跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/16 18:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林沛毅
研究生(外文):LIN, PEI-YI
論文名稱:圓柱型鋰電池熱管理研究- 空氣冷卻與管狀相變材料
論文名稱(外文):Study On Thermal Management Of Lithium Battery Packs- Air Cooling And Tubular Phase Change Material
指導教授:顏維謀顏維謀引用關係
指導教授(外文):YAN, WEI-MON
口試委員:林大偉管衍德楊添福顏維謀
口試委員(外文):LIN, DA-WEIKUAN, YUAN-DEARYANG, TIEN-FUYAN, WEI-MON
口試日期:2022-07-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:93
中文關鍵詞:鋰電池熱管理空氣冷卻相變材料NCM實驗量測數值模擬
外文關鍵詞:Lithium-ion battery thermal managementAir coolingPhase change materialLithium nickel cobalt manganiteExperimental measurementNumerical simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鋰電池在運作過程中,由於能量損失,會以熱的方式產生,因此需要進行有效的散熱,使鋰電池在溫度限制下進行工作,對於鋰電池之安全性、效率、壽命而言,熱管理系統設計是一個重要關鍵因素。鎳鈷錳酸鋰(NCM)鋰電池具有高能量比和高電壓輸出等優點。本研究利用實驗量測與數值分析探討單電池與電池組的熱性能,研究內容分為三部分。第一部分為以單電池實驗量測與數值分析,探討在不同放電速率下,鋰電池的溫度變化情形,並將實驗量測與數值分析結果相互驗證,建立單電池熱模型,第二部分為設計5x6與2x15兩種不同電池組,進行熱性能比較,探討影響電池組溫度變化的關鍵因素,第三部分為添加相變材料(Phase Change Material, PCM)的單電池與電池組熱分析,透過單電池PCM厚度分析,選定最佳PCM厚度並應用於電池組,探討在單一冷卻空氣和空氣與PCM協同作用下的電池組熱性能比較。以上結果表明,隨著放電速率的增加,鋰電池的內部溫度會快速上升,溫度均勻性會下降,在電池組熱分析中,在考量散熱性能與成本下,5x6電池組比2x15電池組來得更有優勢,添加PCM的單電池分析中,在3C放電速率下,12mm的PCM厚度為最佳選擇,且在添加PCM的電池組中,結果發現比起單一空氣冷卻,在空氣與PCM協同作用下可以提高電池組的熱性能。
During the operation of the lithium battery, due to energy loss, the heat will be generated. Therefore, effective heat dissipation is required to make the lithium battery work under the temperature limit. For the safety, efficiency and life of the lithium battery, the thermal management is an important key factor. Nickel cobalt lithium manganate (NCM) lithium batteries have the advantages of high energy ratio and high voltage output. This research uses experimental measurements and numerical analysis to explore the thermal performance of single battery and battery packs. The research includes three parts. The first part is based on the experimental measurement and numerical analysis of the single battery, to discuss the temperature change of the lithium battery under different discharge rates, and to verify the results of the experimental measurement and numerical analysis to establish the thermal model of single battery. The second part is to design two different battery packs, 5x6 and 2x15, to compare the thermal performance, and to discuss the key factors affecting the temperature change of the battery pack. The third part is the thermal analysis of the single cell and the battery pack with phase change material added. Through the single cell PCM thickness analysis, the optimal PCM thickness is selected and applied to the battery pack, and the thermal performance comparison of the battery pack under the pure cooling air and the synergistic effect of air cooling and PCM is discussed. The results show that with the increase of the discharge rate, the internal temperature of the lithium battery will rise rapidly, and the temperature uniformity will decrease. In the thermal analysis of the battery pack, considering the heat dissipation performance and cost, the 5x6 battery pack is better than the 2x15 battery pack. There are advantages. In the analysis of single cells with PCM added, 12mm PCM thickness is the best choice at 3C discharge rate, and in the battery pack with PCM added, it was found that compared with pure air cooling, under the synergistic effect of air and PCM, the thermal performance of the battery pack can be improved.
摘要 i
ABSTRACT ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1前言 1
1.2文獻回顧 4
1.2.1鋰電池熱管理 4
1.2.2鋰電池組熱管理 7
1.2.3相變材料用於鋰電池組熱管理 11
1.3研究動機與目的 16
1.4研究架構 17
第二章 實驗量測 19
2.1實驗量測系統與方法 19
2.2實驗儀器與設備 20
2.2.2實驗步驟 23
第三章 數值模擬 25
3.1幾何模型設計 25
3.1.1未添加相變材料的單電池與電池組設計 25
3.1.2結合相變材料的單電池與電池組設計 27
3.2.基本假設 31
3.3.統御方程式 31
3.3.1空氣流體 32
3.3.2相變化材料 32
3.3.3鋰電池 34
3.3.4紊流模型 39
3.3.5初始條件與邊界條件 40
3.4.網格獨立性測試 41
第四章 結果與討論 43
4.1未添加相變材料鋰電池熱管理 43
4.1.1 21700型單電池 43
4.1.2 5x6電池組 50
4.1.3 2x15電池組 58
4.2添加相變材料鋰電池熱管理 64
4.2.1 21700型單電池 64
4.2.2 5x6電池組 76
第五章 結論與建議 81
5.1 結論 81
5.2 建議 83
參考文獻 84
符號彙編 89

[1] S.Al Hallaj, H. Maleki, J.S. Hong, J.R.Selman, 1999, “Thermal modeling and design considerations of lithium-ion batteries,” Journal of Power Sources, 83, pp. 1~8.
[2] E. Gümüşsu, Ö. Ekici, M. Köksal, 2017, “3-D CFD modeling and experimental testing of thermal behavior of a Li-Ion battery,” AppliedThermal Engineering, 120, pp. 484~495.
[3] T. Dong, P. Peng, F. Jiang, 2018, “Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations,” International Journal of Heat and Mass Transfer, 117, pp. 261~272.
[4] T.M. Bandhauer, S. Garimella, T.F. Fuller, 2014, “Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery,” Journal of Power Sources, 247, pp. 618~628.
[5] G. Guo, B. Cheng, S. Zhou, P. Xu, B. Cao, 2010, “Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application,” Journal of Power Sources, 195, pp. 2393~2398.
[6] Y. Kim, S. Mohan, J.B. Siegel, A.G. Stefanopoulou, Y.Ding, 2014, “The estimation of temperaturedistribution in cylindrical battery cells under unknown cooling conditions,” IEEE, 22, pp.2277~2284.
[7] D.H. Jeon, S.M. Baek, 2011, “Thermal modeling of cylindrical lithium ion battery during discharge cycle,” Energy Conversion and Management, 52, pp.2973~2981.
[8] S. Panchal, M. Mathew, R. Fraser, M. Fowler, 2018, “Electrochemical thermal modeling and experimental measurements of 18650 cylindrical lithium-ion battery during discharge cycle for an EV,” Applied Thermal Engineering, 135, pp.123~132.
[9] K.H. Kwon, C.B.Shin, T.H. Kang, C.S. Kim, 2019, “A two-dimensional modeling of a lithium-polymer battery,” Journal of Power Sources, 146, pp.1~11.
[10] C. Lin, H. Wen, L. Liu, S. Liu, T. Ma, B. Fan, F. Wang, 2021, “Heat generation quantification of high-specific-energy 21700battery cell using average and variable specific heat capacities,”Applied Thermal Engineering, 184, pp.116215
[11] D. Bernardi, E. Pawlikowski, J. Newman, 1985, “A General Energy Balance for Battery Systems,” The Electrochemical Society, 132, pp.5~12.
[12] P. Lyu,Y. Huo, Z. Qu, Z. Rao, 2020, “Investigation on the thermal behavior of Ni-rich NMC lithium ion battery for energy storage,” Applied Thermal Engineering, 166, 114749.
[13] F.L. Yun, W.R. Jin, L. Ting, W. Li, J. Pang, S.G. Lu, 2016, “Analysis of Capacity Fade from Entropic Heat Coefficient of Li[????????????????????????????????????]????2/Graphite Lithium Ion Battery,” Journal of The Electrochemical Society, 165, pp.639~643.
[14] F.L. Yun, L. Tang, W.C Li, W.R. Jin, J. Pang, S.G. Lu, 2016, “Thermal behavior analysis of a pouch type Li[????????0.7????????0.15????????0.15]????2-based lithium-ion Battery,” RARE METALS,35, pp.309~319.
[15] M.A. Zareer, A. Michalak, C.D. Silva, C.H. Amon, 2021, “Predicting specific heat capacity and directional thermal conductivities of cylindrical lithium-ion batteries: A combined experimental and simulation framework,”Applied Thermal Engineering, 182, 116075.
[16] L. Xie, Y. Huang, H. Lai, 2020, “Coupled prediction model of liquid-cooling based thermal management system for cylindrical lithium-ion module,” Applied Thermal Engineering, 178, 115599.
[17] Z. Rao, Z. Qian, Y. Kuang, Y. Li, 2017, “Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface,” Applied Thermal Engineering, 123, pp.1514~1522.
[18] C. Zhao, W. Cao, T. Ding, F. Jiang, 2018, “Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow,” International Journal of Heat and Mass Transfer, 120, pp.751~762.
[19] L.H. Saw, Y. Ye, A.A. Tay, W.T.Chong, S.H. Kuan, M.C. Yew, 2016, “Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling, ” Applied Energy, 177, pp. 783~792.
[20] N. Yang, X. Zhang, G. Li, D. Hua, 2015, “Assessment of the forced air-cooling performancefor cylindrical lithium-ion battery packs:A comparative analysis between aligned and staggered cell arrangements,” Applied Thermal Engineering, 80, pp.55~65.
[21] X. Li, F. He, L. Ma, 2013, “Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation,” Journal of Power Sources, 238, pp.395~402.
[22] T.Wang, K. J. Tseng, J. Zhao, 2015, “Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model,” Applied Thermal Engineering, 90, pp.521~529.
[23] J. Zhao, Z. Rao, Y. Huo, X. Liu, Y. Li, 2015, “Thermal management of cylindrical power battery module forextending the life of new energy electric vehicles,” Applied Thermal Engineering, 85, pp.33~43.
[24] Z. Lu, X. Yu, L. Wei, Y. Qiu, L. Zhang, X. Meng, L. Jin, 2018, “Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement,” Applied Thermal Engineering, 136, pp.28~40.
[25] F. Zhang, P. Wang, M. Yi, 2021, “Design optimization of forced air-cooled lithium-ion battery module based on multi-vents,” Journal of Energy Storage, 40, 102781.
[26] J. E, M. Yue, J. Chen, H. Zhu, Y. Deng, Y. Zhu, F. Zhang, M. Wen, B. Zhang, S. Kang, 2018, “Effects of the different air cooling strategies on cooling performance of a lithium-ion battery module with baffle,” Applied Thermal Engineering, 144, 231~241.
[27] R.D. Jilte, R. Kumar, L. Ma, 2019, “Thermal performance of a novel confined flow Li-ion battery module,” Applied Thermal Engineering, 146, pp.1~11.
[28] Kausthubharam, P.K. Koorata, N. Chandrasekaran, 2021, “Numerical investigation of cooling performance of a novel air-cooled thermal management system for cylindrical Li-ion battery module,” Applied Thermal Engineering, 193, 116961.
[29] T. Wang, K.J. Tseng, J. Zhao, Z. Wei, 2014, “Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies,” Applied Energy, 134, pp.229~238.
[30] R.Sabbah, R. Kizilel, J. R. Selman, S. Al-Hallaj, 2008, “Active(air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution,” Journal of Power Sources, 182, pp.630~638.
[31] A.Mills, M. Farid, J. R. Selman, S. Al-Hallaj, 2006, “Thermal conductivity enhancement of phase change materials using a graphite matrix,” Applied Thermal Engineering, 26, pp.1652~1661.
[32] P.Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, Alexander, A. Balandin, 2014, “Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries,” Journal of Power Sources, 248, pp.37~43.
[33] A. Diani, M.Campanale, 2019, “Transient melting of paraffin waxes embedded in aluminum foams: Experimentalresults and modeling,” International Journal of Thermal Sciences, 144, pp.119~128.
[34] F.Yi, Jiaqiang. E, B. Zhang, H. Zuo, K. Wei, J. Chen, H. Zhu, Y. Deng, 2021, “Effects analysis on heat dissipation characteristics of lithium-ion battery thermal management system under the synergism of phase change material and liquid cooling method,” International Journal of Thermal Sciences, 181, pp.472~489.
[35] V. G.Choudhari, A. S. Dhoble, S. Panchal, 2020, “Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization,” International Journal of Thermal Sciences, 163, 120434.
[36] X. Wu, C. Mo, J. Xie, Y. Xu, X. Yang, G. Zhang, 2021, “Experimental study of a novel strategy to construct the battery thermal management module by using tubular phase change material units,” Applied Thermal Engineering, 39, 102585.
[37] F. Chen, R. Huang, C. Wang, X. Yu, H. Liu, Q. Wu, K. Qian, R. Bhagat, 2020, “Air and PCM cooling for battery thermal management considering batterycycle life,” Applied Thermal Engineering, 173, 115154.
[38] W. Zhang, Z. Liang, G. Ling, L. Huang, 2021, “Influence of phase change material dosage on the heat dissipation performance of the battery thermal management system,” Journal of Energy Storage, 41, 102849.
[39] P. Qin, M. Liao, D. Zhang, Y. Liu, J. Sun, Q. Wang, 2019, “Experimental and numerical study on a novel hybrid battery thermalmanagement system integrated forced-air convection and phase changematerial,” Energy Conversion and Management, 195, pp.1371~1381.
[40] Z. Sun, R. Fan, N. Zheng, 2021, “Thermal management of a simulated battery with the compound use of phase change material and fins: Experimental and numerical investigations,” International Journal of Thermal Sciences, 165, 106945.
[41] R. Huang, Z. Li,W. Hong, Q. Wu, X. Yu, 2020, “Experimental and numerical study of PCM thermophysical parameterson lithium-ion battery thermal management,” Energy Reports, 6, pp.8~19.

電子全文 電子全文(網際網路公開日期:20270714)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊