation Biology, 12(4), 910-920.
38. Rodrigues, W. F., de Oliveira, F. S., Schaefer, C. E. G., Leite, M. G. P., & Pavinato, P. S. (2021). Phosphatization under birds' activity: Ornithogenesis at different scales on Antarctic Soilscapes. Geoderma, 391, 114950. https://doi.org/10.1016/j.geoderma.2021.114950
39. Rönicke, H., Doerffer, R., Siewers, H., Büttner, O., Lindenschmidt, K. E., Herzsprung, P., ... & Rupp, H. (2008). Phosphorus input by nordic geese to the eutrophic Lake Arendsee, Germany. Fundam. Appl. Limnol. 172: 111–119. DOI 10.1127/1863-9135/2008/0172–0111.
40. Scherer, N. M., Gibbons, H. L., Stoops, K. B., & Muller, M. (1995). Phosphorus loading of an urban lake by bird droppings. Lake and Reservoir Management, 11(4), 317-327.
41. Signa, G., Mazzola, A., Costa, V., & Vizzini, S. (2015). Bottom-up control of macrobenthic communities in a guanotrophic coastal system. PLoS One, 10(2), e0117544.
42. Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 10(2), 126-139.
43. Smith, V. H., Joye, S. B., & Howarth, R. W. (2006). Eutrophication of freshwater and marine ecosystems. Limnology and oceanography, 51(1part2), 351-355.
44. Telesford‐Checkley, J. M., Mora, M. A., Boellstorff, D. E., & Provin, T. L. (2016). An Evaluation of the Contribution of Macro‐and Microelements from Colonial Nesting Waterbirds to Surface Water. Journal of environmental quality, 45(5), 1705-1712.
45. Thomann, R. V., & Mueller, J. A. (1987). Principles of surface water quality modeling and control. Harper & Row Publishers.
46. Tsai, L. Y., Chen, C. F., Fan, C. H., & Lin, J. Y. (2017). Using the HSPF and SWMM models in a high pervious watershed and estimating their parameter sensitivity. Water, 9(10), 780.
47. Vanni, M. J. (2002). Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics, 341-370.
48. Vollenweider, R. A. (1968). Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Paris (France), 192.
49. Vollenweider, R. A. (1975). Input-output models. Schweizerische Zeitschrift für Hydrologie, 37(1), 53-84.
50. Vollenweider, R. A. (1976). Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. 1st ital. Idrobiol., 33, 53-58.
51. Winton, R. S., Moorman, M., & Richardson, C. J. (2016). Waterfowl impoundments as sources of nitrogen pollution. Water, Air, & Soil Pollution, 227(10), 1-13.
52. Yazdi, M. N., Ketabchy, M., Sample, D. J., Scott, D., & Liao, H. (2019). An evaluation of HSPF and SWMM for simulating streamflow regimes in an urban watershed. Environmental Modelling & Software, 118, 211-225.
53. Zobell, R. A. (2006). Water quality of the Bitter Creek and Killpecker Creek watersheds. University of Wyoming.

中文文獻
1. 丁宗蘇、沈妤蓮、林佳祈、林穆明、呂立中、蔡芷怡(2019)。金門鳥類生物多樣性熱點與趨勢分析(2/2)。金門國家公園管理處委託研究報告。金門縣,金門縣政府。
2. 丁宗蘇、沈妤蓮、林思辰、廖俊傑(2021)。金門鸕鶿遷移與生態研究(2/3)。金門國家公園管理處委託研究報告。金門縣,金門縣政府。
3. 丁宗蘇、沈妤蓮、林思辰、廖俊傑、馮孟婕(2020)。金門鸕鶿遷移與生態研究(1/3)。金門國家公園管理處委託研究報告。金門縣,金門縣政府
4. 王佳偉(2014)。翡翠水庫集水區污染削減措施對水庫水質改善影響之研究(碩士論文)。國立臺北科技大學,臺北市。
5. 行政院環境保護署(2021)。民國110年環境水質監測年報。
6. 行政院環境保護署(2022),飲用水水質標準
7. 吳柏勳(2009)生物操控法對湖庫營養鹽通量的影響-以金門陽明湖為例(碩士論文)。國立臺灣大學,臺北市。
8. 林玉婷(2011)比較HSPF及SWMM模式於北勢溪集水區之研究(碩士論文)。國立臺北科技大學,臺北市。
9. 林柏余(2007)結合水質與生態模式-以新山水庫為例(碩士論文)。國立臺灣大學,臺北市。
10. 金門縣政府(2018)金門地區水庫集水區保育實施計畫107-111年。金門縣,金門縣政府。
11. 國立臺北科技大學水環境研究中心(2017)。106年北區水庫水質永續管理計畫。經濟部水利署委託報告。臺北市,經部水利署。
12. 張建業(2019)結合HSPF與WASP模式分析非點源污染對水庫水質之影響(碩士論文)。國立臺北科技大學,臺北市。
13. 陳怡安、張嘉玲(2019)。應用水庫水質模式評估日月潭水庫污染源及水質變化趨勢分析。農業工程學報,65-3。
14. 陳培源(1970)金門島及烈嶼地質說明書。經濟部金門地質礦產測勘隊工作報告。新北市,經濟部中央地質調查所。
15. 傅薇(2016)。Vollenweider模式與營養狀態指標評估水庫水質之研究(碩士論文)。淡江大學,新北市。
16. 楊智閎(2007)。水庫中底泥磷釋出模式之研究(碩士論文)。國立臺灣大學,臺北市。
17. 劉成均(2016)。水質模式分析。臺北市:全華圖書。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊