|
[1]A. Rehman, S. Naz, M. I. Razzak, F. Akram, and M. Imran, “A deep learning-based framework for automatic brain tumors classification using transfer learning,” Circuits System Signal Processing, vol. 39, no. 2, pp.757-775, Feb. 2020. [2]https://www.cancerresearchuk.org/about-cancer/brain-tumours (accessed Apr. 30, 2022). [3]https://www.cancer.net/cancer-types/brain-tumor/statistics (accessed Apr. 30, 2022). [4]N. Noreen, S. Palaniappan, A. Qayyum, I. Ahmad, M. Imran, and M. Shoaib, “A deep learning model based on concatenation approach for the diagnosis of brain tumor,” IEEE Access, vol. 8, no. 1, pp.55135-55144, Mar. 2020. [5]P. Afshar, K. N. Plataniotis, and A. Mohammadi, “Capsule networks for brain tumor classification based on MRI images and course tumor boundaries,” in Proc. of Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), pp.1368-1372, Brighton, UK, May 2019. [6]S. Deepak and P. M. Ameer, “Brain tumor classification using deep CNN features via transfer learning,” Computers in Biology and Medicine, vol. 111, no. 1, p. 103345, Aug. 2019. [7]M. Sajjad, S. Khan, K. Muhammad, W. Wu, A. Ullah, and S. W. Baik, “Multi-grade brain tumor classification using deep CNN with extensive data augmentation,” Journal of Computational Science, vol. 30, no. 1, pp.174-182, Jan. 2019. [8]Y. Gu, X. Lu, L. Yang, B. Zhang, D. Yu, Y. Zhao, and L. Gao et al., “Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs,” Computers in Biology and Medicine, vol. 103, no. 1, pp.220-231, Dec. 2018. [9]M. Yousefi, A. Krzyżak, and C.Y. Suen, “Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning,” Computers in Biology and Medicine, vol. 96, no. 1, pp.283-293, May 2018. [10]L. Zhou, Z. Zhang, Y.C. Chen, Z.Y. Zhao, X.D. Yin, and H.B. Jiang, “A deep learning-based radiomics model for differentiating benign and malignant renal tumors,” Translational Oncology, vol. 12, no. 2, pp.292-300, Feb. 2019. [11]C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on deep transfer learning,” in Proc. of Int. Conf. on Artificial Neural Networks, pp.270-279, Rhodes, Greece, Oct. 2018. [12]M. Talo, U. B. Baloglu, Ö. Yıldırım, and U. R. Acharya, “Application of deep transfer learning for automated brain abnormality classification using MR images,” Cognitive Systems Research, vol. 54, no. 1, pp.176-188, May 2019. [13]H. H. Sultan, N. M. Salem, and W. Al-Atabany, “Multi-classification of brain tumor images using deep neural network,” IEEE Access, vol. 7, no. 1, pp.69215-69225, May 2019. [14]W. Ayadi, W. Elhamzi, I. Charfi, and M. Atri, “Deep CNN for brain tumor classification,” Neural Processing Letters, vol. 53, no. 1, pp.671-700, Feb. 2021. [15]Z. N. K. Swati, Q. Zhao, M. Kabir, F.Ali, Z. Ali, S. Ahmed, and J. Lu, “Brain tumor classification for MR images using transfer learning and fine-tuning,” Computerized Medical Imaging and Graphics, vol. 75, no. 1 , pp.34-46, Jul. 2019. [16]K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, pp.770-778, Las Vegas, NV, USA, Jun. 2016. [17]M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.C. Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp.4510-4520, Salt Lake City, UT, USA, Jun. 2018. [18]M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” in Proc. of the 36th Int. Conf. on Machine Learning, vol. 97, pp.6105-6114, Long Beach, NY, USA, Jun. 2019. [19]J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp.7132-7141, Salt Lake City, UT, USA, Jun. 2018. [20]M. Tan and Q. Le, “EfficientNetv2: Smaller models and faster training,” in Proc. of Int. Conf. on Machine Learning, vol. 139, pp.10096-10106, Virtual Event, Jul. 2021. [21]https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html (accessed Apr. 30, 2022). [22]S. Y. Lu, S. H. Wang, and Y. D. Zhang, “A classification method for brain MRI via MobileNet and feedforward network with random weights,” Pattern Recognition Letters, vol. 140, no. 1, pp.252-260, Dec. 2020. [23]J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, third edition [M], The Morgan Kaufmann Series in Data Management Systems, vol. 5, no. 4, pp.83-124, Jun. 2011. [24]J. Cheng, “Brain Tumor Dataset,” Figshare, Jun. 2017. [25]J. Cheng, W. Huang, S. Cao, R. Yang, W. Yang, Z. Yun, and Z. Wang et al., “Enhanced performance of brain tumor classification via tumor region augmentation and partition,” PLOS ONE, vol. 10, no. 10, pp.1-13, May 2015. [26]S. Bhuvaji, A. Kadam, P. Bhumkar, S. Dedge, and S. Kanchan, “Brain tumor classification (MRI),” Kaggle, May 2020. [27]K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” Global Transitions Proceedings, vol. 3, no. 1, pp.91-99, Jun. 2022. [28]https://www.python.org/ (accessed Jan. 12, 2022). [29]https://www.tensorflow.org/ (accessed Jan. 12, 2022). [30]https://numpy.org/ (accessed Jan. 12, 2022). [31]https://scikit-learn.org/stable/ (accessed Jan. 12, 2022). [32]https://matplotlib.org/ (accessed Jan. 12, 2022). [33]https://research.google.com/colaboratory/ (accessed Jan. 12, 2022).
|