跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 06:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧孝天
研究生(外文):DENG, XIAO-TIAN
論文名稱:類比式設計中的創意思考學習方法
論文名稱(外文):Learning Approaches to Creative Thinking in Design-by-Analogy
指導教授:王鴻祥王鴻祥引用關係
指導教授(外文):WANG, HUNG-HSIANG
口試委員:吳志富衛萬里陳建雄陳圳卿吳可久鄭孟淙王鴻祥
口試委員(外文):WU, CHIH-FUWEI, WAN-LICHEN, CHIEN-HSIUNGCHEN, CHUN-CHINGWU, KO-CHIUZHENG, MENG-CONGWANG, HUNG-HSIANG
口試日期:2022-05-02
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:設計學院設計博士班
學門:設計學門
學類:綜合設計學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:146
中文關鍵詞:創意思考類比式設計新穎性
外文關鍵詞:Creative ThinkingDesign-by-AnalogyNovelty
相關次數:
  • 被引用被引用:0
  • 點閱點閱:64
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著市場競爭的加劇,設計教育越來越重視創意思考,創意思考可以幫助學生在當前社會中更具競爭力。然而,學習創意思考並非易事。首先,創意思考具有多面性,從多個方面而非單一方面學習創意思考將更有助於培養學生的競爭力。其次,學生的初始能力是不同的,這些學生具備不同的學習能力和思考能力,單一的學習方法不適用於所有學生。由此可見,多面性以及學生初始能力的差異是學習創意思考的兩大挑戰。
然而,過往的研究很少考慮創意思考的多面性,也很少考慮學生初始能力的差異。回顧過去的文獻,目前仍缺乏一套可供參考的創意思考學習方法。因此,本研究首先識別了創意思考所涉及的四個重要方面,包括發散性思維、發散性情感、流體智力與設計構想新穎性。然後,本研究嘗試從類比式設計切入來探索創意思考的學習方法。類比式設計是一種從工業產品和大自然中汲取靈感的創新設計方法,它的內在本質與創意思考具有關聯性。利用類比式設計學習創意思考,可以應對學習創意思考的兩大挑戰。
因此,本研究透過四個基於類比式設計的實驗來探索創意思考的學習方法。實驗一招募了54名大學生,他們需要從27種工業產品汲取靈感進行訂書機概念設計。結果發現設計目標在發散性情感和設計構想新穎性之間具有橋樑作用。在實驗二中, 122名和179名大學生分別要求利用字詞樹與心智圖兩種思考工具來構思問題的解決方案。結果發現這兩種思考工具在提升發散性思維和發散性情感分別具有優缺點。實驗三和實驗四共招募了44名工業設計專業的大學生。在實驗三中,參與者以圖示和文字的表達形式將生物現象抽象化。結果發現流體智力低的參與者在生物現象抽象化方面表現較差,而流體智力中等或高的參與者則表現良好。在實驗四中,參與者在四場工作坊中分別利用四種不同的學習材料提出設計構想。結果發現具有抽象與具象平衡的學習材料最有利於產出新穎的設計構想。
本研究最後將四個實驗的發現整合成一個學習創意思考的模型。該整合模型以類比式設計為基礎,提出了四種學習創意思考的方法,包括「設定設計目標」、「思維工具輔助」、「圖文抽象化」、以及「材料抽象性平衡」。本研究所提出的整合模型能夠(1)指導教育者針對創意思考四個方面提供相應的學習方法;(2)指導教育者依據學生初始能力提供適當的學習方法。本研究填補了創意思考缺乏合適學習方法的研究缺口,對學習創意思考具有指導意義。
As market competition intensifies, more emphasis has been placed on creative thinking in design education. Learning creative thinking can help students be more competitive in the current society. However, it is not easy to learn creative thinking. First, creative thinking involves many aspects rather than a single aspect. Learning multiple aspects of creative thinking is conducive to the enhancement of competitiveness. Second, students’ initial creative thinking capacities are different. Consequently, they have different learning and thinking abilities. A single learning approach may not be suitable for all students. Therefore, multiple aspects and differences in initial capacities are two challenges in learning creative thinking.
However, previous studies hardly consider multiple aspects and differences in students’ initial capacities. It still lacks a set of approaches to learning creative thinking. Therefore, the current research first identifies four significant aspects of creative thinking, including divergent thinking, divergent feeling, fluid intelligence, and novelty of design concepts. Then, design-by-analogy (DbA) is used to explore learning approaches to creative thinking. DbA is an innovative design method that draws inspiration from industrial products and nature, which is inherently related to creative thinking. DbA can be used to deal with the two challenges in learning creative thinking.
Therefore, four experiments based on DbA are conducted. The first experiment requires 54 undergraduates to redesign the stapler by drawing inspiration from 27 industrial products. Results reveal a bridge role of design goals between divergent feeling and novelty of design concepts. The second experiment requires 122 and 179 undergraduates to solve problems through two thinking tools, WordTree and Mind Map, respectively. Results indicate the two tools’ cons and pros of enhancing divergent thinking and feeling. The third and fourth experiments recruit 44 industrial design undergraduates. The third experiment requires them to abstract biological phenomena in pictorial and textual format. Results show that participants with low fluid intelligence performed badly while those with medium and high fluid intelligence performed well. The fourth experiment requires participants to generate design concepts with four types of materials in four workshops. Results reveal the significance of balance between abstraction and concretization.
Lastly, the current research integrates the findings of four experiments into a learning model based on DbA. This integrated model proposes four learning approaches to creative thinking, including design goal setting, thinking tools assisting, pictorial and textual abstraction, and materials abstraction balance. This model can (1) guide educators to provide approaches to learning four aspects of creative thinking; (2) guide educators to provide students with appropriate approaches according to their initial capacities. The current research fills the gaps in approaches to creative thinking, which can be a guide for learning creative thinking.
摘要 i
ABSTRACT iii
Acknowledgments v
Table of Contents vi
List of Tables x
List of Figures xi
1 Chapter 1 Introduction 1
1.1 Research Background and Motivation 1
1.1.1 The Significance of Creative Thinking 1
1.1.2 Challenges of Learning Creative Thinking 2
1.1.3 Analogical Thinking 3
1.2 Research Questions, Goals and Framework 5
1.3 Research Scope 7
1.4 Chapters Arrangement 8
1.5 Glossary 9
2 Chapter 2 Literature Review 11
2.1 Creative Thinking and Design Concepts 11
2.1.1 Divergent Thinking and Feeling 11
2.1.2 Fluid Intelligence 14
2.1.3 Novelty of Design Concepts and Design Goal Setting 15
2.2 Design-by-Analogy and Thinking Tools 16
2.2.1 Design-by-Analogy 16
2.2.2 Semantic Network 17
2.2.3 WordTree and Mind Map 19
2.3 Learning from Nature 22
2.3.1 Biologically inspired design 22
2.3.2 The Significance of Biological Phenomena Abstraction 22
2.3.3 Representations and Levels of Biological Phenomenon Abstraction 24
2.4 Learning Problem-driven BID 27
2.4.1 Problem-driven BID 27
2.4.2 A Unified Model of Problem-driven BID 27
2.4.3 Knowledge Representation of Design Problem 30
2.4.4 Knowledge Representation of Biological Phenomena 32
2.5 Summary 34
3 Chapter 3 Research Method 36
3.1 Overview 36
3.2 Hypotheses 38
3.3 Research process 39
4 Chapter 4 Experiments and Measurement 41
4.1 Experiment 1: Stapler Concept Design 41
4.1.1 Purpose 41
4.1.2 Materials 41
4.1.3 Procedure 45
4.1.4 Results and Hypotheses Validation 47
4.1.5 Discussion 51
4.2 Experiment 2: Thinking with WordTree and Mind Map 53
4.2.1 Purpose 53
4.2.2 Materials 53
4.2.3 Procedure 56
4.2.4 Results and Hypotheses Validation 59
4.2.5 Discussion 71
4.3 Experiment 3: Biological Phenomena Abstraction 75
4.3.1 Purpose 75
4.3.2 Procedure 76
4.3.3 Results and Hypotheses Validation 78
4.3.4 Discussion 83
4.4 Experiment 4: Biologically Inspired Design Training 87
4.4.1 Purpose 87
4.4.2 Materials 87
4.4.3 Procedure 92
4.4.4 Results and Hypotheses Validation 94
4.4.5 Discussion 96
4.5 Measurement 99
4.5.1 Divergent Thinking and Feeling Tests 99
4.5.2 Fluid Intelligence Measurement 101
4.5.3 Novelty Assessment 103
4.5.4 Biological Phenomena Abstraction Assessment 105
5 Chapter 5 General Discussion 106
5.1 Drawing Inspiration from Industrial Products 106
5.2 Drawing inspiration from Nature 107
6 Chapter 6 Conclusions 109
6.1 Research Conclusion 109
6.2 Contributions 112
6.3 Limitations 114
6.4 Future Work 115
References 116
Appendix A WordTree and Mind Map Worksheets 132
Appendix B Biologically Inspired Design Training Worksheets 141
Adaval, R., Saluja, G., & Jiang, Y. (2019). Seeing and thinking in pictures: A review of visual information processing. Consumer Psychology Review, 2(1), 50-69. doi:10.1002/arcp.1049
Ahmed-Kristensen, S., Christensen, B. T., & Lenau, T. A. (2014, May 19-22). Naturally original: Stimulating creative design through biological analogies and random images. Paper presented at the DESIGN 2014 13th International Design Conference, Dubrovnik, Croatia.
Alkathiri, F., Alshreef, S., Alajmi, S., Alsowayan, A., & Alahmad, N. (2018). A systematic review: the relationship between learning styles and creative thinking skills. English Language and Literature Studies, 8(1), 1-34.
Amabile, T. M., Barsade, S. G., Mueller, J. S., & Staw, B. M. (2005). Affect and creativity at work. Administrative science quarterly, 50(3), 367-403.
Amirullah, G. (2021). Mapping association: Analysis of elaboration skills through creative mind mapping on the subject of environmental change. Psychology and Education Journal, 58(1), 4741-4749. doi:10.17762/pae.v58i1.1633
Antonietti, A., & Gioletta, M. A. (1995). Individual differences in analogical problem solving. Personality and Individual Differences, 18(5), 611-619. doi:10.1016/0191-8869(94)00187-W
Awan, U., Sroufe, R., & Kraslawski, A. (2019). Creativity enables sustainable development: Supplier engagement as a boundary condition for the positive effect on green innovation. Journal of Cleaner Production, 226, 172-185. doi:10.1016/j.jclepro.2019.03.308
Aykac, V. (2015). An application regarding the availability of mind maps in visual art education based on active learning method. Procedia-Social and Behavioral Sciences, 174, 1859-1866. doi:10.1016/j.sbspro.2015.01.848
Benedek, M., Franz, F., Heene, M., & Neubauer, A. C. (2012). Differential effects of cognitive inhibition and intelligence on creativity. Personality and individual differences, 53(4), 480-485. doi:10.1016/j.paid.2012.04.014
Bernal, J. D. (1967). The Social Function of Science. Cambridge, MA: MIT Press.
Bernal, J. D. (1971). Science in History. Cambridge, MA: MIT Press.
Blazhenkova, O., & Kozhevnikov, M. (2010). Visual-object ability: A new dimension of non-verbal intelligence. Cognition, 117(3), 276-301. doi:10.1016/j.cognition.2010.08.021
Bouiri, O., Lotfi, S., & Talbi, M. (2021). Correlative study between personality traits, student mental skills and educational outcomes. Education Sciences, 11(4), 153. doi:10.3390/educsci11040153
Brem, A. (2019). Creativity on Demand: How to Plan and Execute Successful Innovation Workshops. IEEE Engineering Management Review, 47(1), 94-98. doi:10.1109/EMR.2019.2896557
Buzan, T. (2018). Mind map mastery: The complete guide to learning and using the most powerful thinking tool in the universe. London, UK: Watkins Media Limited.
Buzan, T., & Buzan, B. (1993). The mind map book: how to use radiant thinking to maximize your brain's untapped potential. London, UK: BBC Books.
Cao, J., Xiong, Y., Li, Y., Liu, L., & Wang, M. (2018). Differences between beginning and advanced design students in analogical reasoning during idea generation: evidence from eye movements. Cognition, Technology & Work, 20(3), 505-520. doi:10.1007/s10111-018-0477-z
Casakin, H. (2004). Visual analogy as a cognitive strategy in the design process: expert versus novice performance. Journal of Design Research, 4(2), 197-217. doi:10.1504/JDR.2004.009846
Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of educational psychology, 54(1), 1. doi:10.1037/h0046743
Chen, Y.-H., & Chen, H.-Y. (2006). Manual for Raven's Progressive Matrices (Taiwan ed.). Taipei, Taiwan: Chinese Behavioral Science Corporation.
Cheong, H., Chiu, I., Shu, L. H., Stone, R. B., & McAdams, D. A. (2011). Biologically meaningful keywords for functional terms of the functional basis. Journal of Mechanical Design, 133(2), 021007. doi:10.1115/1.4003249
Cheong, H., Hallihan, G. M., & Shu, L. H. (2014). Design problem solving with biological analogies: A verbal protocol study. AI EDAM, 28(1), 27-47. doi:10.1017/s0890060413000486
Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121-152. doi:10.1207/s15516709cog0502_2
Chirazi, J., Wanieck, K., Fayemi, P.-E., Zollfrank, C., & Jacobs, S. (2019). What do we learn from good practices of biologically inspired design in innovation? Applied Sciences, 9(4), 650. doi:10.3390/app9040650
Chiu, I., & Shu, L. (2007). Understanding the use of language stimuli in concept generation. Paper presented at the IDETC and CIEC, Las Vegas, NV.
Choi, H. H., & Kim, M. J. (2017). The effects of analogical and metaphorical reasoning on design thinking. Thinking skills and Creativity, 23, 29-41. doi:10.1016/j.tsc.2016.11.004
Claxton, A. F., Pannells, T. C., & Rhoads, P. A. (2005). Developmental trends in the creativity of school-age children. Creativity Research Journal, 17(4), 327-335. doi:10.1207/s15326934crj1704_4
Coccia, M. (2017). Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms. Technology Analysis & Strategic Management, 29(9), 1048-1061. doi:10.1080/09537325.2016.1268682
Cropley, D. H., Kaufman, J. C., & Cropley, A. J. (2008). Malevolent creativity: A functional model of creativity in terrorism and crime. Creativity Research Journal, 20(2), 105-115. doi:10.1080/10400410802059424
Cross, N. (2001). Design cognition: Results from protocol and other empirical studies of design activity. In Design knowing and learning: Cognition in design education (pp. 79-103). Oxford, UK: Elsevier.
Çubukcu, E., & Dündar, Ş. G. (2007). Can creativity be taught? An empirical study on benefits of visual analogy in basic design education. A|Z ITU Journal of the Faculty of Architecture, 4(2), 67-80.
D’Alonzo, K. T. (2004). The Johnson-Neyman procedure as an alternative to ANCOVA. Western journal of nursing research, 26(7), 804-812. doi:10.1177/0193945904266733
D’Souza, N. (2007). Design intelligences: A case for multiple intelligences in architectural design. International Journal of Architectural Research, 1(2), 15-34.
Dackert, I. (2016). Creativity in teams: The impact of team members' affective well-being and diversity. Open Journal of Social Sciences, 4, 19-28. doi:10.4236/jss.2016.49003
Davies, M. (2011). Concept mapping, mind mapping and argument mapping: what are the differences and do they matter? Higher education, 62(3), 279-301. doi:10.1007/s10734-010-9387-6
Davis, C. P., Altmann, G. T., & Yee, E. (2020). Situational systematicity: A role for schema in understanding the differences between abstract and concrete concepts. Cognitive Neuropsychology, 37(1-2), 142-153. doi:10.1080/02643294.2019.1710124
Davis, R., Shrobe, H., & Szolovits, P. (1993). What is a knowledge representation? AI magazine, 14(1), 17-33.
Dean, D. L., Hender, J., Rodgers, T., & Santanen, E. (2006). Identifying good ideas: constructs and scales for idea evaluation. Journal of Association for Information Systems, 7(10), 646-699.
Deldin, J.-M., & Schuknecht, M. (2014). The AskNature Database: Enabling Solutions in Biomimetic Design. In A. K. Goel, D. A. McAdams, & R. B. Stone (Eds.), Biologically Inspired Design (pp. 17-27). London, UK: Springer.
Deng, X., Wang, H.-H., Liu, C.-Y., & Wang, Y.-H. (2021). Can abstraction help ideation? A case study on biologically inspired design. International Journal of Technology and Design Education, 1-23. doi:10.1007/s10798-021-09703-4
Denny, M. (2004). The physics of bat echolocation: signal processing techniques. American Journal of Physics, 72(12), 1465-1477. doi:10.1119/1.1778393
Dutta, S., & Bonissone, P. P. (1993). Integrating case- and rule-based reasoning. International Journal of Approximate Reasoning, 8(3), 163-203. doi:10.1016/0888-613x(93)90001-t
Engeström, Y. (2020). Ascending from the abstract to the concrete as a principle of expansive learning. Psychological Science and Education, 25(5), 31-43. doi:10.17759/pse.2020250503
Farzaneh, H. H., & Lindemann, U. (2018). A practical guide to bio-inspired design. Berlin, Germany: Springer Vieweg.
Fayemi, P.-E., Wanieck, K., Zollfrank, C., Maranzana, N., & Aoussat, A. (2017). Biomimetics: process, tools and practice. Bioinspiration & biomimetics, 12(1), 011002. doi:10.1088/1748-3190/12/1/011002
Feist, G. J. (2019). The function of personality in creativity: Updates on the creative personality. In J. C. Kaufman & R. J. Sternberg (Eds.), The Cambridge Handbook of Creativity (Second ed., pp. 353-373). Cambridge, United Kingdom: Cambridge University Press.
Feng, T., Cheong, H., & Shu, L. H. (2014). Effects of abstraction on selecting relevant biological phenomena for biomimetic design. Journal of Mechanical Design, 136(11), 111111. doi:10.1115/1.4028173
Fiorella, L., & Zhang, Q. (2018). Drawing boundary conditions for learning by drawing. Educational Psychology Review, 30(3), 1115-1137. doi:10.1007/s10648-018-9444-8
Fu, K. K., Chan, J., Cagan, J., Kotovsky, K., Schunn, C., & Wood, K. (2013). The meaning of “near” and “far”: the impact of structuring design databases and the effect of distance of analogy on design output. Journal of Mechanical Design, 135(2). doi:10.1115/1.4023158
Fu, K. K., Moreno, D., Yang, M. C., & Wood, K. L. (2014). Bio-inspired design: an overview investigating open questions from the broader field of design-by-analogy. Journal of Mechanical Design, 136, 111102. doi:10.1115/1.4028289.
Götz, L., Vinkås, I., & Farzaneh, H. H. (2020). The Effect of Abstraction Methods in Bio-inspired Design–A Workshop and a Team Project Perspective. Paper presented at the Sixth International Conference on Design Creativity (ICDC 2020), Oulu, Finland.
Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155-170. doi:10.1207/s15516709cog0702_3
Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist, 52(1), 45-56. doi:10.1037/0003-066x.52.1.45
Goel, A. K. (1997). Design, analogy, and creativity. IEEE expert, 12(3), 62-70. doi:10.1109/64.590078
Gollwitzer, P. M. (1993). Goal achievement: The role of intentions. European review of social psychology, 4(1), 141-185. doi:10.1080/14792779343000059
Gray, M. E., & Holyoak, K. J. (2020). Individual differences in relational reasoning. Memory & cognition, 48(1), 96-110. doi:10.3758/s13421-019-00964-y
Gross, M. E., Zedelius, C. M., & Schooler, J. W. (2020). Cultivating an understanding of curiosity as a seed for creativity. Current Opinion in Behavioral Sciences, 35, 77-82. doi:10.1016/j.cobeha.2020.07.015
Guilford, J. P. (1956). The structure of intellect. Psychological bulletin, 53(4), 267. doi:doi.org/10.1037/h0040755
Hagtvedt, L. P., Dossinger, K., Harrison, S. H., & Huang, L. (2019). Curiosity made the cat more creative: Specific curiosity as a driver of creativity. Organizational Behavior and Human Decision Processes, 150, 1-13. doi:10.1016/j.obhdp.2018.10.007
Hammershøj, L. G. (2018). Conceptualizing creativity and innovation as affective processes: Steve Jobs, Lars von Trier, and responsible innovation. Philosophy of Management, 17(1), 115-131. doi:10.1007/s40926-017-0053-2
Han, J., Park, D., Shi, F., Chen, L., Hua, M., & Childs, P. R. (2019). Three driven approaches to combinational creativity: Problem-, similarity-and inspiration-driven. Journal of Mechanical Engineering Science, 233(2), 373-384. doi:10.1177/0954406217750189
Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York, NY: Guilford Publications.
Hekkert, P., & Cila, N. (2015). Handle with care! Why and how designers make use of product metaphors. Design Studies, 40, 196-217. doi:10.1016/j.destud.2015.06.007
Helms, M. E., Vattam, S. S., & Goel, A. K. (2009). Biologically inspired design: process and products. Design Studies, 30(5), 606-622. doi:10.1016/j.destud.2009.04.003
Hennessey, B. A. (2019). Motivation and creativity. In J. C. Kaufman & R. J. Sternberg (Eds.), The Cambridge Handbook of Creativity (Second ed., pp. 374-395). Cambridge, United Kingdom: Cambridge University Press.
Herring, S. R., Chang, C. C., Krantzler, J., & Bailey, B. P. (2009). Getting inspired!: Understanding how and why examples are used in creative design practice. Paper presented at the 27th ICHFCS, Boston, MA.
Hirtz, J., Stone, R. B., McAdams, D. A., Szykman, S., & Wood, K. L. (2002). A functional basis for engineering design: reconciling and evolving previous efforts. Research in engineering Design, 13(2), 65-82. doi:10.1007/s00163-001-0008-3
Holyoak, K. J. (2005). Analogy. In H. K. J. & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 117-142). New York, NY: Cambridge University Press.
Horn, J. L., & Cattell, R. B. (1967). Age differences in fluid and crystallized intelligence. Acta psychologica, 26, 107-129. doi:10.1016/0001-6918(67)90011-x
Hsu, C.-C., Wang, T.-I., Lin, K.-J., & Chang, J.-W. (2018). The effects of the alternate writing and sketching brainstorming method on the creativity of undergraduate industrial design students in Taiwan. Thinking Skills and Creativity, 29, 131-141. doi:10.1016/j.tsc.2018.07.001
ISO. (2015). 18458:2015 Biomimetics — Terminology, concepts and methodology. In.
James, K., & Taylor, A. (2010). Positive creativity and negative creativity (and unintended consequences). In D. H. Cropley, A. J. Cropley, J. C. Kaufman, & M. A. Runco (Eds.), The dark side of creativity (pp. 33-56). New York, NY: Cambridge University Press.
Jansson, D. G., & Smith, S. M. (1991). Design fixation. Design Studies, 12(1), 3-11. doi:10.1016/0142-694x(91)90003-f
Jauk, E., Benedek, M., & Neubauer, A. C. (2014). The road to creative achievement: A latent variable model of ability and personality predictors. European journal of personality, 28(1), 95-105. doi:10.1002/per.1941
Johnson, P. O., & Fay, L. C. (1950). The Johnson-Neyman technique, its theory and application. Psychometrika, 15(4), 349-367. doi:10.1007/bf02288864
Kane, M., & Trochim, W. M. (2007). Concept mapping for planning and evaluation. Thousand Oaks, California: Sage Publications, Inc.
Kao, C.-Y. (2016). Analogy’s straddling of analytical and creative thinking and relationships to big five factors of personality. Thinking Skills and Creativity, 19, 26-37. doi:10.1016/j.tsc.2015.08.001
Kao, C.-Y. (2020). How Figurativity of Analogy Affects Creativity: The Application of Four-Term Analogies to Teaching for Creativity. Thinking Skills and Creativity, 36, 100653. doi:10.1016/j.tsc.2020.100653
Kaspi‐Baruch, O. (2019). Big Five personality and creativity: the moderating effect of motivational goal orientation. The Journal of Creative Behavior, 53(3), 325-338. doi:10.1002/jocb.183
Kolodner, J. L. (2002). Analogical and case-based reasoning: their implications for education. The Journal of the Learning Sciences, 11(1), 123-126. doi:10.1207/S15327809JLS1101_5
Korchagina, G. I., Ivutina, E. P., Derisheva, V. A., Bogodukhova, E. M., Lavrik, O. V., & Dubrovina, D. A. (2019). Goal-setting as a metacognitive ability of personality. Journal of Environmental Treatment Techniques, 7, 1234-1241.
Krippendorff, K. (2007). The semantic turn: a new foundation for design. Boca Raton, Florida: CRC Press.
Kubricht, J. R., Lu, H., & Holyoak, K. J. (2017). Individual differences in spontaneous analogical transfer. Memory & Cognition, 45(4), 576-588. doi:10.3758/s13421-016-0687-7
Kulsum, N. U. (2018). Mind Mapping Model in Increasing Students’ Creativity and Learning Outcomes. Classroom Action Research Journal, 2(3), 127-132.
Kurniawati, L., Farhana, I., & Miftah, R. (2022). Improving students’ mathematical intuitive thinking ability using analogy learning model. Paper presented at the Journal of Physics: Conference Series.
Lenau, T. A., Dentel, Ingvarsdóttir, & Guðlaugsson, T. (2010). Engineering design of an adaptive leg prosthesis using biological principles. Paper presented at the IDC 2010, Dubrovnik, Croatia.
Lenau, T. A., Hesselberg, T., Drakidis, A., Silva, P., & Gomes, S. (2017). Mosquito inspired medical needles. Paper presented at the Bioinspiration, Biomimetics, and Bioreplication 2017, Portland, Oregon.
Lenau, T. A., Keshwani, S., Chakrabarti, A., & Ahmed-Kristensen, S. (2015). Biocards and level of abstraction. Paper presented at the 20th ICED, Milan, Italy.
Lenau, T. A., Metze, A.-L., & Hesselberg, T. (2018). Paradigms for biologically inspired design. Paper presented at the Bioinspiration, Biomimetics, and Bioreplication VIII, Denver, CO, USA.
Levy, A. (2021). Idealization and abstraction: refining the distinction. Synthese, 198(24), 5855-5872. doi:10.1007/s11229-018-1721-z
Lin, S., & Wang, M. (1994). Creativity assessment packet (Taiwanese ed.). Taipei, Taiwan: Psychological Publishing Co., Ltd.
Linsey, J. S. (2007). Design-by-analogy and representation in innovative engineering concept generation. The University of Texas at Austin, Retrieved from https://repositories.lib.utexas.edu/bitstream/handle/2152/3787/linseyd65278.pdf?sequence=2
Linsey, J. S., Clauss, E. F., Kurtoglu, T., Murphy, J. T., Wood, K. L., & Markman, A. B. (2011). An experimental study of group idea generation techniques: understanding the roles of idea representation and viewing methods. doi:10.1115/1.4003498
Linsey, J. S., Markman, A., & Wood, K. (2012). Design by analogy: A study of the WordTree method for problem re-representation. doi:10.1115/1.4006145
Locke, E. A., & Latham, G. P. (2013). Goal setting theory, 1990. In E. A. Locke & G. P. Latham (Eds.), New developments in goal setting and task performance (pp. 4-15). New York, NY: Routledge.
Luo, S., Bian, Z., & Hu, Y. (2020). How can biological shapes inspire design activity in closed domains? International Journal of Technology and Design Education. doi:10.1007/s10798-020-09593-y
Mak, T. W., & Shu, L. H. (2004). Abstraction of biological analogies for design. CIRP Annals, 53(1), 117-120. doi:10.1016/s0007-8506(07)60658-1
Malik, M. A. R., Choi, J. N., & Butt, A. N. (2019). Distinct effects of intrinsic motivation and extrinsic rewards on radical and incremental creativity: The moderating role of goal orientations. Journal of Organizational Behavior, 40(9-10), 1013-1026. doi:10.1002/job.2403
Markman, A. B. (2013). Knowledge representation: Psychology Press.
Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the ACM, 38(11), 39-41. doi:10.1145/219717.219748
Mumford, M. D., Giorgini, V., Gibson, C., & Mecca, J. (2013). Creative thinking: Processes, strategies and knowledge. In K. Thomas & J. Chan (Eds.), Handbook of research on creativity (pp. 249-264). Cheltenham, UK: Edward Elgar Publishing.
Oller Jr, J. W., Kim, K., Choe, Y., & Jarvis, L. H. (2001). Testing relations between language (verbal) and nonverbal abilities in children and adults acquiring a nonprimary language. Language Testing, 18(1), 33-54. doi:10.1177/026553220101800102
Peeters, J., Verhaegen, P. A., Vandevenne, D., & Duflou, J. (2010). Refined metrics for measuring novelty in ideation. IDMME Virtual Concept Research in Interaction Design, Oct, 20-22.
Podoynitsyna, K., Snihur, Y., Thomas, L. D., & Grégoire, D. A. (2020). Creating Meta-Narratives: How Analogies and Metaphors Support Business Model Innovation. In K. J. Sund, R. J. Galavan, & M. Bogers (Eds.), Business Models and Cognition (Vol. 4, pp. 135-167). Bingley BD16 1WA, UK: Emerald Publishing Limited.
Prayitno, P. H., & Wibowo, A. (2020). Does Mind Mapping Matters in Engaging Students’ Creativity and Learning Achievement? Classroom Action Research Journal (CARJO), 3(2), 15-24.
Pretz, J. E., Naples, A. J., & Sternberg, R. J. (2003). Recognizing, defining, and representing problems. In J. E. Davidson & R. J. Sternberg (Eds.), The psychology of problem solving (pp. 3-30). New York, NY: Cambridge University Press.
Preusse, F. (2011). High fluid intelligence and analogical reasoning. Humboldt-Universität zu Berlin, Berlin, Germany. Retrieved from https://edoc.hu-berlin.de/handle/18452/17076
Purcell, A. T., & Gero, J. S. (1996). Design and other types of fixation. Design Studies, 17(4), 363-383. doi:10.1016/S0142-694X(96)00023-3
Raven, J. (2008a). The Raven progressive matrices tests: their theoretical basis and measurement model. In J. Raven & J. Raven (Eds.), Uses and abuses of Intelligence. Studies advancing Spearman and Raven’s quest for non-arbitrary metrics (pp. 17-68). Unionville, New York: Royal Fireworks Press.
Raven, J. (2008b). Standard Progressive Matrices - Plus Version and Mill Hill Vocabulary Scale: Manual. London, UK: Pearson.
Reeves, L., & Weisberg, R. W. (1994). The role of content and abstract information in analogical transfer. Psychological bulletin, 115(3), 381. doi:10.1037/0033-2909.115.3.381
Runco, M. A. (2008). Commentary: Divergent thinking is not synonymous with creativity. doi:10.1037/1931-3896.2.2.93
Russ, S. W. (1993). Affect and creativity: The role of affect and play in the creative process. Hillsdale, NJ: Lawrence Erlbaum Associates Inc.
Salvucci, D. D., & Anderson, J. R. (2001). Integrating analogical mapping and general problem solving: the path‐mapping theory. Cognitive Science, 25(1), 67-110.
Sancibrian, R., Gonzalez-Sarabia, E., San-José, J., Llata, J., & Larrauri, M. (2019). Design by Analogy in Engineering Education: A Method to Improve Creative Ideas. Paper presented at the 13th ITEDC, Valencia, Spain.
Schneider, W. J., & McGrew, K. S. (2018). The Cattell–Horn–Carroll theory of cognitive abilities. In D. P. Flanagan & E. M. McDonough (Eds.), Contemporary intellectual assessment theories, tests, and issues (pp. 73-163). New York, NY: The Guilford Press.
Schön, D. A. (1987). Educating the Reflective Practitioner. New York, NY: John Wiley & Sons.
Schutte, N. S., & Malouff, J. M. (2020). A meta‐analysis of the relationship between curiosity and creativity. The Journal of Creative Behavior, 54(4), 940-947. doi:10.1002/jocb.421
Serrat, O. (2017). Harnessing creativity and innovation in the workplace. In Knowledge solutions (pp. 903-910). Singapore: Springer Singapore.
Shalley, C. E. (1995). Effects of coaction, expected evaluation, and goal setting on creativity and productivity. Academy of Management journal, 38(2), 483-503. doi:10.5465/256689
Shalley, C. E., & Koseoglu, G. (2013). Goals and creativity. In E. A. Locke & G. P. Latham (Eds.), New developments in goal setting and task performance (pp. 367-380). New York, NY: Routledge.
Shanta, S., & Wells, J. G. (2020). T/E design based learning: assessing student critical thinking and problem solving abilities. International Journal of Technology and Design Education. doi:10.1007/s10798-020-09608-8
Shu, L. (2004). Biomimetic design to enable sustainable product development. Paper presented at the Global Conference on Sustainable Product Development and Life Cycle Engineering, Berlin, Germany.
Silvia, P. J. (2008). Another look at creativity and intelligence: Exploring higher-order models and probable confounds. Personality and Individual differences, 44(4), 1012-1021. doi:10.1016/j.paid.2007.10.027
Silvia, P. J., & Beaty, R. E. (2012). Making creative metaphors: The importance of fluid intelligence for creative thought. Intelligence, 40(4), 343-351. doi:10.1016/j.intell.2012.02.005
Srivastava, S., Childers, M. E., Baek, J. H., Strong, C. M., Hill, S. J., Warsett, K. S., . . . Ketter, T. A. (2010). Toward interaction of affective and cognitive contributors to creativity in bipolar disorders: A controlled study. Journal of affective disorders, 125(1-3), 27-34. doi:10.1016/j.jad.2009.12.018
Sternberg, R. J. (2003). Creative thinking in the classroom. Scandinavian Journal of Educational Research, 47(3), 325-338. doi:10.1080/00313830308595
Sternberg, R. J. (2021). Positive creativity. In A. Kostic & D. Chadee (Eds.), Positive Psychology: An International Perspective (pp. 33-42). Hoboken, NJ: John Wiley & Sons.
Sternberg, R. J., & Karami, S. (2021). An 8P theoretical framework for understanding creativity and theories of creativity. The Journal of Creative Behavior. doi:10.1002/jocb.516
Stevens, L., De Vries, M. M., Bos, M. M., & Kopnina, H. (2019). Biomimicry design education essentials. Paper presented at the ICED 2019, Delft, The Netherlands.
Steyvers, M., & Tenenbaum, J. B. (2005). The large‐scale structure of semantic networks: Statistical analyses and a model of semantic growth. Cognitive science, 29(1), 41-78. doi:10.1207/s15516709cog2901_3
Stoermer, S., Lauring, J., & Selmer, J. (2020). The effects of positive affectivity on expatriate creativity and perceived performance: what is the role of perceived cultural novelty? International Journal of Intercultural Relations, 79, 155-164. doi:10.1016/j.ijintrel.2020.09.001
Taadi, D., Raharjo, T. J., & Deliana, S. M. (2019). The effect of mind mapping based imindmap application on the creativity and concept understanding of students. Innovative Journal of Curriculum and Educational Technology, 8(1), 41-50.
Tep, P., Maneewan, S., Chuathong, S., & Easter, M. A. (2018). A review of influential factors affecting undergraduate students’ creative thinking. Paper presented at the RAIS Conference Proceedings-The 11th International RAIS Conference on Social Sciences.
Toh, C. A., & Miller, S. R. (2013). Exploring the utility of product dissection for early-phase idea generation. Paper presented at the ASME 2013 International Design Engineering Technical Conferences & Design Theory and Methodology, Portland, OR.
Treffinger, D. J., Young, G. C., Selby, E. C., & Shepardson, C. (2002). Assessing Creativity: A Guide for Educators. National Research Center on the Gifted and Talented.
Tsai, M.-J. (2019). The Comparison of Word Tree and Mind Map in Design-by-Analogy. National Taipei University of Technology, Taipei, Taiwan.
Ullwer, D., Bornemann, B., Ries, J., Horn, J., Foth, M., Preusse, F., . . . Van Der Meer, E. (2009). Resource allocation and problem solving strategies during a geometric analogy task in individuals differing in fluid intelligence. Paper presented at the 2nd Analogy Conference, Sofia, Bulgaria.
Vohs, K. D., Redden, J. P., & Rahinel, R. (2013). Physical order produces healthy choices, generosity, and conventionality, whereas disorder produces creativity. Psychological Science, 24(9), 1860-1867. doi:10.1177/0956797613480186
Vosniadou, S. (1988). Analogical reasoning as a mechanism in knowledge acquisition: A developmental perspective. Retrieved from Champaign, IL, USA:
Wang, H.-H., & Deng, X. (2022). The Bridging Role of Goals between Affective Traits and Positive Creativity. Education Sciences, 12(2), 144. doi:10.3390/educsci12020144
Williams, F. E. (1969). Models for encouraging creativity in the classroom by integrating cognitive-affective behaviors. Educational Technology, 9(12), 7-13.
Williams, F. E. (1993). Creativity Assessment Packet: CAP. Dallas, TX: Pro-Ed.
Williams, S. D. (2004). Personality, attitude, and leader influences on divergent thinking and creativity in organizations. European Journal of Innovation Management, 7(3), 187-204. doi:10.1108/14601060410549883
Wilson, D. E. (2015). Bats in question: the Smithsonian answer book. Washington, DC: Smithsonian Books.
Zampetakis, L. A., Tsironis, L., & Moustakis, V. (2007). Creativity development in engineering education: The case of mind mapping. Journal of Management Development. doi:10.1108/02621710710740110
Zubaidah, S., Fuad, N. M., Mahanal, S., & Suarsini, E. (2017). Improving creative thinking skills of students through differentiated science inquiry integrated with mind map. Journal of Turkish Science Education, 14(4), 77-91.
電子全文 電子全文(網際網路公開日期:20270601)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top