跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/21 14:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范芷瑄
研究生(外文):FAN, CHIH-HSUAN
論文名稱:應用稀土金屬與過渡金屬氧化物奈米複合材料修飾電極於電化學感測之研究
論文名稱(外文):Application of Rare Earth Metal and Binary Transition Metal Oxide Nanocomposite Modified Electrode in Electrochemical Sensing
指導教授:陳生明
指導教授(外文):CHEN, SHEN-MING
口試委員:陳生明鍾仁傑翁文慧駱碧秀黃國林
口試委員(外文):CHEN, SHEN-MINGCHUNG, REN-JEIWENG, WEN-HUILOU, BIH-SHOWHUANG, KUO-LIN
口試日期:2022-06-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系生化與生醫工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:104
中文關鍵詞:鈰鈮氧化物三氧化釤鈷過渡金屬氧化物水熱合成法共沉澱法4-硝基苯酚鹽酸異丙嗪丁香酚電化學感測器環境汙染物真實樣品分析
外文關鍵詞:Cerium niobium oxideSamarium cobalt trioxideBinary transition metal oxideHydrothermal methodCo-precipitationp-NitrophenolPromethazine hydrochlorideEugenolElectrochemical sensorEnvironmental PollutantReal sample analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
ABSTRACT iv
致謝 vii
目錄 viii
表目錄 xii
圖目錄 xiii
1 第一章 緒論 1
1.1 電化學分析 1
1.1.1 前言 1
1.1.2 電極系統 1
1.1.3 電化學感測器 2
1.2 材料合成方法 3
1.2.1 共沉澱法 ( Co-precipitation synthesis method ) 3
1.2.2 水熱合成法 ( Hydrothermal synthesis ) 4
1.3 檢測藥品簡介 5
1.3.1 對硝基苯酚 ( p-Nitrophenol ) 5
1.3.2 鹽酸異丙嗪( promethazine hydrochloride ) 5
1.3.3 丁香酚 ( Eugenol ) 6
2 第二章 實驗介紹 7
2.1 實驗藥品 7
2.2 實驗器材 9
2.2.1 製程儀器 9
2.2.2 物性分析儀器 10
2.2.3 電化學分析儀器 11
2.3 物性與電化學分析原理 11
2.3.1 物性分析 11
2.3.1.1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 11
2.3.1.2 能量散射光譜儀(Energy-dispersive X-ray Spectroscopy, EDX) 13
2.3.1.3 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 14
2.3.1.4 X-射線繞射分析儀(X-ray Diffractometer, XRD) 15
2.3.1.5 X光光電子能譜(X-ray Photoelectron Spectroscopy, XPS) 17
2.3.1.6 傅立葉轉換紅外光譜(Fourier Transform Infrared Spectrometer, FT-IR) 20
2.3.2 電化學性質分析 21
2.3.2.1 電化學阻抗譜(Electrochemical Impedance Spectroscopy, EIS) 21
2.3.2.2 循環伏安法(Cyclic Voltammetry, CV) 23
2.3.2.3 微分脈衝伏安法(Differential Pulse Voltammetry, DPV) 24
3 第三章一鍋水熱合成法製備鈰鈮氧化物奈米複合物對工作電極進行修飾應用於檢測環境水質汙染物之電化學感測器 25
3.1 前言 25
3.2 實驗步驟 27
3.2.1 CNO NPs催化劑的合成 27
3.2.2 CNO NPs修飾電極的製備 28
3.2.3 實際應用樣品製備 28
3.3 結果與討論 28
3.3.1 材料合成與物理特性分析 28
3.3.2 CNO NP的結構型態分析 30
3.3.3 不同修飾電極的電化學電荷轉移和性能 31
3.3.4 4-硝基苯酚濃度對CNO NPs修飾玻璃探電極的影響 34
3.3.5 CNO NPs修飾玻璃探電極之掃描速率與pH關係探討 35
3.3.6 CNO NPs修飾玻璃碳電極對4-硝基苯酚的電催化性能分析 36
3.3.7 CNO NPs修飾玻璃碳電極的實例應用可行性 38
3.3.8 實際應用分析 41
3.4 結論 42
4 第四章 製備鈣鈦礦型釤鈷氧化物修飾電極應用於臨床與環境檢測分析抗組織胺藥物 43
4.1 前言 43
4.2 實驗步驟 45
4.2.1 合成SmCoO3奈米粒子 45
4.2.2 奈米修飾電極製備之過程 46
4.3 結果與討論 47
4.3.1 SmCoO3 NPs之特徵分析 47
4.3.2 SmCoO3 NPs之型態分析 49
4.3.3 不同電極的電化學分析 50
4.3.4 SmCoO3 NPs /GCE感測PHY的電化學分析 51
4.3.5 SmCoO3 NPs /GCE對PHY的電催化性能分析(DPV) 57
4.3.6 SmCoO3 NPs /GCE的實例應用可行性 58
4.3.7 實際應用分析 60
4.4 結論 63
5 第五章 便攜式二元過渡金屬氧化物 (CoO/ZnO)電化學感測器用於評估真實樣品中之丁香酚 64
5.1 前言 64
5.2 實驗步驟 65
5.2.1 合成ZnO、CoO/ZnO NPs奈米材料 65
5.2.2 不同修飾電極之製備 66
5.2.3 製備真實樣品 66
5.3 結果與討論 67
5.3.1 ZnO和CoO/ZnO NPs之物理特性分析 67
5.3.2 ZnO和CoO/ZnO NPs之結構檢驗分析 69
5.3.3 不同修飾電極之電化學特性分析 72
5.3.4 不同的玻璃碳修飾電極對EGU之電催化活性 72
5.3.5 最佳化CoO/ZnO/GCE之感測參數 73
5.3.6 CoO/ZnO/GCE對EGU之電分析 76
5.3.7 CoO/ZnO/GCE 之選擇性、重複性、再現性及穩定性 79
5.3.8 CoO/ZnO/GCE之即時分析應用 80
5.4 結論 81
參考文獻 82

1.朱永春, 張., 分析電化學. 2009: 化學工業出版社.
2.胡啟章, 電化學原理與方法 (第二版). 五南. 2011.
3.https://kknews.cc/digital/9gyzgxb.html.
4.Zen, J.-M., et al., Electrochemical impedance study and sensitive voltammetric determination of Pb() at electrochemically activated glassy carbon electrodes. Analyst, 2000. 125(6): p. 1139-1146.
5.Leary, D.A.S.J.J., Principles of instrumental analysis. 1992: Fort Worth : Saunders College Pub.
6.Petcharoen, K. and A. Sirivat, Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Materials Science and Engineering: B, 2012. 177(5): p. 421-427.
7.Li, J.-G., et al., Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant. Journal of the European Ceramic Society, 2000. 20(14): p. 2395-2405.
8.Venkatramana Reddy, S. and S. Peyyala, Synthesis And Characterization of Al Doped And (Co, Al) co-doped ZnO Nanoparticles via Chemical co-precipitation Method. Asian Journal of Nanosciences and Materials, 2019. 2(1): p. 111-119.
9.王明光, 王., 實用儀器分析. 2003: 合記圖書出版社.
10.EDS. https://mse.mcut.edu.tw/var/file/43/1043/img/257/524216166.pdf?fbclid=IwAR19kouQlklDwfj3TbLVHLit3gYTwvHUx4F8YSTbzPf9KrQBschCKY0B7c8.
11.https://www.phys.sinica.edu.tw/~mkwu/ma-01.htm.
12.吳明珠, 柯., 儀器分析. 2002: 新文京開發出版有限公司.
13.https://kknews.cc/news/amaezlx.html.
14.Klaus Gerwert, C.K., Fourier Transform Infrared (FTIR) Spectroscopy. 2010.
15.García-González, R., Laboratory Methods in Dynamic Electroanalysis || Electrochemical impedance spectroscopy for characterization of electrode surfaces. Chapter 12 - Electrochemical impedance spectroscopy for characterization of electrode surfaces: carbon nanotubes on gold electrodes. 2020.
16.方嘉德, 儀器分析(精華版)(第七版). 2018: 聖智學習.
17.https://zh.wikipedia.org/zh-tw/%E5%BE%AA%E7%92%B0%E4%BC%8F%E5%AE%89%E6%B3%95.
18.Higson, S., Biosensors for medical applications. 2012.
19.Sylvain Ladame, J.Y.H.C., Bioengineering Innovative Solutions for Cancer. 2020.
20.Wandelt, K., Encyclopedia of Interfacial Chemistry. 2020.
21.Singh, K., et al., Synthesis of CeO2-ZnO nanoellipsoids as potential scaffold for the efficient detection of 4-nitrophenol. SENSORS AND ACTUATORS B-CHEMICAL, 2014. 202: p. 1044-1050.
22.Bharath, G., et al., Edge-carboxylated graphene anchoring magnetite-hydroxyapatite nanocomposite for an efficient 4-nitrophenol sensor. RSC ADVANCES, 2015. 5(18): p. 13392-13401.
23.Ahmad, N., et al., Synthesis of silver nanoparticles decorated on reduced graphene oxide nanosheets and their electrochemical sensing towards hazardous 4-nitrophenol. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020. 31(14): p. 11927-11937.
24.Al-Kahtani, A.A., et al., A clean approach for the reduction of hazardous 4-nitrophenol using gold nanoparticles decorated multiwalled carbon nanotubes. JOURNAL OF CLEANER PRODUCTION, 2018. 191: p. 429-435.
25.Dai, H., et al., Highly sensitive determination of 4-nitrophenol with coumarin-based fluorescent molecularly imprinted poly (ionic liquid). JOURNAL OF HAZARDOUS MATERIALS, 2020. 398.
26.Ding, Q., et al., Conversion of waste eggshell into difunctional Au/CaCO3 nanocomposite for 4-Nitrophenol electrochemical detection and catalytic reduction. APPLIED SURFACE SCIENCE, 2020. 510.
27.Jeyapragasam, T., J.M. Devi, and V. Ganesh, Molybdenum disulfide-based modifier for electrochemical detection of 4-nitrophenol. IONICS, 2018. 24(12): p. 4033-4041.
28.Lu, W., et al., Synthesis of Au nanoparticles decorated graphene oxide nanosheets: Noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol. Journal of Hazardous Materials, 2011. 197: p. 320-326.
29.Manjula, N. and S.M. Chen, Simple strategy synthesis of manganese cobalt oxide anchored on graphene oxide composite as an efficient electrocatalyst for hazardous 4-nitrophenol detection in toxic tannery waste. MICROCHEMICAL JOURNAL, 2021. 168.
30.Padilla-Sanchez, J.A., et al., Application of a quick, easy, cheap, effective, rugged and safe-based method for the simultaneous extraction of chlorophenols, alkylphenols, nitrophenols and cresols in agricultural soils, analyzed by using gas chromatography-triple quadrupole-mass spectrometry/mass spectrometry. JOURNAL OF CHROMATOGRAPHY A, 2010. 1217(36): p. 5724-5731.
31.El-Shahawi, M.S., et al., Spectrofluorimetric method for measuring the activity of the enzyme alpha-L-fucosidase using the ion associate of 2-chloro-4-nitro phenol-rhodamine-B. TALANTA, 2009. 80(1): p. 19-23.
32.Salcedo, G.M., et al., Determination of fifteen phenols in wastewater from petroleum refinery samples using a dispersive liquid-liquid microextraction and liquid chromatography with a photodiode array detector. MICROCHEMICAL JOURNAL, 2019. 146: p. 722-728.
33.Bogireddy, N.K.R., et al., 4-nitrophenol optical sensing with N doped oxidized carbon dots. JOURNAL OF HAZARDOUS MATERIALS, 2020. 386.
34.Konstantinou, G.N., Enzyme-Linked Immunosorbent Assay (ELISA), in Food Allergens: Methods and Protocols, J. Lin and M. Alcocer, Editors. 2017, Springer New York: New York, NY. p. 79-94.
35.Chu, Y.Y., et al., A dual-cathode electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation. JOURNAL OF HAZARDOUS MATERIALS, 2012. 199: p. 179-185.
36.Zhang, H.Y., et al., GREEN ANALYTICAL METHOD FOR THE SENSITIVE DETERMINATION OF MONONITROPHENOL ISOMERS BY DYNAMIC pH JUNCTION CAPILLARY ELECTROPHORESIS. JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIES, 2014. 37(8): p. 1145-1162.
37.Hao, T.F., et al., An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. MICROCHIMICA ACTA, 2016. 183(7): p. 2197-2203.
38.Neng, N.R. and J.M.F. Nogueira, Determination of Phenol Compounds In Surface Water Matrices by Bar Adsorptive Microextraction-High Performance Liquid Chromatography-Diode Array Detection. MOLECULES, 2014. 19(7): p. 9369-9379.
39.Jiang, Y., et al., Anodic oxidation for the degradation of organic pollutants: Anode materials, operating conditions and mechanisms. A mini review. Electrochemistry Communications, 2021. 123: p. 106912.
40.Chang, G., et al., Ag nanoparticles decorated polyaniline nanofibers: synthesis, characterization, and applications toward catalytic reduction of 4-nitrophenol and electrochemical detection of H2O2 and glucose. Catalysis Science & Technology, 2012. 2(4): p. 800-806.
41.Manjula, N. and S.M. Chen, Electrochemical sensors for beta-adrenoceptor agonist isoprenaline analysis in human urine and serum samples using manganese cobalt oxide-modified glassy carbon electrode. NEW JOURNAL OF CHEMISTRY, 2021. 45(20): p. 9084-9095.
42.Karimi-Maleh, H., et al., Cyanazine herbicide monitoring as a hazardous substance by a DNA nanostructure biosensor. Journal of Hazardous Materials, 2022. 423: p. 127058.
43.Karimi-Maleh, H., et al., A green and sensitive guanine-based DNA biosensor for idarubicin anticancer monitoring in biological samples: A simple and fast strategy for control of health quality in chemotherapy procedure confirmed by docking investigation. Chemosphere, 2022. 291: p. 132928.
44.Karimi-Maleh, H., et al., A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosensors and Bioelectronics, 2021. 184: p. 113252.
45.Binnemans, K., et al., Rare-Earth Economics: The Balance Problem. JOM, 2013. 65(7): p. 846-848.
46.Castano, C.E., M.J. O'Keefe, and W.G. Fahrenholtz, Cerium-based oxide coatings. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2015. 19(2): p. 69-76.
47.Xu, C. and X.G. Qu, Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG ASIA MATERIALS, 2014. 6.
48.Binnemans, K., Chapter 229 Applications of tetravalent cerium compounds, in Handbook on the Physics and Chemistry of Rare Earths, K.A. Gschneidner, J.-C.G. Bunzli, and V.K. Pecharsky, Editors. 2006, Elsevier. p. 281-392.
49.Umar, A., et al., An efficient chemical sensor based on CeO2 nanoparticles for the detection of acetylacetone chemical. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020. 864.
50.Heydari, H. and M.B. Gholivand, A novel high-performance supercapacitor based on high-quality CeO2/nitrogen-doped reduced graphene oxide nanocomposite. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2017. 123(3).
51.Goharshadi, E.K., S. Samiee, and P. Nancarrow, Fabrication of cerium oxide nanoparticles: Characterization and optical properties. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011. 356(2): p. 473-480.
52.Mogensen, M., N.M. Sammes, and G.A. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria. SOLID STATE IONICS, 2000. 129(1-4): p. 63-94.
53.Adelstein, N., et al., Structure and electronic properties of cerium orthophosphate: Theory and experiment. PHYSICAL REVIEW B, 2011. 83(20).
54.Joshi, S., et al., Dissolution of cerium from cerium-based conversion coatings on Al 7075-T6 in 0.1M NaCl solutions. Corrosion Science, 2012. 60: p. 290-295.
55.Liang, J., et al., Formation of superhydrophobic cerium oxide surfaces on aluminum substrate and its corrosion resistance properties. SURFACE AND INTERFACE ANALYSIS, 2013. 45(8): p. 1211-1216.
56.Fornasiero, P., et al., Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2. JOURNAL OF CATALYSIS, 1996. 164(1): p. 173-183.
57.Patil, S., et al., Synthesis of nanocrystalline ceria particles for high temperature oxidation resistant coating. JOURNAL OF NANOPARTICLE RESEARCH, 2002. 4(5): p. 433-438.
58.Masui, T., et al., Synthesis of BN-coated CeO2 fine powder as a new UV blocking material. JOURNAL OF MATERIALS CHEMISTRY, 2000. 10(2): p. 353-357.
59.Messing, G.L., S.C. Zhang, and G.V. Jayanthi, CERAMIC POWDER SYNTHESIS BY SPRAY-PYROLYSIS. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1993. 76(11): p. 2707-2726.
60.Zhou, F., et al., Size-controlled synthesis and electrochemical characterization of spherical CeO2 crystallites. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007. 307(1): p. 135-138.
61.Galata, S.F., et al., Post deposition annealing studies of lanthanum aluminate and ceria high-k dielectrics on germanium. MICROELECTRONICS RELIABILITY, 2007. 47(4-5): p. 532-535.
62.Zhou, F., et al., CeO2 Spherical Crystallites:  Synthesis, Formation Mechanism, Size Control, and Electrochemical Property Study. The Journal of Physical Chemistry C, 2007. 111(4): p. 1651-1657.
63.Hilaire, S., et al., A comparative study of water-gas-shift reaction over ceria supported metallic catalysts. APPLIED CATALYSIS A-GENERAL, 2001. 215(1-2): p. 271-278.
64.Zhai, Y., S. Zhang, and H. Pang, Preparation, characterization and photocatalytic activity of CeO2 nanocrystalline using ammonium bicarbonate as precipitant. MATERIALS LETTERS, 2007. 61(8-9): p. 1863-1866.
65.Bamwenda, G.R. and H. Arakawa, Cerium dioxide as a photocatalyst for water decomposition to O2 in the presence of Ceaq4+ and Feaq3+ species. Journal of Molecular Catalysis A: Chemical, 2000. 161(1): p. 105-113.
66.Stefanik, T.S. and H.L. Tuller, Ceria-based gas sensors. Journal of the European Ceramic Society, 2001. 21(10): p. 1967-1970.
67.Lai, F., et al., Optical scattering characteristic of annealed niobium oxide films. Thin Solid Films, 2005. 488(1): p. 314-320.
68.Ramírez, G., et al., Amorphous niobium oxide thin films. Journal of Non-Crystalline Solids, 2010. 356(50): p. 2714-2721.
69.Cai, W.L., et al., Conductive Nanocrystalline Niobium Carbide as High-Efficiency Polysulfides Tamer for Lithium-Sulfur Batteries. ADVANCED FUNCTIONAL MATERIALS, 2018. 28(2).
70.Nico, C., T. Monteiro, and M.P.F. Graça, Niobium oxides and niobates physical properties: Review and prospects. Progress in Materials Science, 2016. 80: p. 1-37.
71.Shanmugam, S., et al., Microstructure of high strength niobium-containing pipeline steel. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006. 441(1-2): p. 215-229.
72.Wang, Y.D., B.M. Smarsly, and I. Djerdj, Niobium Doped TiO2 with Mesoporosity and Its Application for Lithium Insertion. CHEMISTRY OF MATERIALS, 2010. 22(24): p. 6624-6631.
73.Sasaki, K., L. Zhang, and R.R. Adzic, Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008. 10(1): p. 159-167.
74.Hu, X., et al., Identifying electrocatalytic activity and mechanism of Ce1/3NbO3 perovskite for nitrogen reduction to ammonia at ambient conditions. Applied Catalysis B: Environmental, 2021. 280: p. 119419.
75.Liu, J., D. Xue, and K. Li, Single-crystalline nanoporous Nb2O5 nanotubes. Nanoscale Research Letters, 2011. 6(1): p. 138.
76.Wolski, L., et al., Enhanced adsorption and degradation of methylene blue over mixed niobium-cerium oxide – Unraveling the synergy between Nb and Ce in advanced oxidation processes. Journal of Hazardous Materials, 2021. 415: p. 125665.
77.Ren, X.N., et al., Porous CoO-CeO2 heterostructures as highly active and stable electrocatalysts for water oxidation. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018. 43(50): p. 22529-22537.
78.Liu, G.Q., et al., Ambient Electrosynthesis of Ammonia on a Core-Shell-Structured Au@CeO2 Catalyst: Contribution of Oxygen Vacancies in CeO2. CHEMISTRY-A EUROPEAN JOURNAL, 2019. 25(23): p. 5904-5911.
79.Atashbar, M.Z., et al., XPS study of Nb-doped oxygen sensing TiO2 thin films prepared by sol-gel method. Thin Solid Films, 1998. 326(1): p. 238-244.
80.Balasubramanian, P., et al., Simplistic synthesis of ultrafine CoMnO3 nanosheets: An excellent electrocatalyst for highly sensitive detection of toxic 4-nitrophenol in environmental water samples. JOURNAL OF HAZARDOUS MATERIALS, 2019. 361: p. 123-133.
81.Ramalingam, M., V.K. Ponnusamy, and S.N. Sangilimuthu, Electrochemical determination of 4-nitrophenol in environmental water samples using porous graphitic carbon nitride-coated screen-printed electrode. Environmental Science and Pollution Research, 2020. 27(15): p. 17481-17491.
82.Rounaghi, G., R.M. Kakhki, and H. Azizi-Toupkanloo, Voltammetric determination of 4-nitrophenol using a modified carbon paste electrode based on a new synthetic crown ether/silver nanoparticles. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2012. 32(2): p. 172-177.
83.Shahid, M.M., P. Rameshkumar, and N.M. Huang, Morphology dependent electrocatalytic properties of hydrothermally synthesized cobalt oxide nanostructures. CERAMICS INTERNATIONAL, 2015. 41(10): p. 13210-13217.
84.Yin, H.S., et al., Electrochemical oxidative determination of 4-nitrophenol based on a glassy carbon electrode modified with a hydroxyapatite nanopowder. MICROCHIMICA ACTA, 2010. 169(1-2): p. 87-92.
85.Yin, H.S., et al., Electrochemical oxidation determination and voltammetric behaviour of 4-nitrophenol based on Cu2O nanoparticles modified glassy carbon electrode. INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2012. 92(6): p. 742-754.
86.Wu, J., et al., Highly sensitive p-nitrophenol chemical sensor based on crystalline α-MnO2 nanotubes. New Journal of Chemistry, 2014. 38(9): p. 4420-4426.
87.Suresh, R., et al., Polyaniline Nanorods: Synthesis, Characterization, and Application for the Determination of para-Nitrophenol. ANALYTICAL LETTERS, 2016. 49(2): p. 269-281.
88.Wiench, P., et al., pH robust electrochemical detection of 4-nitrophenol on a reduced graphene oxide modified glassy carbon electrode. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017. 787: p. 80-87.
89.Arvinte, A., et al., Electrochemical oxidation of p-nitrophenol using graphene-modified electrodes, and a comparison to the performance of MWNT-based electrodes. MICROCHIMICA ACTA, 2011. 174(3-4): p. 337-343.
90.Lopes, L.C., et al., Gold nanoparticles capped with polysaccharides extracted from pineapple gum: Evaluation of their hemocompatibility and electrochemical sensing properties. Talanta, 2021. 223: p. 121634.
91.Martínez-Gómez, M.A., et al., Enantioseparation of phenotiazines by affinity electrokinetic chromatography using human serum albumin as chiral selector: Application to enantiomeric quality control in pharmaceutical formulations. Analytica Chimica Acta, 2007. 582(2): p. 223-228.
92.Alizadeh, T. and M. Akhoundian, Promethazine determination in plasma samples by using carbon paste electrode modified with molecularly imprinted polymer (MIP): Coupling of extraction, preconcentration and electrochemical determination. Electrochimica Acta, 2010. 55(20): p. 5867-5873.
93.de Oliveira, R.C., et al., Polyethylenimine-Multi-Walled Carbon Nanotubes/Glassy Carbon Electrode as an Efficient Sensing Platform for Promethazine. Journal of The Electrochemical Society, 2020. 167(10): p. 107506.
94.Cantisani, C., et al., Topical Promethazine Side Effects: Our Experience and Review of the Literature. BioMed Research International, 2013. 2013: p. 151509.
95.Hernández-Rodríguez, J.F., D. Rojas, and A. Escarpa, Electrochemical Sensing Directions for Next-Generation Healthcare: Trends, Challenges, and Frontiers. Analytical Chemistry, 2021. 93(1): p. 167-183.
96.Daniel, D. and I.G.R. Gutz, Flow injection spectroelectroanalytical method for the determination of promethazine hydrochloride in pharmaceutical preparations. Analytica Chimica Acta, 2003. 494(1): p. 215-224.
97.Honarmand, E., et al., Electro-oxidation study of promethazine hydrochloride at the surface of modified gold electrode using molecular self assembly of a novel bis-thio Schiff base from ethanol media. Journal of Molecular Liquids, 2016. 216: p. 429-439.
98.Hassan, A.K., et al., Ionophore-Based Potentiometric Sensors for the Flow-Injection Determination of Promethazine Hydrochloride in Pharmaceutical Formulations and Human Urine. Sensors, 2011. 11(1).
99.Tang, H., et al., Immobilization and electro-oxidation of calf thymus deoxyribonucleic acid at alkylamine modified carbon nanotube electrode and its interaction with promethazine hydrochloride. Journal of Electroanalytical Chemistry, 2006. 587(2): p. 269-275.
100.Alagumalai, K., et al., One-pot engineering of novel cashew like cobalt tungstate; dynamic electrocatalyst for the selective detection of promethazine hydrochloride. Microchemical Journal, 2020. 159: p. 105381.
101.Muthukutty, B., et al., Designing hybrid barium tungstate on functionalized carbon black as electrode modifier for low potential detection of antihistamine drug promethazine hydrochloride. Composites Part B: Engineering, 2021. 215: p. 108789.
102.Sakthivel, R., S. Kubendhiran, and S.-M. Chen, One-pot sonochemical synthesis of marigold flower-like structured ruthenium doped bismuth sulfide for the highly sensitive detection of antipsychotic drug thioridazine in the human serum sample. Journal of the Taiwan Institute of Chemical Engineers, 2020. 111: p. 270-282.
103.Kesavan, G., et al., Iron vanadate nanoparticles supported on boron nitride nanocomposite: Electrochemical detection of antipsychotic drug chlorpromazine. Journal of Electroanalytical Chemistry, 2021. 882: p. 114982.
104.Li, Q., et al., Recent advances in black phosphorus-based electrochemical sensors: A review. Analytica Chimica Acta, 2021. 1170: p. 338480.
105.Li, Q., et al., Morphology-dependent MnO2/nitrogen-doped graphene nanocomposites for simultaneous detection of trace dopamine and uric acid. Materials Science and Engineering: C, 2020. 109: p. 110615.
106.Li, F., et al., A simple and efficient voltammetric sensor for dopamine determination based on ZnO nanorods/electro-reduced graphene oxide composite. Surfaces and Interfaces, 2021. 26: p. 101375.
107.Liu, H., et al., Nanohybrids of shuttle-like α-Fe2O3 nanoparticles and nitrogen-doped graphene for simultaneous voltammetric detection of dopamine and uric acid. New Journal of Chemistry, 2020. 44(47): p. 20797-20805.
108.Li, G., et al., A Highly Sensitive and Stable Dopamine Sensor Using Shuttle-Like α-Fe2O3 Nanoparticles/Electro-Reduced Graphene Oxide Composites. Journal of The Electrochemical Society, 2019. 166(15): p. B1552-B1561.
109.Isacfranklin, M., et al., Heterostructured SmCoO3/rGO composite for high-energy hybrid supercapacitors. Carbon, 2021. 172: p. 613-623.
110.Liu, D., et al., Fabrication of SmCo5 alloy via cobalt-induced calciothermic reduction and magnetic properties of its ribbon. Journal of Rare Earths, 2021. 39(5): p. 572-578.
111.Manjum, M., et al., Electrochemical Preparation of Cobalt-Samarium Nanoparticles in an Aprotic Ionic Liquid. Journal of The Electrochemical Society, 2020. 167(4): p. 042505.
112.Siebels, M., et al., Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate. Beilstein Journal of Nanotechnology, 2018. 9: p. 1881-1894.
113.Sobekova Foltova, S., et al., Samarium/cobalt separation by solvent extraction with undiluted quaternary ammonium ionic liquids. Separation and Purification Technology, 2019. 210: p. 209-218.
114.Sinha, M.K., et al., Recovery of value added products of Sm and Co from waste SmCo magnet by hydrometallurgical route. Separation and Purification Technology, 2017. 179: p. 1-12.
115.Lee, J., et al., Synthesis of Samarium-Cobalt Sub-micron Fibers and Their Excellent Hard Magnetic Properties. 2018. 6.
116.Fung, H.B. and T.-L. Doan, Tinidazole: A nitroimidazole antiprotozoal agent. Clinical Therapeutics, 2005. 27(12): p. 1859-1884.
117.Das, T. and B. Verma, Polyaniline-Acetylene black-Copper cobaltite based ternary hybrid material with enhanced electrochemical properties and its use in supercapacitor electrodes. International Journal of Energy Research, 2020. 44(2): p. 934-949.
118.Khalafallah, D., et al., Carbon Anchored Epitaxially Grown Nickel Cobalt-Based Carbonate Hydroxide for Urea Electrooxidation Reaction with a High Activity and Durability. ChemCatChem, 2020. 12(8): p. 2283-2294.
119.Fotukian, S.M., et al., Solvothermal synthesis of CuFe2O4 and Fe3O4 nanoparticles with high heating efficiency for magnetic hyperthermia application. Journal of Alloys and Compounds, 2020. 816: p. 152548.
120.Zhu, X., et al., Hollow structured cathode materials for rechargeable batteries. Science Bulletin, 2020. 65(6): p. 496-512.
121.Michel, C.R., et al., An alternative gas sensor material: Synthesis and electrical characterization of SmCoO3. Materials Research Bulletin, 2007. 42(1): p. 84-93.
122.Marinho, J.Z., et al., Urea-Based Synthesis of Zinc Oxide Nanostructures at Low Temperature. Journal of Nanomaterials, 2012. 2012: p. 427172.
123.Soumya Rani, D. and M.R. Meera, A simple and excellent protocol for the synthesis of CdSe QDs sensitized SmCoO3 peroviskite nanoparticles. Materials Today: Proceedings, 2021. 37: p. 1778-1783.
124.Osazuwa, O.U., et al., An assessment of the longevity of samarium cobalt trioxide perovskite catalyst during the conversion of greenhouse gases into syngas. Journal of Cleaner Production, 2018. 185: p. 576-587.
125.Humelnicu, A.-C., et al., Novel chitosan-functionalized samarium-doped cobalt ferrite for adsorptive removal of anionic dye from aqueous solutions. Comptes Rendus Chimie, 2017. 20(11): p. 1026-1036.
126.Muthulakshmi, V., M. Balaji, and M. Sundrarajan, Biomedical applications of ionic liquid mediated samarium oxide nanoparticles by Andrographis paniculata leaves extract. Materials Chemistry and Physics, 2020. 242: p. 122483.
127.Khalil, M.S., Synthesis, X-ray, infrared spectra and electrical conductivity of La/Ba–CoO3 systems. Materials Science and Engineering: A, 2003. 352(1): p. 64-70.
128.Kanakkillam, S.S., et al., Surfactant free stable cobalt oxide nanocolloid in water by pulsed laser fragmentation and its thin films for visible light photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020. 594: p. 124657.
129.Gu, L.-F., et al., Engineering cobalt oxide by interfaces and pore architectures for enhanced electrocatalytic performance for overall water splitting. Nanoscale, 2020. 12(20): p. 11201-11208.
130.Wu, G., et al., Cobalt oxide with flake-like morphology as efficient passive NOx adsorber. Catalysis Communications, 2021. 149: p. 106203.
131.Dong, Y., L. Yang, and L. Zhang, Simultaneous Electrochemical Detection of Benzimidazole Fungicides Carbendazim and Thiabendazole Using a Novel Nanohybrid Material-Modified Electrode. Journal of Agricultural and Food Chemistry, 2017. 65(4): p. 727-736.
132.Muthukutty, B., et al., Innovation of Novel Stone-Like Perovskite Structured Calcium Stannate (CaSnO3): Synthesis, Characterization, and Application Headed for Sensing Photographic Developing Agent Metol. ACS Sustainable Chemistry & Engineering, 2020. 8(11): p. 4419-4430.
133.Periyasamy, S., et al., Structural Insights on 2D Gadolinium Tungstate Nanoflake: A Promising Electrocatalyst for Sensor and Photocatalyst for the Degradation of Postharvest Fungicide (Carbendazim). ACS Applied Materials & Interfaces, 2019. 11(40): p. 37172-37183.
134.Sakthivel, R., S. Kubendhiran, and S.-M. Chen, Facile one-pot sonochemical synthesis of Ni doped bismuth sulphide for the electrochemical determination of promethazine hydrochloride. Ultrasonics Sonochemistry, 2019. 54: p. 68-78.
135.Zhong, J., et al., Sensing Phenothiazine Drugs at a Gold Electrode Co-modified with DNA and Gold Nanoparticles. Analytical Sciences, 2003. 19(5): p. 653-657.
136.Sakthivel, K., et al., Evaluating Ternary Metal Oxide (TMO) core-shell nanocomposites for the rapid determination of the anti-neoplastic drug Chlorambucil (Leukeran™) by electrochemical approaches. Materials Science and Engineering: C, 2019. 103: p. 109724.
137.Palakollu, V.N., et al., A Versatile and Ultrasensitive Electrochemical Sensing Platform for Detection of Chlorpromazine Based on Nitrogen-Doped Carbon Dots/Cuprous Oxide Composite. Nanomaterials, 2020. 10(8).
138.Domańska, U., et al., pKa and Solubility of Drugs in Water, Ethanol, and 1-Octanol. The Journal of Physical Chemistry B, 2009. 113(26): p. 8941-8947.
139.Sakthivel, R., et al., A Simple and Rapid Electrochemical Determination of L-Tryptophan Based on Functionalized Carbon Black/Poly-L-Histidine Nanocomposite. Journal of The Electrochemical Society, 2018. 165(10): p. B422-B430.
140.Vinoth Kumar, J., et al., Highly selective electrochemical detection of antipsychotic drug chlorpromazine in drug and human urine samples based on peas-like strontium molybdate as an electrocatalyst. Inorganic Chemistry Frontiers, 2018. 5(3): p. 643-655.
141.Mayer, M.D. and R.Y. Lai, Effects of redox label location on the performance of an electrochemical aptamer-based tumor necrosis factor-alpha sensor. Talanta, 2018. 189: p. 585-591.
142.Laviron, E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979. 101(1): p. 19-28.
143.Alagumalai, K., et al., A portable advanced electrocatalyst for polyphenolic chlorogenic acid evaluation in food samples. Chemical Engineering Journal, 2022. 435: p. 134796.
144.Jesu Amalraj, A.J., U. Narasimha Murthy, and S.-F. Wang, Pt Nanoparticle-Decorated Se Rods for Electrochemical Detection of 17β-Estradiol and Methanol Oxidation. ACS Applied Nano Materials, 2022. 5(2): p. 1944-1957.
145.Łuczak, T., Electrochemical Oxidation of Dopamine in the Presence of Secondary Amine. An Alternative Way for Quantitative Dopamine Determination at a Gold Electrode. Electroanalysis, 2008. 20(15): p. 1639-1646.
146.Bitew, Z. and M. Amare, Electrochemical Determination of Ascorbic Acid in Pharmaceutical Tablets using Carbon Paste Electrode. Organic & Medicinal Chemistry International Journal, 2019. 8(5): p. 124-132.
147.Yang, L., F. Zhao, and B. Zeng, Electrochemical determination of eugenol using a three-dimensional molecularly imprinted poly (p-aminothiophenol-co-p-aminobenzoic acids) film modified electrode. Electrochimica Acta, 2016. 210: p. 293-300.
148.Sağlam, Ö., et al., Differential pulse voltammetric determination of eugenol at a pencil graphite electrode. Materials Science and Engineering: C, 2016. 60: p. 156-162.
149.Feng, Q., et al., A novel way for detection of eugenol via poly (diallyldimethylammonium chloride) functionalized graphene-MoS2 nano-flower fabricated electrochemical sensor. Sensors and Actuators B: Chemical, 2014. 192: p. 1-8.
150.Fadillah, G., et al., A sensitive electrochemical sensor based on functionalized graphene oxide/SnO2 for the determination of eugenol. Microchemical Journal, 2020. 159: p. 105353.
151.Kang, S.-Z., et al., Electrochemical behavior of eugenol on TiO2 nanotubes improved with Cu2O clusters. RSC Advances, 2014. 4(2): p. 538-543.
152.Anu Prathap, M.U., et al., A new insight into electrochemical detection of eugenol by hierarchical sheaf-like mesoporous NiCo2O4. Nano Research, 2015. 8(8): p. 2636-2645.
153.Afzali, D., et al., Gold nanoparticles modified carbon paste electrode for differential pulse voltammetric determination of eugenol. Materials Science and Engineering: C, 2014. 43: p. 97-101.
154.Murtada, K., et al., Decoration of graphene oxide with copper selenide in supercritical carbon dioxide medium as a novel approach for electrochemical sensing of eugenol in various samples. The Journal of Supercritical Fluids, 2019. 153: p. 104597.
155.Shi, Z., et al., Platinum nanoparticles-embedded raspberry-liked SiO2 for the simultaneous electrochemical determination of eugenol and methyleugenol. Microchimica Acta, 2021. 188(7): p. 241.
156.Lin, X., Y. Ni, and S. Kokot, Electrochemical mechanism of eugenol at a Cu doped gold nanoparticles modified glassy carbon electrode and its analytical application in food samples. Electrochimica Acta, 2014. 133: p. 484-491.
157.Aydoğmuş, Z., et al., Determination of eugenol in plants and pharmaceutical form by HPLC with amperometric detection at graphene-modified carbon paste electrode. Graphene Technology, 2018. 3(1): p. 1-9.
158.Purba, R. and P. Paengkoum, Bioanalytical HPLC method of Piper Betle L. for quantifying phenolic compound, water-soluble vitamin, and essential oil in five different solvent extracts. Journal of Applied Pharmaceutical Science, 2019. 9: p. 033-039.
159.Han, L., et al., Rapid Non-Destructive Quantification of Eugenol in Curdlan Biofilms by Electronic Nose Combined with Gas Chromatography-Mass Spectrometry. Sensors, 2020. 20(16).
160.Huang, Y., et al., Determination of Six Eugenol Residues in Aquatic Products by Gas Chromatography-Orbitrap Mass Spectrometry. Journal of Food Quality, 2021. 2021: p. 9438853.
161.Wang, S., Direct Electrochemistry of Eugenol at a Glassy Carbon Electrode Modified with Electrochemically Reduced Graphene Oxide. International Journal of Electrochemical Science, 2019. 14: p. 3618-3627.
162.Muthukutty, B., et al., A Novel High-Performance Electrocatalytic Determination Platform for Voltammetric Sensing of Eugenol in Acidic Media using Pyrochlore Structured Lanthanum Stannate Nanoparticles. Journal of Industrial and Engineering Chemistry, 2021. 106.
163.Yildiz, G., et al., Electrochemical oxidation mechanism of eugenol on graphene modified carbon paste electrode and its analytical application to pharmaceutical analysis. Talanta, 2017. 173: p. 1-8.
164.Lopez, J.C., et al., Development of an enzymatic biosensor to determine eugenol in dental samples. Talanta, 2020. 210: p. 120647.
165.Ziyatdinova, G., E. Ziganshina, and H. Budnikov, Voltammetric sensing and quantification of eugenol using nonionic surfactant self-organized media. Analytical Methods, 2013. 5(18): p. 4750-4756.
166.Ma, J., et al., Application of Co3O4-based materials in electrocatalytic hydrogen evolution reaction: A review. International Journal of Hydrogen Energy, 2020. 45(41): p. 21205-21220.
167.Fazio, E., et al., Metal-Oxide Based Nanomaterials: Synthesis, Characterization and Their Applications in Electrical and Electrochemical Sensors. Sensors, 2021. 21(7).
168.Kunhikrishnan, L. and R. Shanmugham, High electrochemical performance of morphologically controlled cobalt oxide for supercapacitor application. Materials Characterization, 2021. 177: p. 111160.
169.Jadhav, S., et al., Probing electrochemical charge storage of 3D porous hierarchical cobalt oxide decorated rGO in ultra-high-performance supercapacitor. Surface and Coatings Technology, 2021. 419: p. 127287.
170.Kandalkar, S.G., et al., Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application. Synthetic Metals, 2010. 160(11): p. 1299-1302.
171.Z. Hu, L.H., F. Quan, R. Guo, Recent developments of Co 3 O 4 -based materials as catalysts for the oxygen evolution reaction. 2022.
172.Sun, X., et al., The Co3O4 nanosheet array as support for MoS2 as highly efficient electrocatalysts for hydrogen evolution reaction. Journal of Energy Chemistry, 2017. 26(6): p. 1136-1139.
173.Li, R., et al., The urchin-like sphere arrays Co3O4 as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction. Journal of Power Sources, 2017. 341: p. 250-256.
174.Razmi, H. and E. Habibi, Amperometric detection of acetaminophen by an electrochemical sensor based on cobalt oxide nanoparticles in a flow injection system. Electrochimica Acta, 2010. 55(28): p. 8731-8737.
175.Salimi, A., et al., Electrochemical detection of trace amount of arsenic(III) at glassy carbon electrode modified with cobalt oxide nanoparticles. Sensors and Actuators B: Chemical, 2008. 129(1): p. 246-254.
176.Wang, J., et al., Electrochemical sensing chemical oxygen demand based on the catalytic activity of cobalt oxide film. Analytica Chimica Acta, 2012. 736: p. 55-61.
177.Akshatha, S., et al., Microwave assisted green synthesis of p-type Co3O4@Mesoporous carbon spheres for simultaneous degradation of dyes and photocatalytic hydrogen evolution reaction. Materials Science in Semiconductor Processing, 2021. 121: p. 105432.
178.Abd-Elrahim, A.G. and D.-M. Chun, Nanosized Co3O4–MoS2 heterostructure electrodes for improving the oxygen evolution reaction in an alkaline medium. Journal of Alloys and Compounds, 2021. 853: p. 156946.
179.Saad, A., et al., Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance. Applied Catalysis B: Environmental, 2021. 298: p. 120529.
180.Zhang, J., et al., Dual-defective Co3O4 nanoarrays enrich target intermediates and promise high-efficient overall water splitting. Chemical Engineering Journal, 2021. 424: p. 130328.
181.Wang, C., et al., Integrating Co3O4 nanoparticles with MnO2 nanosheets as bifunctional electrocatalysts for water splitting. International Journal of Hydrogen Energy, 2021. 46(17): p. 10356-10365.
182.Özgür, Ü., et al., A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005. 98(4): p. 041301.
183.Asif, M.H., et al., Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose. Biosensors and Bioelectronics, 2010. 25(10): p. 2205-2211.
184.Fang, B., et al., A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode. Electrochimica Acta, 2009. 55(1): p. 178-182.
185.Kim, S., et al., Room temperature deposited oxide p-n junction using p-type zinc-cobalt-oxide. Journal of Applied Physics, 2010. 107(10): p. 103538.
186.Aceves, M., et al., Duality metal oxide semiconductor–PN junction in the Al/silicon rich oxide/Si structure as a radiation sensor. Thin Solid Films, 2000. 373(1): p. 134-136.
187.Cheng, X.-L., et al., Oxygen vacancy enhanced Co3O4/ZnO nanocomposite with small sized and loose structure for sensitive electroanalysis of Hg(II) in subsidence area water. Sensors and Actuators B: Chemical, 2021. 326: p. 128967.
188.Liu, Y., et al., Co3O4/ZnO nanocomposites for gas-sensing applications. Applied Surface Science, 2013. 265: p. 379-384.
189.Obodo, R.M., et al., Effect of annealing on hydrothermally deposited Co3O4-ZnO thin films for supercapacitor applications. Materials Today: Proceedings, 2021. 36: p. 374-378.
190.Su, D.Z., Longmei ; Tang, Zehua ; Yu, Tingting ; Liu, Huili ; Zhang, Junhao ; Liu, Yuanjun ; Yuan, Aihua ; Kong, Qinghong Fabrication of Porous ZnO/Co3O4 Composites for Improving Cycling Stability of Supercapacitors. Journal of Nanoscience and Nanotechnology,, 2018. 18.
191.Muhammad, W., et al., Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC Advances, 2019. 9(51): p. 29541-29548.
192.Jang, H., et al., Synthesis and Characterization of CoO-ZnO Catalyst System for Selective CO Oxidation. International Journal of Control and Automation, 2013. 6: p. 31-40.
193.Na, C.W., et al., Chemical synthesis of CoO–ZnO:Co hetero-nanostructures and their ferromagnetism at room temperature. CrystEngComm, 2012. 14(17): p. 5390-5393.
194.Li, M., et al., Reduced graphene oxide-supported cobalt oxide decorated N-doped graphitic carbon for efficient bifunctional oxygen electrocatalysis. RSC Advances, 2019. 9(29): p. 16534-16540.
195.Altahir, B., et al., Determination of Eugenol in Personal-Care Products by Dispersive Liquid-Liquid Microextraction Followed by Spectrophotometry Using p-Amino-N,N-dimethylaniline as a Derivatizing Agent. Indonesian Journal of Chemistry, 2020. 21: p. 192-200.
196.Saran, S., et al., Validated RP-HPLC method to estimate eugenol from commercial formulations like Caturjata Churna, Lavangadi Vati, Jatiphaladi Churna, Sitopaladi Churna and clove oil. Journal of Pharmacy Research, 2013. 6(1): p. 53-60.
197.Verma, A. and R. Jain, (1-Butyl-3-methylimidazolium Hexafluorophosphate) Based Sensor for Quantification of Eugenol Antioxidant. Electroanalysis, 2016. 28(10): p. 2598-2605.

電子全文 電子全文(網際網路公開日期:20270719)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊