跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/04/01 15:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王軾喆
研究生(外文):WANG, SHIH-CHE
論文名稱:探討尿液微小核糖核酸-141與微小核糖核酸-451在前列腺癌所扮演的角色與臨床價值
論文名稱(外文):Investigation the role and clinical value of urinary microRNA-141 and microRNA-451 in prostate cancer
指導教授:翁文慧
指導教授(外文):WENG, WEN-HUI
口試委員:翁文慧方旭偉邱月娥
口試委員(外文):WENG, WEN-HUIFANG, HSU-WEICHIOU, YUEH-ER
口試日期:2022-07-16
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系生化與生醫工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:53
中文關鍵詞:前列腺癌miRNA-451miRNA-141外泌體
外文關鍵詞:Prostate cancermiRNA-451miRNA-141exosomes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
ABSTRACT ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 ix
第一章 緒論 1
1.1 前列腺癌 1
1.1.1 前列腺癌的臨床簡介與發展 1
1.1.2 前列腺癌病理學分類 3
1.1.3 前列腺癌的分期 4
1.1.4 常見前列腺癌之臨床篩檢方法 5
1.1.5 前列腺癌發生主要信號路徑 8
1.2 微小核醣核酸(microRNA) 11
1.2.1 微小核醣核酸的生成機制 11
1.2.2 微小核醣核酸與癌症的關聯 12
1.2.3 微小核醣核酸存在於人體之位置 13
1.2.4 微小核醣核酸與外泌體 13
1.2.5 在尿液中檢測微小核醣核酸的價值 15
1.2.6 用尿液中微小核醣核酸檢測癌症 15
1.2.7 微小核醣核酸作為前列腺癌的生物標誌物 16
1.3 微小核醣核酸-141 18
1.3.1 微小核醣核酸-141之簡介與癌症的關係 18
1.3.2 微小核醣核酸-141作為前列腺癌指標物 19
1.4 微小核醣核酸-451 21
1.4.1 微小核醣核酸-451之簡介與癌症的關係 21
1.4.2 微小核醣核酸-451與前列腺癌之關連 22
第二章 研究動機與實驗目標 24
2.1 研究動機 24
2.2 研究目標 24
第三章 材料與方法學 26
3.1 尿液樣本 26
3.2 尿液樣本微小核醣核酸萃取 28
3.2.1 實驗原理 28
3.2.2 實驗試劑 28
3.2.3 實驗步驟 28
3.3 微小核醣核酸相對表現定量 30
3.3.1 實驗原理 30
3.3.2 實驗試劑 31
3.3.3 實驗步驟 31
3.3.4 試劑配製 32
3.4 統計方法 34
第四章 實驗結果 35
4.1 癌患者與非癌受試者之miRNA表現量比較 35
4.2 miRNA在前列腺癌尿液術前術後之表現情形 37
4.3 各癌症期數與miRNA之表現量比較 39
4.4 miRNA之表現量與PSA指數比較 41
第五章 討論 43
5.1 尿液中miR-141在前列腺癌所扮演的角色 43
5.2 尿液中miR-451在前列腺癌所扮演的角色 44
5.3 實驗結果誤差因素分析探討 45
5.3.1 miRNA樣品 45
5.3.2 RT-qPCR實驗操作 45
5.3.3 尿液樣本 45
5.3.4 前列腺癌進展信號路徑 46
第六章 結論與未來展望 47
第七章 參考文獻 48


1.衛生福利部統計處, 109年國人死因統計結果. 衛生福利部, 2020: p. 22.
2.Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
3.Jemal, A., et al., Cancer statistics, 2010. CA Cancer J Clin, 2010. 60(5): p. 277-300.
4.Li, Y., et al., Beyond Prostate Adenocarcinoma: Expanding the Differential Diagnosis in Prostate Pathologic Conditions. Radiographics, 2016. 36(4): p. 1055-75.
5.Malik, R.D., et al., Squamous cell carcinoma of the prostate. Rev Urol, 2011. 13(1): p. 56-60.
6.Arva, N.C. and K. Das, Diagnostic dilemmas of squamous differentiation in prostate carcinoma case report and review of the literature. Diagn Pathol, 2011. 6: p. 46.
7.Huang, I.S., et al., Small cell carcinoma of the prostate: Three case reports and a literature review. Urological Science, 2013. 24(4): p. 131-135.
8.Kumar, K., et al., Poorly Differentiated Small-Cell-Type Neuroendocrine Carcinoma of the Prostate: A Case Report and Literature Review. Case Rep Oncol, 2018. 11(3): p. 676-681.
9.Ridai, S., et al., Prostatic basal cell carcinoma treated by chemoradiation with weekly cisplatine: case report and literature review. African Journal of Urology, 2021. 27(1): p. 79.
10.Humphrey, P.A., Histological variants of prostatic carcinoma and their significance. Histopathology, 2012. 60(1): p. 59-74.
11.Borley, N. and M.R. Feneley, Prostate cancer: diagnosis and staging. Asian J Androl, 2009. 11(1): p. 74-80.
12.Moradi, A., et al., Beyond the biomarker role: prostate-specific antigen (PSA) in the prostate cancer microenvironment. Cancer Metastasis Rev, 2019. 38(3): p. 333-346.
13.Saxena, P., et al., PSA regulates androgen receptor expression in prostate cancer cells. Prostate, 2012. 72(7): p. 769-76.
14.Amin, M.B., et al., AJCC Cancer Staging Manual. 2018: Springer International Publishing.
15.Abramovic, I., et al., miRNA in prostate cancer: challenges toward translation. Epigenomics, 2020. 12(6): p. 543-558.
16.Rincón Mayans, A., et al., How does endorectal MRI, PET-CT and transrectal ultrasound contribute to diagnosis and management of localized prostate cancer. Arch Esp Urol, 2011. 64(8): p. 746-64.
17.Van den Wyngaert, T., et al., The EANM practice guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging, 2016. 43(9): p. 1723-38.
18.Wallitt, K.L., et al., Clinical PET Imaging in Prostate Cancer. Radiographics, 2017. 37(5): p. 1512-1536.
19.da Silva, H.B., et al., Dissecting Major Signaling Pathways throughout the Development of Prostate Cancer. Prostate Cancer, 2013. 2013: p. 920612.
20.Khudayberdiev, S.A., et al., A comprehensive characterization of the nuclear microRNA repertoire of post-mitotic neurons. Front Mol Neurosci, 2013. 6: p. 43.
21.Lee, Y., et al., MicroRNA maturation: stepwise processing and subcellular localization. Embo j, 2002. 21(17): p. 4663-70.
22.Redova, M., et al., Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med, 2012. 10: p. 55.
23.Gebert, L.F.R. and I.J. MacRae, Regulation of microRNA function in animals. Nat Rev Mol Cell Biol, 2019. 20(1): p. 21-37.
24.Lee, Y., et al., MicroRNA genes are transcribed by RNA polymerase II. Embo j, 2004. 23(20): p. 4051-60.
25.Chak, L.L. and K. Okamura, Argonaute-dependent small RNAs derived from single-stranded, non-structured precursors. Front Genet, 2014. 5: p. 172.
26.Shang, J.W., et al., Expression and significance of urinary microRNA in patients with chronic hepatitis B. Medicine (Baltimore), 2019. 98(37): p. e17143.
27.Juracek, J. and O. Slaby, Urinary MicroRNAs as Emerging Class of Noninvasive Biomarkers. Methods Mol Biol, 2020. 2115: p. 221-247.
28.Shenouda, S.K. and S.K. Alahari, MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev, 2009. 28(3-4): p. 369-78.
29.Yang, H., et al., MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res, 2008. 68(2): p. 425-33.
30.Pineau, P., et al., miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A, 2010. 107(1): p. 264-9.
31.Motoyama, K., et al., Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol, 2009. 34(4): p. 1069-75.
32.O'Brien, J., et al., Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne), 2018. 9: p. 402.
33.Weber, J.A., et al., The microRNA spectrum in 12 body fluids. Clin Chem, 2010. 56(11): p. 1733-41.
34.Valadi, H., et al., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 2007. 9(6): p. 654-9.
35.Xiao, Y.F., et al., microRNA detection in feces, sputum, pleural effusion and urine: novel tools for cancer screening (Review). Oncol Rep, 2013. 30(2): p. 535-44.
36.Akuma, P., O.D. Okagu, and C.C. Udenigwe, Naturally occurring exosome vesicles as potential delivery vehicle for bioactive compounds. Frontiers in Sustainable Food Systems, 2019. 3: p. 23.
37.Mlcochova, H., et al., Urinary microRNAs as a new class of noninvasive biomarkers in oncology, nephrology, and cardiology. Methods Mol Biol, 2015. 1218: p. 439-63.
38.Mall, C., et al., Stability of miRNA in human urine supports its biomarker potential. Biomark Med, 2013. 7(4): p. 623-31.
39.Wang, G., et al., Expression of miR-146a and miR-155 in the urinary sediment of systemic lupus erythematosus. Clin Rheumatol, 2012. 31(3): p. 435-40.
40.Shihana, F., et al., Urinary microRNAs as non-invasive biomarkers for toxic acute kidney injury in humans. Sci Rep, 2021. 11(1): p. 9165.
41.Iwasaki, H., et al., A novel urinary microRNA biomarker panel for detecting gastric cancer. J Gastroenterol, 2019. 54(12): p. 1061-1069.
42.Salido-Guadarrama, A.I., et al., Urinary microRNA-based signature improves accuracy of detection of clinically relevant prostate cancer within the prostate-specific antigen grey zone. Mol Med Rep, 2016. 13(6): p. 4549-60.
43.Shin, S., et al., Urinary exosome microRNA signatures as a noninvasive prognostic biomarker for prostate cancer. NPJ Genom Med, 2021. 6(1): p. 45.
44.Mahn, R., et al., Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology, 2011. 77(5): p. 1265.e9-16.
45.Xu, Y., et al., MiR-145 detection in urinary extracellular vesicles increase diagnostic efficiency of prostate cancer based on hydrostatic filtration dialysis method. Prostate, 2017. 77(10): p. 1167-1175.
46.Rodríguez, M., et al., Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol Cancer, 2017. 16(1): p. 156.
47.Payne, S.R., et al., DNA methylation biomarkers of prostate cancer: confirmation of candidates and evidence urine is the most sensitive body fluid for non-invasive detection. Prostate, 2009. 69(12): p. 1257-69.
48.Kim, M.Y., et al., Urinary exosomal microRNA profiling in intermediate-risk prostate cancer. Sci Rep, 2021. 11(1): p. 7355.
49.Batista, L., et al., Regulation of miR-200c/141 expression by intergenic DNA-looping and transcriptional read-through. Nat Commun, 2016. 7: p. 8959.
50.Gao, Y., et al., The Roles of MicroRNA-141 in Human Cancers: From Diagnosis to Treatment. Cell Physiol Biochem, 2016. 38(2): p. 427-48.
51.Ding, L., et al., miR-141 promotes colon cancer cell proliferation by inhibiting MAP2K4. Oncol Lett, 2017. 13(3): p. 1665-1671.
52.van Jaarsveld, M.T., et al., miR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells. Oncogene, 2013. 32(36): p. 4284-93.
53.Cheng, H., et al., Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One, 2011. 6(3): p. e17745.
54.Záveský, L., et al., Ascites-Derived Extracellular microRNAs as Potential Biomarkers for Ovarian Cancer. Reprod Sci, 2019. 26(4): p. 510-522.
55.Kriebel, S., et al., Analysis of tissue and serum microRNA expression in patients with upper urinary tract urothelial cancer. PLoS One, 2015. 10(1): p. e0117284.
56.Poli, G., et al., Relationship between cellular and exosomal miRNAs targeting NOD-like receptors in bladder cancer: preliminary results. Minerva Urol Nefrol, 2020. 72(2): p. 207-213.
57.Bryant, R.J., et al., Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer, 2012. 106(4): p. 768-74.
58.Paiva, R.M., et al., Urinary microRNAs expression in prostate cancer diagnosis: a systematic review. Clin Transl Oncol, 2020. 22(11): p. 2061-2073.
59.Sharma, N. and M.M. Baruah, The microRNA signatures: aberrantly expressed miRNAs in prostate cancer. Clin Transl Oncol, 2019. 21(2): p. 126-144.
60.Kumari, M., et al., miR-451 Loaded Exosomes Are Released by the Renal Cells in Response to Injury and Associated With Reduced Kidney Function in Human. Front Physiol, 2020. 11: p. 234.
61.Pan, X., R. Wang, and Z.X. Wang, The potential role of miR-451 in cancer diagnosis, prognosis, and therapy. Mol Cancer Ther, 2013. 12(7): p. 1153-62.
62.Khordadmehr, M., et al., A comprehensive review on miR-451: A promising cancer biomarker with therapeutic potential. J Cell Physiol, 2019. 234(12): p. 21716-21731.
63.Gu, Y.Q., et al., miRNA profiling reveals a potential role of milk stasis in breast carcinogenesis. Int J Mol Med, 2014. 33(5): p. 1243-9.
64.Phua, L.C., et al., Global fecal microRNA profiling in the identification of biomarkers for colorectal cancer screening among Asians. Oncol Rep, 2014. 32(1): p. 97-104.
65.Khazaei, S., et al., A novel signaling role for miR-451 in esophageal tumor microenvironment and its contribution to tumor progression. Clin Transl Oncol, 2017. 19(5): p. 633-640.
66.Xie, Z., et al., Salivary microRNAs as promising biomarkers for detection of esophageal cancer. PLoS One, 2013. 8(4): p. e57502.
67.Godlewski, J., et al., MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell, 2010. 37(5): p. 620-32.
68.Jeon, J., et al., Temporal Stability and Prognostic Biomarker Potential of the Prostate Cancer Urine miRNA Transcriptome. J Natl Cancer Inst, 2020. 112(3): p. 247-255.
69.Panigrahi, G.K., et al., Exosomal microRNA profiling to identify hypoxia-related biomarkers in prostate cancer. Oncotarget, 2018. 9(17): p. 13894-13910.
70.Moltzahn, F., et al., Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res, 2011. 71(2): p. 550-60.
71.Jiang, X., et al., miR-144/451 Promote Cell Proliferation via Targeting PTEN/AKT Pathway in Insulinomas. Endocrinology, 2015. 156(7): p. 2429-39.
72.Guerrero-Martínez, J.A. and J.C. Reyes, High expression of SMARCA4 or SMARCA2 is frequently associated with an opposite prognosis in cancer. Sci Rep, 2018. 8(1): p. 2043.
73.Botes, M., M. de Kwaadsteniet, and T.E. Cloete, Application of quantitative PCR for the detection of microorganisms in water. Anal Bioanal Chem, 2013. 405(1): p. 91-108.
74.Foj, L., et al., Exosomal and Non-Exosomal Urinary miRNAs in Prostate Cancer Detection and Prognosis. Prostate, 2017. 77(6): p. 573-583.
75.Fredsøe, J., et al., Diagnostic and Prognostic MicroRNA Biomarkers for Prostate Cancer in Cell-free Urine. Eur Urol Focus, 2018. 4(6): p. 825-833.
76.Li, Z., et al., Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients. Onco Targets Ther, 2016. 9: p. 139-48.
77.Ye, Y., et al., Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer. Oncotarget, 2017. 8(55): p. 94834-94849.
78.Mao, S., et al., Exosomal miR-141 promotes tumor angiogenesis via KLF12 in small cell lung cancer. J Exp Clin Cancer Res, 2020. 39(1): p. 193.
79.Wang, G., et al., MiR-451 suppresses the growth, migration, and invasion of prostate cancer cells by targeting macrophage migration inhibitory factor. Transl Cancer Res, 2019. 8(2): p. 647-654.
80.Liu, Y., et al., miR-451a is downregulated and targets PSMB8 in prostate cancer. Kaohsiung J Med Sci, 2020. 36(7): p. 494-500.
81.Chen, D.Q., et al., HDAC3-mediated silencing of miR-451 decreases chemosensitivity of patients with metastatic castration-resistant prostate cancer by targeting NEDD9. Ther Adv Med Oncol, 2018. 10: p. 1758835918783132.
82.Shah, S.G., et al., Establishing a correlation between RIN and A(260/280) along with the multivariate evaluation of factors affecting the quality of RNA in cryopreserved cancer bio-specimen. Cell Tissue Bank, 2019. 20(4): p. 489-499.


電子全文 電子全文(網際網路公開日期:20270727)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊