跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/18 12:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡銘男
研究生(外文):CHIEN, MING-NAN
論文名稱:以微針陣列建構經皮連續生物分析物監測系統
論文名稱(外文):Continuous Bioanalytes Monitoring System Based on Percutaneous Microneedle Array
指導教授:黃榮堂黃榮堂引用關係
指導教授(外文):HUANG, JUNG-TANG
口試委員:張文瀚顏毅廣王治元黃榮堂呂志誠林致廷
口試委員(外文):CHANG, WEN-HANYEN, YI-KUANGWANG, CHIH-YUANHUANG, JUNG-TANGLU, CHIH-CHENGLIN, CHIH-TING
口試日期:2022-07-26
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電學院機電科技博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:86
中文關鍵詞:血糖乳酸生物分析物經皮連續感測器微針陣列微轉印
外文關鍵詞:Blood glucoseLactateBioanalytesPercutaneous continuous sensorMicroneedle arrayMicro-transfer method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:1
在這項研究中,我們以微針陣列為基礎,建構了經皮連續生物分析物監測系統,其生物分析物主要是葡萄糖和乳酸濃度。由於糖尿病的患病率和人口目前嚴重且不斷增加,誠如國際糖尿病聯盟(IDF)所說,在2021年全球成人糖尿病人口至少有5.37億人,並導致670萬人死亡。這個數目也正在急劇增加當中。隨著飲食及生活習慣的改變,糖尿病也影響了臺灣國人,根據民國110年衛生福利部統計,有近250萬成年人罹患糖尿病,並佔了十大死因的第五位。解決這個問題的關鍵,就在於有無密切監測糖尿病患者的血糖濃度保持在合理的範圍內,避免血糖濃度過高或過低而導致併發症。此外,乳酸濃度監測對於欲研究運動員、糖尿病患者規律運動的表現以及糖尿病因免疫功能低下所導致的敗血性休克等急重症的診療監測及預後評估也相當重要。糖尿病人因抵抗力弱,容易受病毒或細菌感染,導致敗血症,甚至因敗血性休克而死亡。而乳酸濃度也是敗血症嚴重程度的生理指標。若能在第一時間提供乳酸訊息,那麼這對運動員來說,可以正確評估運動的效益及做為快速訂定下一步健身決策的參考,而對糖尿病人來說,乳酸訊息可以提供運動做為控制血糖重要訴求的參考。若能透過以微針陣列建構的經皮連續乳酸監測系統所顯示的數據,對於敗血症或長期臥床的安寧照護病人,也可以在第一時間提供給醫療人員,做為病情改善或惡化的治療及追蹤指標。這有別於過往使用侵襲性又疼痛的靜脈抽血,必須經由檢驗科曠日廢時的傳統監測模式,那麼這兩種生物分析物透過微系統工程設計進行整合研究,相信可以提升糖尿病患者或一般人群的生活品質。
爰此,我們的研究旨在糖尿病患者或一般人群當中,開發一種正確且有效的血糖和乳酸濃度經皮連續監測模式,並解決傳統用針刺指尖採血過程中,所產生的疼痛不適感。截至目前為止,市售的針頭探頭較長,當進行測量血糖時,針刺皮膚往往給使用者帶來痛感,研究顯示針刺皮膚所產生的痛感,會隨著針頭長度縮短而降低,宛如蚊子叮咬般微弱痛感而已。我們所建構的微針陣列連續生物分析物監測系統,包涵了葡萄糖和乳酸的兩種不同的電化學感測器,以微轉印的沖模方式,將氧化酶塗抹在微針,並與檢測電路模組和傳輸模組整合,放置在可穿戴式的裝置中,俾能連續監測組織液中的生物分析物濃度,其具有無侵入性,低成本,低功耗的特性,並且能將數據及時性地無線傳輸到手機,準確測量生物分析物濃度的變化。我們希望能透過這樣改變傳統針刺指尖採血的方法,改以1毫米長的針頭建構生物分析物的微針陣列經皮連續感測器,以對糖尿病進行早期診斷,準確地預後評估和即時管理糖尿病人或運動員的運動行為。
我們克服了長針探針插入的不適,長度僅為1毫米,比以往市售機型都短。我們的生物分析物監測系統包括連續葡萄糖監測系統(CGMS)和連續乳酸監測系統(CLMS),都能夠不用待機,就可以即時讀取葡萄糖和乳酸濃度,並在感測器插入後不久,顯示葡萄糖和乳酸的濃度走勢圖。我們使用微針感應貼片與感測電路板以彈簧探頭做連接,讓感應貼片可以快速地更換,俾以節省耗材並落實低成本的概念。再則,我們也創新地以無創、無痛、無線、即時的模式建立經皮微針陣列的連續乳酸監測系統。期待我們所研發的可穿戴,無侵入性的即時連續葡萄糖監測系統,可以應用擴展到台灣的糖尿病,代謝症候群或糖尿病前期的患者。進一步嘉惠他們的健康生活品質。綜合以上所述,我們初步建構了經皮微針陣列的連續生物分析物監測系統,創新地將連續乳酸監測系統和連續葡萄糖監測系統建立在無侵入性,無痛,無線,及時和具有成本效益概念的模式,並且提供了可以在臺灣積累經驗的機會。

In this study, we establish a continuous bioanalytes monitoring system based on percutaneous microneedle array, which the bioanalytes consist of both glucose and lactate. Because the prevalence and population of diabetes are severe and increasing currently, as the International Diabetes Federation (IDF) said that the population of adult diabetes were at least 537 million adults in the world, and it caused 6.7 million to be dead in 2021. The number is terribly increasing and affected Taiwan with nearly 2.5 million adults resulting into the 5th leading cause of death with 11.5K in 2021. The key to resolve the problem is closely monitoring the glucose level of diabetic patient to within normal limit and to avoid extremely high or extremely low sugar concentration. In addition, Lactate level monitoring is also important to investigate the performance of regular exercise of athletes, diabetic patients and the critical illness such as septic shock due to the immunocompromised feature of the diabetes. Therefore, integrated research of both bioanalytes via microsystem engineering design make it possible to improve the control quality of diabetic patients or general population.
Hence our research is to develop a model of correct and valuable blood glucose and lactate measurement in diabetic patients or general population, and to solve the discomfort of pain during the traditional lancet process. We design a microneedle array based continuous bioanalytes monitoring system which include a electrochemical sensor of glucose and lactate respectively, micro needle coated with oxidase, a sensing electric route plate, and a communication unit packed in a portable tool that would constantly sense the bioanalytes levels in interstitial fluid with non-invasive, low cost, low power depletion and hand over the information to a mobile, tablet or PC computer wirelessly, with exact change and trend of the bioanalytes levels. We try to change the traditionally available way with lancet for blood extarction of the bioanalytes. We establish the microneedle sensor of the bioanalytes by using a 1 mm length needle to make early diagnosis, accurate prognosis and real-time management of diabetes.
We overcome the discomforts of long needle probe insertion with only 1 mm in length, shorter than ever before. Our bioanalytes monitoring systems including continuous glucose monitoring system (CGMS) & continuous lactate monitoring system (CLMS) start to report real-time glucose and lactate levels and show the glucose and lactate excursion soon after sensor insertion. We use the microneedle detector and the test slice which can be exchanged more quickly by using the coils procedure to realize the low-cost effect. In addition. We have demonstrated the innovation of CLMS based on percutaneous microneedle array to establish a non-invasive, painless, wireless, real-time mode and accumulate the experience in Taiwan. It seems that our wearable, implantable real-time sensors could stretch the applications of CGMS to those who are diabetic, metabolic syndrome or pre-diabetic patients in Taiwan. Further adjustments to improve our CLMS was expected to extend the available function to meet any real-world situations. Our CLMS could provide the lactate information during evaluating a diabetic patient’s regular exercise or modify the teaching program for an athlete such as strength or tolerance to advance her or his act of sports. In conclusion, We successfully demonstrated the results of the application of trans-skin microneedle array to constantly detecting bioanalytes. The innovative CLMS and CGMS establishing a non-invasive, painless, wireless, timely and cost-effective mode could accumulate the experience in Taiwan.

CHINESE ABSTRACT ...i
ENGLISH ABSTRACT ...iv
ACKNOWLEDGEMENTS ...vii
CONTENTS...viii
TABLE CONTENTS ...x
FIGURE CONTENTS ...xi
THESIS OVERVIEW ...xiii
Chapter I Introduction ...1
I-1 Backgrounds...1
I-2 Literature Review ...8
I-3 Motivations ...18
I-3-1. Glucose ...19
I-3-2. Lactate ...22
I-4 Research Purposes ...25
Chapter II Materials and Methods ...26
II-1 Glucose ...26
II.1.1. Micro-Transfer Method ...26
II.1.2. Reagents and Immobilization ...29
II-1.3. Blood Glucose Sensing Circuit ...30
II-1.4. Experimental Scheme ...33
II-2 Lactate ...36
II-2.1. Overview of the Lactate Detecting Device ...36
II-2.2. Accumulated Tool and Circuit Construction ...43
II-2.3. Mobile Application of our CLMS ...45
II-2.4. Trial ...47
Chapter III Results ...51
III-1. Glucose ...51
III-2 Lactate ...57
Chapter IV Discussions ...63
Chapter V Conclusions ...69
Chapter VI Future Prospects ...70
REFERENCES ...71
PUBLICATIONS ...83

TABLE CONTENTS

Table 1. Features of the Commercially CGM system ...21
Table 2. The lactate level in general ...37
Table 3. The starting point information of the 40 subjects ...50

FIGURE CONTENTS

Figure 1. The non-invasive way after CGMS with almost no pain and no bleeding ...20
Figure 2. After attaching the CLMS to the skin, the Bluetooth transmits and displays the lactate data in app wirelessly ...24
Figure 3. CGMS System Concept of Operation ...26
Figure 4. (a) Construction of the detector; (b) The tool for GOD micro-transfer; (c) Stamping device for immobilization; (d) Stereo printers at high temperature up to two hundred degree in Celsius; (e) Automatic stereo-type dispensing machine; (f) The micro-transfer procedure ...28
Figure 5. Layers of the high polymer coating ...29
Figure 6. Illustration of the role of GOD ...30
Figure 7. (a) The illustration of the detecting unit; (b) Map of the detecting unit ...31
Figure 8. Accumulated tool and microneedle sensor ...33
Figure 9. (a) Parafilm roofed agar medium; (b) Microneedle insertion into agar medium ...34
Figure10. The CV illustrations with different lactate level ...38
Figure 11. The picture of the needle tips of our CLMS ...40
Figure 12. Our penetrated needle tips in dermis area ...40
Figure 13. (a) The sponginess of the micro-structure of PANI; (b) The bevel border for penetration to dermal area smoothly ...41
Figure 14. Illustration of the role of LOX ...41
Figure 15. The illustration of the design of high polymer entrapment method ...42
Figure 16. The 3-electrodes of our microneedle array of CLMS with WE, CE and RE ...43
Figure 17. (a) The disassembled view the covering system of our CLMS; (b) The scheme of the assembled detector ...44
Figure 18. The top and bottom side of our trans-impedance amplifier ...45
Figure 19. Our design of the route map of CLMS ...45
Figure 20. Mobile platform application of our CLMS ...46
Figure 21. A subject riding a room bike ...49
Figure 22. The devices were attached to the skin of thighs and legs ...49
Figure 23. Sensors installed on the upper and lower parts of the leg ...50
Figure 24. (a) Maximal potential change at 0.65 V for various glycemic levels; (b) Current flow vs. interstitial fluid + glycemic level at a potential of 0.65 V in a linear relationship ...51
Figure 25. Constant measurement of different levels of glucose solution (a) 50; (b) 100; (c) 200; (d) 300; (e) 400 mg/dL ...55
Figure 26. Permanency Trial of Our CGMS for 1 week ...55
Figure 27. (a) Constant glycemic data of subject-1; (b) Constant glycemic data of subject-2 ...56
Figure 28. The relationship between various lactate levels and the equivalent currents ...57
Figure 29. Data interfered by perspiration ...58
Figure 30. Data not interfered by perspiration ...59
Figure 31. Our human trial data presented in a liner relationship between sensor and blood lactate levels ...60
Figure 32. The blood lactate value v.s. sensor lactate value of our CLMS ...61
Figure 33. Our trial information detected after CLMS insertion for 4 months ...62





1. https://diabetesatlas.org/atlas/tenth-edition/ .
2. https://idf.org/e-library/epidemiology-research/diabetes-atlas.html.
3. https://dep.mohw.gov.tw/DOS/lp-5069-113-xCat-y110.html.
4. P. Chou, T.H. Tung, C.L Li, S.Y. Chuang, C.H. Lin and N.P. Yang, “Epidemiology of Diabetes Mellitus in Taiwan,” Taiwan J. Public Health, vol. 21, 2002, pp. 83-96.
5. J. Wang, “Glucose Biosensor: 40 Years of Advance and Challenges,” Electroanalysis, vol. 13, 2001, pp. 983-988.
6. M. L. Hsieh, “Exploring the Risk Factors for Diabetic Retinopathy in Diabetes,” Master’s Thesis, China Medical University, Taichung, Taiwan, 2013.
7. J. B.Welsh, X. Zhang, S. A. Puhr, T. K. Johnson, T. C. Walker, A. K. Balo and D. Price, “Performance of a factory-calibrated, real-time continuous glucose monitoring system in pediatric participants with type 1 diabetes,” J. Diabetes Sci. Technol, vol.13, 2019, pp. 254-258.
8. T. Bailey, B. W. Bode, M. P. Christiansen, L.J. Klaff and S. Alva, “The performance and usability of a factory-calibrated flash glucose monitoring system,” Diabetes Technol, vol.17, 2015, pp.787-794.
9. J.Y. Stone, N. Haviland and T.S. Bailey, “Review of a commercially available hybrid closed-loop insulin delivery system in the treatment of Type 1 diabetes,” Ther. Deliv, vol. 9, 2018, pp. 77-87.
10. https://www.fda.gov/news-events/pressannouncements/fda-expandsindication continuous-glucose-monitoring-system-first-replace-fingerstick-testing).
11. T. Battelino, T. Danne, R.M. Bergenstal, S.A. Amiel, R. Beck, T. Biester, E. Bosi, B.A. Buckingham, W.T. Cefalu, K.L. Close, C. Cobelli, E. Dassau, J.H. DeVries, K.C. Donaghue, K. Dovc, F. J. Doyle 3rd, S. Garg, G. Grunberger, S. Heller, L. Heinemann, I.B. Hirsch, R. Hovorka, W. Jia, O. Kordonouri, B. Kovatchev, A. Kowalski, L. Laffel, B. Levine, A. Mayorov, C. Mathieu, H.R. Murphy, R. Nimri, K. Nørgaard, C.G. Parkin, E. Renard, D. Rodbard, B. Saboo, D. Schatz, K. Stoner, T. Urakami, S.A. Weinzimer and M. Phillip, “Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range,” Diabetes Care, vol. 42, no. 8, 2019, pp. 1593-1603.
12. American Diabetes Association, “Standards of Medical Care in Diabetes-2019 Abridged for Primary Care Providers,” Clin Diabetes, vol.37, no. 1, 2019, pp. 11-34.
13. R.A. Vigersky and C. McMahon. “The relationship of hemoglobin A1C to time-in-range in patients with diabetes,” Diabetes Technol Ther, vol. 21, 2019, pp. 81-85.
14. R.W. Beck, R.M. Bergenstal, P. Cheng, C. Kollman, A.L. Carlson, M.L. Johnson and D. Rodbard, “The relationships between time in range, hyperglycemia metrics, and HbA1c,” J Diabetes Sci Technol , vol.13, 2019, pp. 614–626.
15. R.A. Ajjan, “How Can We Realize the Clinical Benefits of Continuous Glucose Monitoring?, “ Diabetes Technol Ther, vol. 19, no. 2, 2017, pp. 27-36.
16. American Diabetes Association Professional Practice Committee, “Diabetes Technology: Standards of Medical Care in Diabetes,” Diabetes Care, vol. 45, 2022, pp. 97-112.
17. R.I.G. Holt, J.H. DeVries, F. A. Hess, I.B. Hirsch, M.S. Kirkman, T. Klupa, B. Ludwig, K. Nørgaard, J. Pettus, E. Renard, J.S. Skyler, F.J. Snoek, R.S. Weinstock, A.L. Peters, “The management of type 1 diabetes in adults. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD),” Diabetologia, vol. 64, no. 12, 2021, pp. 2609-2652.
18. E.M. Miller, “Using Continuous Glucose Monitoring in Clinical Practice,” Clin Diabetes, vol. 38, no. 5, 2020, pp. 429-438.
19. R.W. Beck, R.M. Bergenstal, T.D. Riddlesworth, C. Kollman, Z. Li, A.S. Brown, K.L. Close, “Validation of Time in Range as an Outcome Measure for Diabetes Clinical Trials.” Diabetes Care, vol. 42, no. 3, 2019, pp.400-405.
20. L. Mayeda, R. Katz, I. Ahmad, N. Bansal, Z. Batacchi., I.B. Hirsch., N. Robinson, D. L. Trence, L. Zelnick and I. H. de Boer, “Glucose time in range and peripheral neuropathy in type 2 diabetes mellitus and chronic kidney disease,” BMJ Open Diabetes Research and Care, 2020;8:e000991.doi: 10.1136/bmjdrc-2019-000991.
21. J. Lu, C. Wang, Y. Shen, L. Chen, L. Zhang, J. Cai, W. Lu, W. Zhu, G. Hu, T. Xia and J. Zhou, “Time in Range in Relation to All-Cause and Cardiovascular Mortality in Patients With Type 2 Diabetes: A Prospective Cohort Study,” Diabetes Care, vol. 44, no. 2, 2021, pp. 549-555.
22. S. Boschert, "Is it septic shock? Check a lactate level." ACEP News, November 2007. Elsevier Global Medical News
23. J. Bakker, M.W. Nijsten, T.C. Jansen, “Clinical use of lactate monitoring in critically ill patients,” Ann Intensive Care, vol. 3, 2013, p.12.
24. C. Meyer, M. Stumvoll, S. Welle, H.J. Woerle, M. Haymond and J. Gerich, “Relative importance of liver, kidney, and substrates in epinephrine-induced increased gluconeogenesis in humans,” Am J Physiol Endocrinol Metab, vol. 285, 2003, pp. 819-826.
25. K.M. Kaukonen, M. Bailey, M. Egi, N. Orford, N.J. Glassford, P.E. Marik and R. Bellomo, ”Stress hyperlactatemia modifies the relationship between stress hyperglycemia and outcome: a retrospective observational study,” Crit Care Med, vol.42, 2014, pp. 1379-1385.
26. P.E. Marik and R. Bellomo, “Stress hyperglycemia: an essential survival response!,” Crit Care, vol. 17, 2013, p. 305.
27. M. Garcia-Alvarez, P. Marik, R. Bellomo, “Stress hyperlactataemia: present understanding and controversy,” Lancet Diabetes Endocrinol, vol. 2, 2014, pp. 339-347.
28. C.F. Cori, “Mammalian carbohydrate metabolism,” Physiol Rev, vol. 11, 1931, pp. 143-275.
29. D.C. Klonoff and J.F. Perz, “Assisted monitoring of blood glucose: special safety needs for a new paradigm in testing glucose,” J Diabetes Sci Technol, vol. 4, no. 5, 2010, pp. 1027-1031.
30. J. A. W. Polderman, X. L. Ma, W. J. Eshuis, M. W. Hollmann, J. H. DeVries, B. Preckel and J. Hermanides, “Efficacy of continuous intravenous glucose monitoring in perioperative glycaemic control: a randomized controlled study,” British Journal of Anaesthesia, vol. 118, no. 2, 2017, pp. 264-275.
31. U. Hoss, E.S. Budiman, H. Liu and M.P. Christiansen, “Continuous glucose monitoring in the subcutaneous tissue over a 14-day sensor wear period,” J Diabetes Sci Technol, vol. 7, no. 5, 2013, pp. 1210-1219.
32. J. Unger, P. Kushner, J.E. Anderson, ” Practical guidance for using the FreeStyle Libre flash continuous glucose monitoring in primary care,” Postgrad Med, vol. 132, no. 4, 2020, pp. 305–313
33. T.C. Dunn, Y. Xu, G. Hayter and R.A. Ajjan, “Real-world flash glucose monitoring patterns and associations between self-monitoring frequency and glycaemic measures: a European analysis of over 60 million glucose tests,” Diabetes Res Clin Pract, vol. 137, 2018, pp. 37-46.
34. M. Evans, Z. Welsh and A. Seibold, “Reductions in HbA1c with Flash Glucose Monitoring Are Sustained for up to 24 Months: A Meta-Analysis of 75 Real-World Observational Studies,” Diabetes Ther, vol. 13, no. 6, 2022, pp. 1175-1185.
35. https://www.freestyle.abbott/us-en/products/freestyle-libre-3.html
36. R. Bockholt, S. Paschke, L. Heubner, B. Ibarlucea, A.Laupp, Ž. Janićijević, S. Klinghammer, S. Balakin, M.F. Maitz, C. Werner, G. Cuniberti, L. Baraban and P. M. Spieth, “Real-Time Monitoring of Blood Parameters in the Intensive Care Unit: State-of-the-Art and Perspectives,” J. Clin. Med, vol. 11, no. 9, 2022, https://doi.org/10.3390/jcm11092408
37. M. Garofolo, M. Aragona, C. Rodia, P. Falcetta, A. Bertolotto, F. Campi, S. Del Prato and G. Penno, “Glycaemic control during the lockdown for COVID-19 in adults with type 1 diabetes: A meta-analysis of observational studies,“ Diabetes Res. Clin. Pract, vol.180, 2021; doi: 10.1016/j.diabres.2021.109066.
38. V. Bellido and A. Pérez, “COVID-19 and Diabetes,” J Clin Med, vol.10, no. 22, 2021, doi: 10.3390/jcm10225341.
39. G. Vincze, J. Barner, and D.Lopez, “Factors associated with adherence to self-monitoring of blood glucose among persons with diabetes,” The Diabetes Educator, vol. 30, 2004, pp. 112-125.
40. J Wagner, C. Malchoff and G. “Abbott Invasiveness as a barrier to self-monitoring of blood glucose in diabetes,” Diabetes Technol Ther, vol. 7, 2005, pp. 612–619.
41. R. Ajjan, D. Slattery and E.Wright, “Continuous Glucose Monitoring: A Brief Review for Primary Care Practitioners,” Adv Ther, vol. 36, no. 3, 2019, pp. 579-596.
42. S. Li, J. Dai, M. Zhu, N. Arroyo-Currás, H. Li, Y.Wang, Q.Wang, X. Lou, T.E. Kippin and S. Wang, “Hydrogel-coating improves the in-vivo stability of electrochemical aptamer-based biosensors,” bioRxiv, 2020, DOI:10.1101/2020.11.15.383992.
43. A. Caduff, E. Hirt, Y. Feldman, Z. Ali and L. Heinemann, “First human experiment with a novel non-invasive, non-optical continuous glucose monitoring system,” Biosens. Bioelectron, vol, 19 ,2003, pp. 209–217.
44. I. Lahdesmaki, A. J. Shum and B. A. Parviz, “Possibilities for continuous glucose monitoring by a function contact lens,” IEEE Instrum. Meas. Mag, vol. 13, 2010, pp. 14–17.
45. C. Y. Liao, “The Study of a Non-Invasive Technology for Glucose Measurements,” Master’s Thesis, National Taiwan University, Taipei, Taiwan, 1997.
46. W. L. Hsu, “Development of Optical and Electrical Biotech Methodology: An Optically Multi-Functional Biochip System and Innovative Electro-Chemistry Methodology,” Master’s Thesis, National Taiwan University, Taipei, Taiwan, 2004.
47. L. Xie, Z. Zeng, J. Sun and W. Qian, “Engineering microneedles for therapy and diagnosis: A survey,” Micromachines, vol. 11, 2020, p. 271. doi: 10.3390/mi11030271.
48. J. Schultz, Z. Uddin, G. S.Matiar, M. R. Howlader, “Glutamate sensing in biofluids: Recent advances and research challenges of electrochemical sensors,” Analyst. vol. 145, 2020, pp. 321–347.
49. S. R. Chinnadayyala, J. Park, Y. H. Kim, S. H. Choi, S. M. Lee, W. W. Cho, G.Y. Lee, J.C. Pyun and S. Cho, “Electrochemical detection of C-reactive protein in human serum based on self-assembled monolayer-modified interdigitated wave-shaped electrode,” Sensors, vol. 19, 2019, 19, p. 5560.
50. P. Bollella, S. Sharma, A. E. G. Cass and R. Antiochia, “Minimally-invasive microneedle-based biosensor array for simultaneous lactate and glucose monitoring in artificial interstitial fluid,” Electroanalysis, vol. 31, 2019, pp. 374-382.
51. J. R. Windmiller, N. Zhou, M. C. Chuang, V. R. Gabriela, P. Santhosh, P. R. Miller, N. Roger and J. Wang, “Microneedle array-based carbon paste amperometric sensors and biosensors,” Analyst, vol. 136, 2011, pp. 1846–1851.
52. P. Bollella, S. Sharma, A.E.G. Cass and R. Antiochia, “Microneedle-based biosensor for minimally-invasive lactate detection,” Biosens. Bioelectron, vol. 123, 2019, pp. 152–159.
53. U. Hoss and E. Budiman, “Factory-Calibrated Continuous Glucose Sensors: The Science behind the Technology,” Diabetes Technol.Ther, vol. 19, 2017, pp. 44-50.
54. The Diabetes Research in Children Network Study Group, “Accuracy of the GlucoWatch G2 Biographer and the continuous glucose monitoring system during hypoglycemia,” Diabetes Care, vol. 27, 2004, pp. 722–726.
55. A. Heller and J. Ulstrup, “Detlev Müller’s Discovery of Glucose Oxidase in 1925,” Analytical Chemistry, vol. 93, no. 18, 2021, pp. 7148-7149.
56. I. Lee, D. Probst, D. Klonoff and K. Sode, “Continuous glucose monitoring systems-Current status and future perspectives of the flagship technologies in biosensor research,” Biosens. Bioelectron, vol. 181, 2021, p. 113054.
57. J. Okuda-Shimazaki, H. Yoshida and K. Sode, “FAD dependent glucose dehydrogenases - Discovery and engineering of representative glucose sensing enzymes,” Bioelectrochemistry, 2020, doi: 10.1016/j.bioelechem.2019.107414.
58. A. K. Dąbrowska, G. M.Rotaru, S. Derler, F. Spano, M. Camenzind, S. Annaheim, R. Stämpfli, M. Schmid and R. M. Rossi, “Materials used to simulate physical properties of human skin,” Ski. Res Technol, vol. 22, 2016, pp. 3–14.
59. C. Chen, J. Zhang, Y. Du,; X. Yang and E. Wang, “Microfabricated on-chip integrated Au–Ag–Au three-electrode system for in situ mercury ion determination,” Analyst, vol. 135, 2010, pp. 1010–1014.
60. A. Jia, L. Huang, H. Liu, Y. Huang, W. Li, X. Pi and X. Zheng, “Design of a real-time self-adjusting calibration algorithm to improve the accuracy of continuous blood glucose monitoring,” Appl.Biochem.Biotechno, vol.190, 2020, pp. 1163–1176.
61. A. Wolf, K. Renehan, K.K.Y. Ho, B.D. Carr, C.V. Chen, M.S. Cornell, M. Ye, A. Rojas-Peña and H. Chen, “Evaluation of continuous lactate monitoring systems within a heparinized in vivo porcine model intravenously and subcutaneously,” Biosensors, vol. 8, 2018, doi: 10.3390/bios8040122.
62. L. Zhang, C. Zhang, Z. Tan, J.Tang, C.Yao and B.Hao, “Research Progress of Microtransfer Printing Technology for Flexible Electronic Integrated Manufacturing,” Micromachines, vol. 12, 2021, p. 1358. https://doi.org/10.3390/mi12111358
63. C. Bower, M. Meitl, D. Kneeburg, “Micro-Transfer-Printing: Heterogeneous integration of microscale semiconductor devices using elastomer stamps,” SENSORS, 2014, DOI: 10.1109/ICSENS.2014.6985454.
64. K. I. Ajeel and Q. S. Kareem, “Synthesis and Characteristics of Polyaniline (PANI) Filled by Graphene (PANI/GR) nano-Films,” J. Phys.: Conf. Ser, 2019, 1234 012020 doi: 10.1088/1742-6596/1234/1/012020.
65. S. A. Chen and Y. Fang, “Polyaniline schottky barrier:effect of doping on rectification and photovoltaic characteristics,” Synthetic Metals, vol. 60, No. 3, 1993, pp. 215-222.
66. L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang and S. Wu, “Characterization and gas sensitivity study of polyaniline/SnO2 hybrid material prepared by hydrothermal route,” Sensors and Actuators B: Chemical, vol. 120, no. 2, 2007, pp. 568-572.
67. Y. Cao, A, Andreatta, A. J. Heeger and P. Smith, “Influence of chemical polymerization conditions on the properties of polyaniline,” Polymer, vol. 30, 1989, 2305-2311.
68. D. Zhang, L. Wang, H. Qian and X. Li, “Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions,” J. Coat. Technol. Res, vol. 13, no. 1, 2016, pp. 11–29.
69. S. N. M. Zuber, D. Kamarun, H. Zaki, M. S. Kamarudin, S. Thomas and N. Kalarikkal, “Synthesis and characterization of polyaniline coated gold nanocomposites,” AIP Conference Proceedings, 1674, 020010, 2015, https://doi.org/10.1063/1.4928827
70. T. I. Valdes and F. Moussy, “In Vitro and In Vivo Degradation of Glucose Oxidase Enzyme Used for an Implantable Glucose Biosensor,” Diabetes Technol.Ther, vol. 2, 2000, pp. 367-376.
71. C. J. Yuan, C. L. Hsu, S. C. Wang and K. S. Chang, "Eliminating the interference of ascorbic acid and uric acid to the amperometric glucose biosensor by cation exchangers membrane and size exclusion membrane", Electroanalysis, vol. 17, no. 24, 2005, pp. 2239-2245.
72. A. Olejnik, J. Karczewski, A. Dołęga, K. Siuzdak, K. Grochowska, “Novel approach to interference analysis of glucose sensing materials coated with Nafion,” Bioelectrochemistry, vol. 135, 2020, 107575, https://doi.org/10.1016/j.bioelechem.2020.107575
73. Y. R. Lin, C.C. Hung., H. Y. Chiu, B.H. Chang., B. R. Li, S. J. Cheng, J. W. Yang, S. F. Lin and G.Y. Chen, “Noninvasive Glucose Monitoring with a Contact Lens and Smartphone,” Sensors, vol. 18, 2018, 3208. doi: 10.3390/s18103208.
74. Y. Arica and V. N. Hasirci, “Immobilization of glucose oxidase in poly(2-hydroxyethyl methacrylate) membranes,” Biomaterials, vol. 8, 1987, pp. 489–495.
75. R.M. Unruh, J.R. Roberts, S.P. Nichols, S. Gamsey, N.A. Wisniewski and M.J. McShane, “Preclinical evaluation of poly (hema-co-acrylamide) hydrogels encapsulating glucose oxidase and palladium benzoporphyrin as fully implantable glucose sensors,” J. Diabetes Sci. Technol, vol. 9, no. 5, 2015, pp. 985–992.
76. E. Larrañeta, J. Moore, E.M. Vicente-Pérez, P. González-Vázquez, R. Lutton, A.D. Woolfson, R.F. Donnelly, “A proposed model membrane and test method for microneedle insertion studies,” Int J Pharm, vol. 472, 2014, pp. 65-73.
77. B.H. Ginsberg, “Factors affecting blood glucose monitoring: sources of errors in measurement,” J Diabetes Sci Technol. Vol. 3, 2009, pp. 903-913
78. K.R. Ervin and E.J. Kiser, “Issues and implications in the selection of blood glucose monitoring technologies,” Diabetes Technol Ther, vol. 1, 1999, pp. 3-11.
79. J. P. Freire, N. Wieringa, E. de Felice, I.C.C. van der Horst, L. A.Oude and M. W. Nijsten, “The association of early combined lactate and glucose levels with subsequent renal and liver dysfunction and hospital mortality in critically ill patients,” Crit Care, vol. 21, 2017, 218. doi: 10.1186/s13054-017-1785-z.
80. F. Tehrani, H.Teymourian, B. Wuerstle, J. Kavner, R. Patel, A. Furmidge, R. Aghavali, H. Hosseini-Toudeshki, C. Brown, F. Zhang, K. Mahato, Z. Li, A. Barfidokht, L .Yin, P. Warren, N. Huang, Z. Patel, P.P. Mercier and J. Wang, “An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid,” Nat Biomed Eng, 2022, doi: 10.1038/s41551-022-00887-1.
81. C. D. Tymowski, S. Soussi, F. Depret, M. Legrand, “On-line plasma lactate concentration monitoring in critically ill patients,” Crit Care, vol. 21, 2017, 151. doi: 10.1186/s13054-017-1738-6.
82. G. Yu, S.J. Yoo, S.H. Lee, J.S. Kim, S. Jung, Y.J. Kim, W.Y. Kim and S.M. Ryoo, “Utility of the early lactate area score as a prognostic marker for septic shock patients in the emergency department,” Acute Crit Care, vol. 34, 2019, pp. 126-132.
83. T. E. Jones, W. J. Pories, J. A. Houmard, C. J. Tanner, D. Zheng, K. Zou, P.M. Coen, B.H. Goodpaster, W.E. Kraus and G.L. Dohm, “Plasma lactate as a marker of metabolic health: Implications of elevated lactate for impairment of aerobic metabolism in the metabolic syndrome,” Surgery, vol. 166, no. 5, 2019 pp. 861-866.
84. S. Pardo and D.A. Simmons, “The Quantitative Relationship Between ISO 15197 Accuracy Criteria and Mean Absolute Relative Difference (MARD) in the Evaluation of Analytical Performance of Self-Monitoring of Blood Glucose (SMBG) Systems,” J Diabetes Sci Technol, vol.10, no. 5, 2016, pp. 1182-1187.
85. M. Geoffrey, R. Brazg and W. Richard, “FreeStyle Navigator Continuous Glucose Monitoring System with TRUstart algorithm, a 1-hour warm-up time,” J Diabetes Sci Technol, vol. 5, 2011, pp. 99-106.
86. R.A. Peura and Y. Mendelson, “Blood Glucose Sensor: An Overview. In Proceedings of the IEEE/NSF,” Symposium on Biosensor, Los Angeles, CA, USA, 15–17 September 1984; pp. 63–68.
87. J. R. Windmiller, N. Zhou, M. C. Chuang, V. R. Gabriela,; P. Santhosh, P. R. Miller, N. Roger and J. Wang, “Microneedle array-based carbon paste amperometric sensors and biosensors,” Analyst, vol. 136, 2011, pp. 1846–1851.
88. P. Bollella, S. Sharma, A. E. G. Cass and R. Antiochia, “Minimally-invasive microneedle-based biosensor array for simultaneous lactate and glucose monitoring in artificial interstitial fluid,” Electroanalysis, vol. 31, 2019, pp. 374–382.
89. S. R. Chinnadayyala, A. T. Satti, D. Kim and S. Cho, “Minimally invasive and continuous glucose monitoring sensor based on non-enzymatic porous platinum black-coated gold microneedles,“ Eletrochim. Acta, vol. 369, 2021, 137691.
90. G. Cappon, M. Vettoretti, G. Sparacino and A. Facchinetti, “Continuous Glucose Monitoring Sensors for Diabetes Management: A Review of Technologies and Applications, “ Diabetes Metab. J, vol. 43, 2019, pp. 383–397.
91. S. K. Vashist, “Continuous Glucose Monitoring Systems: A Review.” Diagnostics, vol. 3, 2013, pp. 385–412.
92. D. C. Klonoff, D. Ahn and A. Drincic, “Continuous glucose monitoring: A review of the technology and clinical use,” Diabetes Res. Clin. Pract, vol. 133, 2017, pp. 178-192.
93. Y. Cai, B. Liang, S. Chen, Q. Zhu, T. Tu, K. Wu, Q. Cao, L. Fang, X. Liang and X. Ye, “One-step modification of nano-polyaniline/glucose oxidase on double-side printed flexible electrode for continuous glucose monitoring: Characterization, cytotoxicity evaluation and in vivo experiment,” Biosens. Bioelectron, vol. 165, 2020, 112408.
94. B. P. David, B. Tanya, T. M. David, L. Andrew, “Evaluation of the lactate pro blood lactate analyser,” Eur. J. Appl. Physiol, vol. 82, 2000, pp. 112–116.
95. P. Hugh and D. Brian, “Examination of the validity and reliability of the accusport blood lactate analyser,” J. Sci. Med. Sport, vol. 4, 2001, pp. 129-138.
96. V. C. Amol and E. J. David, “Study of clinical course and prognostic factors affecting the course of septicemia,” Ind. J. Basic Appl. Med. Res, vol. 8, 2019 pp. 520-530.
97. K. Rathee, V. Dhull, R. Dhull, and S. Singh, “Biosensors based on electrochemical lactate detection: A comprehensive review,” Biochem. Biophys. Rep, vol. 5, 2016,pp. 35-54.
98. U. Hoss and E. Budiman, “Factory-Calibrated Continuous Glucose Sensors: The Science behind the Technology,” Diabetes Technol. Ther, vol. 19, 2017, pp. 44-50.
99. T. K. Peter and W. R. Heineman, “Cyclic Voltammetry. Laboratory Techniques in Electroanalytical Chemistry,” CRC Press: Boca Raton, FL, USA, 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊