|
[1] G. J. M. Read, S. Shorrock, G. H. Walker, and P. M. Salmon, “State of science: Evolving perspectives on ‘human error’,” Ergonomics, vol. 64, pp. 1091–1114, 9 Sep.2021, issn: 0014-0139. doi:10.1080/00140139.2021.1953615. [2] P. Zhu, L. Sun, Y. Song, L. Wang, X. Yuan, and Z. Dai, “Analysis on cognitive behaviors and prevention of human errors of coalmine hoist drivers,” International Journal of Safety and Security Engineering, vol. 10, pp. 663–670, 5 Nov. 2020, issn: 20419031. doi: 10.18280/ijsse.100511. [3] P. Barosz, G. Golda, and A. Kampa, “Efficiency analysis of manufacturing line with industrial robots and human operators,” Applied Sciences, vol. 10, p. 2862, 8 Apr. 2020, issn: 2076-3417. doi: 10.3390/app10082862. [4] X. Pan and Z. Wu, “Performance shaping factors in the human error probability modification of human reliability analysis,” International Journal of Occupational Safety and Ergonomics, vol. 26, pp. 538–550, 3 Jul. 2020, issn: 1080-3548. doi: 10.1080/10803548.2018.1498655. [5] H. Lausberg, Understanding Body Movement, H. Lausberg, Ed. Peter Lang D, Jan. 2014, isbn: 9783653042085. doi: 10.3726/978-3-653-04208-5. [6] R. J. Sternberg and A. Kostic, Social Intelligence and Nonverbal Communication, R. J. Sternberg and A. Kosti ́c, Eds. Springer International Publishing, 2020, isbn: 978-3-030-34963-9. doi: 10.1007/978-3-030-34964-6. [7] R. Singh, T. Miller, J. Newn, E. Velloso, F. Vetere, and L. Sonenberg, “Combining gaze and ai planning for online human intention recognition,” Artificial Intelligence, vol. 284, p. 103 275, Jul. 2020, issn: 00043702. doi: 10.1016/j.artint.2020.103275. [8] R. Ishii, C. Ahuja, Y. I. Nakano, and L.-P. Morency, “Impact of personality on nonverbal behavior generation,” ACM, Oct. 2020, pp. 1–8, isbn: 9781450375863. doi: 10.1145/3383652.3423908. [9] C. L. Reed, E. J. Moody, K. Mgrublian, S. Assaad, A. Schey, and D. N. McIntosh, “Body matters in emotion: Restricted body movement and posture affect expression and recognition of status-related emotions,” Frontiers in Psychology, vol. 11, Aug. 2020, issn: 1664-1078. doi: 10.3389/fpsyg.2020.01961. [10] S. Darafsh, S. S. Ghidary, and M. S. Zamani, “Real-time activity recognition and intention recognition using a vision-based embedded system,” Jul. 2021. [11] J. C. Mateus, D. Claeys, V. Lim`ere, J. Cottyn, and E.-H. Aghezzaf, “A structured methodology for the design of a human-robot collaborative assembly workplace,” The International Journal of Advanced Manufacturing Technology, vol. 102, pp. 2663–2681, 5-8 Jun. 2019, issn: 0268-3768. doi: 10.1007/s00170-019-033563. [12] T. Smith, P. Benardos, and D. Branson, “Assessing worker performance using dynamic cost functions in human robot collaborative tasks,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,vol. 234, pp. 289–301, 1 Jan. 2020, issn: 0954-4062. doi: 10.1177/0954406219838568. [13] R. R. Galin and R. V. Meshcheryakov, Human-robot interaction efficiency and human robot collaboration, 2020. doi: 10.1007/978-3-030-37841-7_5. [14] E. Matheson, R. Minto, E. G. G. Zampieri, M. Faccio, and G. Rosati, “Human–robot collaboration in manufacturing applications: A review,” Robotics, vol. 8, p. 100, 4 Dec. 2019, issn: 2218-6581. doi: 10.3390/robotics8040100. [15] S. Huang, L. Yang, W. Chen, T. Tao, and B. Zhang, “A specific perspective: Subway driver behaviour recognition using cnn and time-series diagram,” IET Intelligent Transport Systems, vol. 15, pp. 387–395, 3 Mar. 2021, issn: 1751-956X. doi: 10.1049/itr2.12032. [16] J. Wang, T. Liu, and X. Wang, “Human hand gesture recognition with convolutional neural networks for k-12 double-teachers instruction mode classroom,” Infrared Physics Technology, vol. 111, p. 103 464, Dec. 2020, issn: 13504495. doi: 10.1016/j.infrared.2020.103464. [17] F.-C. Lin, H.-H. Ngo, C.-R. Dow, K.-H. Lam, and H. L. Le, “Student behavior recognition system for the classroom environment based on skeleton pose estimation and person detection,” Sensors, vol. 21, p. 5314, 16 Aug. 2021, issn: 1424-8220. doi: 10.3390/s21165314. [18] S. Li, J. Yi, Y. A. Farha, and J. Gall, “Pose refinement graph convolutional network for skeleton-based action recognition,” IEEE Robotics and Automation Letters, vol. 6, pp. 1028–1035, 2 Apr. 2021, issn: 2377-3766. doi: 10.1109/LRA.2021.3056361. [19] N. Jaouedi, F. J. Perales, J. M. Buades, N. Boujnah, and M. S. Bouhlel, “Prediction of human activities based on a new structure of skeleton features and deep learning model,” Sensors, vol. 20, p. 4944, 17 Sep. 2020, issn: 1424-8220. doi: 10.3390/s20174944. [20] H.-F. Sang, Z.-Z. Chen, and D.-K. He, “Human motion prediction based on attention mechanism,” Multimedia Tools and Applications, vol. 79, pp. 5529–5544, 9-10 Mar. 2020, issn: 1380-7501. doi: 10.1007/s11042-019-08269-7. [21] P. Neto, M. Sim ̃ao, N. Mendes, and M. Safeea, “Gesture-based human-robot interaction for human assistance in manufacturing,” The International Journal of Advanced Manufacturing Technology, vol. 101, pp. 119–135, 1-4 Mar. 2019, issn: 0268-3768. doi: 10.1007/s00170-018-2788-x. [22] K. B. de Carvalho, D. K. D. Villa, M. Sarcinelli-Filho, and A. S. Brand ̃ao, “Gestures teleoperation of a heterogeneous multi-robot system,” The International Journal of Advanced Manufacturing Technology, vol. 118, pp. 1999–2015, 5-6 Jan. 2022, issn: 0268-3768. doi: 10.1007/s00170-021-07659-2. [23] K.-J. Wang and D. Santoso, “A smart operator advice model by deep learning for motion recognition in human–robot coexisting assembly line,” The International Journal of Advanced Manufacturing Technology, vol. 119, pp. 865–884, 1-2 Mar. 2022, issn: 0268-3768. doi: 10.1007/s00170-021-08319-1. [24] V. Voronin, M. Zhdanova, E. Semenishchev, A. Zelenskii, Y. Cen, and S. Agaian, “Action recognition for the robotics and manufacturing automation using 3-d binary micro-block difference,” The International Journal of Advanced Manufac-turing Technology, vol. 117, pp. 2319–2330, 7-8 Dec. 2021, issn: 0268-3768. doi: 10.1007/s00170-021-07613-2. [25] L. Roda-Sanchez, C. Garrido-Hidalgo, A. S. Garc ́ıa, T. Olivares, and A. Fern ́andez Caballero, “Comparison of rgb-d and imu-based gesture recognition for human-robot interaction in remanufacturing,” The International Journal of Advanced Manufacturing Technology, Oct. 2021, issn: 0268-3768. doi: 10.1007/s00170-021-08125-9. [26] A. AlZoubi, B. Al-Diri, T. Pike, T. Kleinhappel, and P. Dickinson, “Pair-activity analysis from video using qualitative trajectory calculus,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, pp. 1850–1863, 8 Aug. 2018, issn: 1051-8215. doi: 10.1109/TCSVT.2017.2701860. [27] D. Hartmann and C. Schwenck, “Emotion processing in children with conduct problems and callous-unemotional traits: An investigation of speed, accuracy, and attention,” Child Psychiatry Human Development, vol. 51, pp. 721–733, 5 Oct. 2020, issn: 0009-398X. doi: 10.1007/s10578-020-00976-9. [28] C. B. S. Maior, M. J. das Chagas Moura, J. M. M. Santana, and I. D. Lins, “Real time classification for autonomous drowsiness detection using eye aspect ratio,” Expert Systems with Applications, vol. 158, p. 113 505, Nov. 2020, issn: 09574174. doi: 10.1016/j.eswa.2020.113505. [29] J. Stapel, M. E. Hassnaoui, and R. Happee, “Measuring driver perception: Combining eye-tracking and automated road scene perception,” Human Factors: The Journal of the Human Factors and Ergonomics Society, vol. 64, pp. 714–731, 4 Jun. 2022, issn: 0018-7208. doi: 10.1177/0018720820959958. [30] M. Schaeffer, J. Nitzke, A. Tardel, K. Oster, S. Gutermuth, and S. Hansen-Schirra, “Eye-tracking revision processes of translation students and professional translators,” Perspectives, vol. 27, pp. 589–603, 4 Jul. 2019, issn: 0907-676X. doi: 10 .1080/0907676X.2019.1597138. [31] J. M. Mart ́ın, V. L. del Campo, and L. J. M. Fern ́andez-Arg ̈uelles, “Design and development of a low-cost mask-type eye tracker to collect quality fixation measurements in the sport domain,” Proceedings of the Institution of Mechanical Engineers,Part P: Journal of Sports Engineering and Technology, vol. 233, pp. 116–125, 1 Mar. 2019, issn: 1754-3371. doi: 10.1177/1754337118808177. [32] A. Saeed, A. Al-Hamadi, and H. Neumann, “Facial point localization via neural networks in a cascade regression framework,” Multimedia Tools and Applications, vol. 77, pp. 2261–2283, 2 Jan. 2018, issn: 1380-7501. doi: 10.1007/s11042-016-4261-x. [33] Y. Ma, W. Zhu, and Y. Zhou, “Automatic grasping control of mobile robot based on monocular vision,” The International Journal of Advanced Manufacturing Technology, vol. 121, pp. 1785–1798, 3-4 Jul. 2022, issn: 0268-3768. doi: 10.1007/s00170-022-09438-z. [34] S. Garg, A. Saxena, and R. Gupta, “Yoga pose classification: A cnn and mediapipe inspired deep learning approach for real-world application,” Journal of Ambient Intelligence and Humanized Computing, Jun. 2022, issn: 1868-5137. doi: 10.1007/s12652-022-03910-0. [35] R. Mojarad, F. Attal, A. Chibani, and Y. Amirat, “Automatic classification error detection and correction for robust human activity recognition,” IEEE Robotics and Automation Letters, vol. 5, pp. 2208–2215, 2 Apr. 2020, issn: 2377-3766. doi: 10.1109/LRA.2020.2970667. [36] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural networks: Lstm cells and network architectures,” Neural Computation, vol. 31, pp. 1235–1270, 7 Jul. 2019, issn: 0899-7667. doi: 10.1162/neco_a_01199. [37] N. Renotte, Sign language detection using action recognition with python — lstm deep learning model, https://www.youtube.com/watch?v=doDUihpj6ro, [Online; accessed 27-June-2022], 2021. [38] H. Kurniawati, “Partially observable markov decision processes and robotics,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 5, pp. 253–277, 1 May 2022, issn: 2573-5144. doi: 10.1146/annurev-control-042920-092451. [39] M. Cramer, K. Kellens, and E. Demeester, “Probabilistic decision model for adaptive task planning in human-robot collaborative assembly based on designer and operatorintents,” IEEE Robotics and Automation Letters, vol. 6, pp. 7325–7332, 4 Oct. 2021, issn: 2377-3766. doi: 10.1109/LRA.2021.3095513. [40] E. Escobar-Linero, M. Dom ́ınguez-Morales, and J. L. Sevillano, “Worker’s physical fatigue classification using neural networks,” Expert Systems with Applications, vol. 198, p. 116 784, Jul. 2022, issn: 09574174. doi: 10.1016/j.eswa.2022.116784. [41] S. Digiesi, A. A. Kock, G. Mummolo, and J. E. Rooda, “The effect of dynamic worker behavior on flow line performance,” International Journal of Production Economics, vol. 120, pp. 368–377, 2 Aug. 2009, issn: 09255273. doi: 10.1016/j.ijpe.2008.12.012. [42] Proplanner, Mtm-uas. [Online]. Available: https://www.proplanner.com/solutions/assembly-process-planning/time-studies/mtm. [43] M. J. Anzanello and F. S. Fogliatto, “Learning curve models and applications: Literature review and research directions,” International Journal of Industrial Ergonomics, vol. 41, pp. 573–583, 5 Sep. 2011, issn: 01698141. doi: 10 . 1016 / j .ergon.2011.05.001. [44] amazon, Hp w300 1080p 30 fps fhd webcam with built-in dual. [Online]. Available: https://www.amazon.in/HP- Digital- Wide- Angle- Calling- Microsoft/dp/B08FTH38QX. [45] P. Radzki, Detection of human body landmarks - mediapipe and openpose comparison, 2022. [Online]. Available: https://www.hearai.pl/post/14-openpose/.71
|