跳到主要內容

臺灣博碩士論文加值系統

(100.26.176.111) 您好!臺灣時間:2024/07/13 05:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張莉茵
研究生(外文):Li-Yin Chang
論文名稱:社群媒體意見領袖之網路口碑對臉部保養品購買意願之影響—產品涉入為中介
論文名稱(外文):The Influence of Social Media's Opinion Leaders of Electronic Word-of-Mouth on Facial Care Products Purchase Intentions - The Mediating Effect of Product Involvement
指導教授:何怡芳何怡芳引用關係
指導教授(外文):I-Fang Ho
口試委員:田正利林美榕
口試日期:2022-01-06
學位類別:碩士
校院名稱:淡江大學
系所名稱:國際企業學系碩士班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:123
中文關鍵詞:網路口碑產品涉入購買意願社群媒體意見領袖
外文關鍵詞:Electronic Word-of-MouthProduct InvolvementPurchase IntentionSocial MediaOpinion Leader
相關次數:
  • 被引用被引用:9
  • 點閱點閱:678
  • 評分評分:
  • 下載下載:253
  • 收藏至我的研究室書目清單書目收藏:2
隨著網際網路發展,根據 Data Reportal Digital in Taiwan 2021 年數據報告指出,YouTube、Facebook 及 Instagram 的使用率分別為 89.6%、89.2%及 59.5%,可見社群媒體 的發展不容小覷。在臉部保養品的市場中,消費者還常透過社群媒體意見領袖(如:IG 的 美妝 KOL、YouTuber、Dcard 美妝板板友等)的影響,來購買臉部保養品。隨著社群媒體 的使用量持續上升,以及對臉部保養品的需求與日俱增,消費者透過社群媒體上意見領袖 的影響力,來增加對產品的認識,進而提升購買意願。
基於上述研究觀點,因此本研究將網路口碑融入臉部保養品市場中,提出一個完整架構,針對臉部保養品之網路口碑的意見搜尋、意見給予、意見分享及訊息數量對購買意願 之影響,再進一步探討產品涉入在網路口碑及購買意願之間是否具有中介效果。
本研究以社群媒體瀏覽臉部保養品之使用者為研究對象,以採用 SPSS 22.0 為資料分析工具,共回收 339 份有效問卷,並透過迴歸分析驗證,得以下結論:
一、網路口碑對產品涉入具有正向影響
二、網路口碑對購買意願具有正向影響
三、產品涉入對購買意願具有正向影響
四、產品涉入在網路口碑與購買意願之間具有部分中介效果
With the development of the Internet, according to the 2021 Data Reportal Digital in Taiwan, the usage rates of YouTube, Facebook and Instagram are 89.6%, 89.2% and 59.5% respectively, which shows that the development of social media cannot be underestimated. In the face care product market, consumers often purchase face care products through the influence of social media opinion leaders (such as IG's beauty KOL, YouTuber, Dcard beauty class, etc.). As the use of social media continues to rise and the demand for facial care products continues to increase, consumers use the influence of opinion leaders on social media to increase their awareness of products, thereby increasing their willingness to buy.

Based on the above research viewpoints, this study integrates electronic Word-of-Mouth (eWOM) into the facial skin care products market, and proposes a complete framework to address the impact of eWOM opinion search, opinion giving, opinion sharing and the number of messages on purchase intention of facial skin care products. Influence, and then further explore whether product involvement has a mediating effect between online word of mouth and purchase intention.

In this study, users who browse facial skin care products on social media were selected as the research object, and used SPSS 22.0 as the data analysis tool. A total of 339 effective questionnaires were collected and verified by regression analysis. The following were the research results:
1. electronic Word-of-Mouth has a positive impact on Product Involvement
2. electronic Word-of-Mouth has a positive impact on Purchase Intention
3. Product Involvement has a positive impact on Purchase Intention
4. Product involvement has a partial mediating effect between electronic word-of-mouth and Purchase Intention
目錄 I
表目錄 III
圖目錄 V
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 3
第三節 研究目的 7
第四節 研究流程 8
第二章 文獻探討 9
第一節 臉部保養品定義及市場趨勢 9
第二節 社群媒體 13
第三節 網路口碑 22
第四節 產品涉入 26
第五節 購買意願 32
第六節 網路口碑、產品涉入及購買意願之相互關係 35
第三章 研究方法 38
第一節 研究架構 38
第二節 研究假設 38
第三節 研究變數操作定義與衡量 41
第四節 研究設計 46
第五節 資料分析方法 48
第四章 資料分析與結果 51
第一節 樣本結構分析 51
第二節 敘述性統計分析 78
第三節 信度分析 84
第四節 相關分析 85
第五節 因素分析 86
第六節 迴歸分析 87
第七節 研究假設結果 97
第五章 研究結論與建議 98
第一節 研究結論 98
第二節 研究建議 102
第三節 研究限制 106
參考文獻 107
一、英文部分 107
二、中文部分 113
附錄 正式問卷 114

表目錄
表 1-1 保養品觸及率排名 4
表 2-1 WEB 1.0 與 2.0 比較 14
表 2-2 INSTAGRAM 主要功能 18
表 2-3 傳統口碑定義彙整表 22
表 2-4 網路口碑定義彙整表 24
表 2-5 傳統口碑與網路口碑之比較 25
表 2-6 產品涉入定義彙整表 26
表 2-7 RPII 量表 29
表 3-1 網路口碑衡量構面與問項 41
表 3-2 產品涉入衡量構面與問項 43
表 3-3 購買意願衡量構面與問項 45
表 3-4 問卷回收情形 47
表 3-5 CRONBACH'S Α 係數判斷標準 49
表 3-6 KMO 適量值參考標準 49
表 4-1 整體有效樣本之性別分布情形 51
表 4-2 整體有效樣本之年齡分佈情形 52
表 4-3 整體有效樣本之教育程度分佈情形 53
表 4-4 整體有效樣本之職業分佈情形 54
表 4-5 整體有效樣本之每月可支配所得分佈情形 55
表 4-6 受訪者是否透過美妝社群瀏覽臉部保養品分佈情形 56
表 4-7 受訪者不會透過美妝社群瀏覽臉部保養品的原因分佈情形 57
表 4-8 每週使用社群媒體平均次數分佈情形 58
表 4-9 每次使用社群媒體平均時數分佈情形 58
表 4-10 每週使用美妝社群瀏覽臉部保養品分佈情形 59
表 4-11 每次使用美妝社群瀏覽臉部保養品分佈情形 59
表 4-12 最常瀏覽的美妝社群分佈情形 60
表 4-13 最常觀看的美妝意見領袖分佈情形 61
表 4-14 實際受到美妝社群影響購買臉部保養品分佈情形 63
表 4-15 實際受到美妝意見領袖(YOUTUBER)購買臉部保養品分佈情形 64
表 4-16 實際受到 INSTAGRAM 美妝意見購買臉部保養品分佈情形 65
表 4-17 實際受到 FACEBOOK 美妝意見領袖購買臉部保養品分佈情形 67
表 4-18 實際受到小紅書美妝意見領袖(美妝博主)實際購買臉部保養品分佈情形 68
表 4-19 購買臉部保養品的頻率分佈情形 68
表 4-20 每次平均購買臉部保養品花費金額分佈情形 69
表 4-21 平常購買臉部保養品通路分佈情形 70
表 4-22 受到意見領袖購買的臉部保養品種類分佈情形 70
表 4-23 受到意見領袖購買開架臉部保養品分佈情形 71
表 4-24 受意見領袖購買開架臉部保養品種類分佈情形 72
表 4-25 受意見領袖購買專櫃臉部保養品分佈情形 73
表 4-26 受到意見領袖購買專櫃臉部保養品種類分佈情形 75
表 4-27 受意見領袖購買醫美臉部保養品分佈情形 76
表 4-28 受到意見領袖購買醫美臉部保養品種類分佈情形 77
表 4-29 網路口碑之意見搜尋統計分析表 78
表 4-30 網路口碑之意見給予統計分析表 79
表 4-31 網路口碑之意見分享統計分析表 80
表 4-32 網路口碑之訊息數量統計分析表 81
表 4-33 產品涉入統計分析表 82
表 4-34 購買意願統計分析表 83
表 4-35 各構面之信度分析整理 84
表 4-36 整體有效樣本相關分析表 85
表 4-37 各構面之因素分析 86
表 4-38 網路口碑意見搜尋對產品涉入之迴歸分析 87
表 4-39 網路口碑意見給予對產品涉入之迴歸分析 88
表 4-40 網路口碑意見分享對產品涉入之迴歸分析 88
表 4-41 網路口碑訊息數量對產品涉入之迴歸分析 88
表 4-42 網路口碑意見搜尋對購買意願之迴歸分析 89
表 4-43 網路口碑意見給予對購買意願之迴歸分析 89
表 4-44 網路口碑意見分享對購買意願之迴歸分析 90
表 4-45 網路口碑訊息數量對購買意願之迴歸分析 90
表 4-46 產品涉入對購買意願之迴歸分析 91
表 4-47 網路口碑意見搜尋、產品涉入對購買意願迴歸分析表 93
表 4-48 網路口碑意見給予、產品涉入對購買意願迴歸分析表 94
表 4-49 網路口碑意見分享、產品涉入對購買意願迴歸分析表 95
表 4-50 網路口碑訊息數量、產品涉入對購買意願迴歸分析表 96
表 4-51 研究假設與結果彙整表 97

圖目錄
圖 1-1 2017-2021 社群媒體平台使用率 2
圖 1-2 「保養」關鍵字搜尋次數 3
圖 1-3 美妝意見領袖排行 6
圖 1-4 女性上班族最關心意見領袖 6
圖 1-5 研究流程圖 8
圖 2-1 兩階段傳播模型 19
圖 2-2 涉入概念架構 30
圖 2-3 消費者購買決策流程 32
圖 3-1 研究假設架構圖 38
英文部分
1. Asur, S., & Huberman, B. A. (2010). Predicting the Future with Social Media 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.
2. Andrews, J. C., Durvasula, S., & Akhter, S. H. (1990). A Framework for Conceptualizing and Measuring the Involvement Construct in Advertising
Research. Journal of Advertising, 19(4), 27–40. http://www.jstor.org/stable/4188777
3. Arndt, J. (1967). Role of product-related conversations in the diffusion of a new product. Journal of Marketing Research, 291-295.
4. Arnaud De Bruyn, & Gary L. Lilien (2008). A multi-stage model of word of mouth influence through viral marketing. Intern. J. of Research in Marketing, 25, 151–163.
5. Bansal, Harvis S. & Peter A. Voyer (2000), ''Word-of-mouth processes within a services purchase decision context'', Journal of Service Research, Vol. 3, No.2, p166.
6. Beatty, S. E., & Smith, S. M. (1987). External Search Effort: An Investigation Across Several Product Categories. Journal of Consumer Research, 14(1), 83–95. http://www.jstor.org/stable/2489245
7. Brown, J.J. & Reingen, P.H. (1987) Social Ties and Word-of-Mouth Referral Behavior. Journal of Consumer Research, 14, 350-362.
8. Boyd, d. m., & Ellison, N. B. (2007). Social Network Sites: Definition, History, and Scholarship. Journal of Computer-Mediated Communication, 13(1), 210-230. https://doi.org/10.1111/j.1083-6101.2007.00393.x
9. Bone, P. F. (1995). Word-of-Mouth Effects on Short-term and Long-term Product Judgments. Journal of Business Research, 32(3), 213–223.

107
10. Buttle, F. A. (1998). Word of mouth: understanding and managing referral marketing. Journal of strategic marketing, 6(3), 241-254.
11. Blackwell, Roger D., Paul W. Miniard & James F. Engel, (2001), Consumer Behavior, Ninth Edition, Publisher: Ohio, Mike Roche.
12. Cuieford, J. P. (1965). Fundamental Statistics in Psychology and Education, 4th (Ed), NY McGraw Hill.
13. Chan, K. K., & Misra, S. (1990). Characteristics of the Opinion Leader: A New Dimension. Journal of Advertising, 19(3), 53-60.
14. Cheung, C. M. K., & Thadani, D. R. (2012). The impact of electronic word-of-mouth communication: A literature analysis and integrative model. Decision Support Systems, 54(1), 461-470. https://doi.org/10.1016/j.dss.2012.06.008
15. Darcy DiNucci (1999). Fragmented Future.Print. 53(4), 2-32.
16. Fan, Y. W., & Miao, Y. F. (2012). Effect of electronic word-of-mouth on consumer
purchase intention: The perspective of gender differences. International Journal of
Electronic Business Management, 10(3), 175.
17. Flynn, L. R., Goldsmith, R. E., & Eastman, J. K. (1996). Opinion Leaders and
Opinion Seekers: Two New Measurement Scales. Journal of the Academy of
Marketing Science, 24(2), 137-147. https://doi.org/10.1177/0092070396242004
18. Gelb, B. D., & Sundaram, S. (2002). Adapting to ―word of mouseǁ. Business
Horizons, 45(4), 21-25.
19. Giese, J. L., Spangenberg, E. R., & Crowley, A. E. (1996). Effects of product-specific
word-of-mouth communication on product category involvement. Marketing Letters,
7(2), 187-199.
20. Gupta, P., & Harris, J. (2010). How e-WOM recommendations influence product
consideration and quality of choice: A motivation to process information perspective. Journal of Business Research, 63(9-10), 1041-1049.
21. Gu,B.,Park,J.,&Konana,P.(2012).ResearchNote:TheImpactofExternalWord-of- Mouth Sources on Retailer Sales of High-Involvement Products. Information Systems Research, 23(1), 182–196. http://www.jstor.org/stable/23207880
22. Herr, P. M., Kardes, F. R., & Kim, J. (1991). Effects of Word-of-Mouth and Product- Attribute Information on Persuasion: An Accessibility-Diagnosticity Perspective. Journal of Consumer Research, 17(4), 454-462. https://doi.org/10.1086/208570
23. Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the Internet? Journal of Interactive Marketing, 18(1), 38-52.
24. Houston, M. J., & Rothschild, M. L. (1978). Conceptual and methodological perspectives on involvement. In S. C. Jain (Ed.), Research frontiers in marketing: Dialogues and direction . 184- 187). Chicago: American Marketing Association.
25. Jalilvand, M. R., Esfahani, S. S., & Samiei, N. (2011). Electronic word-of-mouth: Challenges and opportunities. Procedia Computer Science, 3, 42-46.
26. Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1), 59-68. https://doi.org/10.1016/j.bushor.2009.09.003
27. Katz, E., & Lazarsfeld, P. (1955). Personal Influence Free Press, New York.
28. Kim, A. J., & Ko, E. (2012). Do social media marketing activities enhance customer
equity? An empirical study of luxury fashion brand. Journal of Business Research,
65(10), 1480-1486. https://doi.org/10.1016/j.jbusres.2011.10.014
29. Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and
opportunities of Social Media. Business Horizons, 53(1), 59-68. https://doi.org/10.1016/j.bushor.2009.09.003
30. Kim, A. J., & Ko, E. (2012). Do social media marketing activities enhance customer equity? An empirical study of luxury fashion brand. Journal of Business
Research, 65(10), 1480-1486.
31. Kim, D. J., Ferrin, D. L., & Rao, H. R. (2009). Trust and satisfaction, two stepping stones for successful e-commerce relationships: A longitudinal Exploration. Information Systems Research, 20(2), 237-257.
32. Laurent, Gilles & Jean-Noel Kapferer (1985),''Measuring Consumer InvolvementProfile'', Journal of Marketing Research, Vol.22,41, February
33. Lau, G. T., & Ng, S. (2001). Individual and situational factors influencing negative word-of-mouth behaviour: Revue canadienne des sciences de
l'administration. Canadian Journal of Administrative Sciences, 18(3), 163-178.
34. Lee, M., & Youn, S. (2009). Electronic word of mouth (eWOM): How eWOM platforms influence consumer product judgement. International Journal of Advertising: The Quarterly Review of Marketing Communications, 28(3), 473– 499. https://doi.org/10.2501/S0265048709200709
35. Litvin, Stephen & Goldsmith, Ronald & Pan, Bing. (2008). Electronic Word-of- Mouth in Hospitality and Tourism Management. Tourism Management. 29. 458-468.
36. Morwitz, V. G., & Schmittlein, D. (1992). Using segmentation to improve sales forecasts based on purchase intent: Which intenders actually buy? Journal of Marketing Research, 29(4), 391–405.
37. Nunnally, J. C., & Bernstein, I. H. (1978). Psychometric theory.
38. O’Reilly, T. (2007). What Is Web 2.0: Design Patterns and Business Models for the
Next Generation of Software.
39. Park, D.-H., Lee, J., & Han, I. (2007). The Effect of On-Line Consumer Reviews on
Consumer Purchasing Intention: The Moderating Role of Involvement. International Journal of Electronic Commerce, 11(4), 125-148.
40. Park, D.-H., & Lee, J. (2008). eWOM overload and its effect on consumer behavioral intention depending on consumer involvement. Electronic Commerce Research and Applications, 7(4), 386-398. https://doi.org/10.1016/j.elerap.2007.11.004
41. Peter H. Reingen (1987) ,"A Word-Of-Mouth Network", in NA - Advances in Consumer Research Volume 14, eds. Melanie Wallendorf and Paul Anderson, Provo, UT : Association for Consumer Research, Pages: 213-217.
42. Reingen, Peter H. 1987. “A Word-of-Mouth Network.” Advances in Consumer Research 14: 213 – 217.
43. Rosario, A. B. (2016). The effect of electronic word of mouth on sales: A meta- analytic review of platform, product, and metric factors. Journal of marketing research : JMR, 53(3).
44. Rogers, E. (1983). Diffusion of Innovations. 4th Edition. New York: Free Press.
45. Sherif, M., & Cantril, H. (1947). The psychology of ego-involvements: Social attitudes
and identifications. John Wiley & Sons Inc.
46. Schiffman, L. G., & Kanuk, L. L. (2000). Consumer behavior, 7th. NY: Prentice Hall,
15-36.
47. Selnes, F. (1993). An examination of the effect of product performance on brand
reputation satisfaction andloyalty. European journal of marketing, 27(9).
48. Silverman, G. (2001). The Secrets of Word-of-Mouth Marketing: How to Trigger
Exponential Sales Through Runaway Word-of-Mouth. New York: American Market-
ing Association.
49. Sia, C. L., Lim, K. H., Leung, K., Lee, M. K., Huang, W. W., & Benbasat, I. (2009). Web strategies to promote internet shopping: is cultural-customization needed?. Mis Quarterly, 491-512.
50. Trusov,M.,Bucklin,R.E.,&Pauwels,K.(2009).EffectsofWord-of-Mouthversus Traditional Marketing: Findings from an Internet Social Networking Site. Journal of Marketing, 73(5), 90–102. http://www.jstor.org/stable/20619048
51. Warrington, P., & Shim, S.(2000). An Empirical Investigation of the Relationship between Product Involvement and Brand Commitment. Psychology & Marketing, 17(9), 761-782.
52. Westbrook, R. A. (1987). Product/Consumption-Based Affective Responses and Postpurchase Processes. Journal of Marketing Research, 24(3), 258–270. https://doi.org/10.1177/002224378702400302
53. Weeks, B. E., Ardèvol-Abreu, A., & Gil de Zúñiga, H. (2017). Online influence? Social media use, opinion leadership, and political persuasion. International Journal of Public Opinion Research, 29(2), 214–239.
54. Xu, Q. (2014). Should I trust him? The effects of reviewer profile characteristics on eWOM credibility. Computers in Human Behavior, 33, 136-144.
55. Zaichkowsky, J. L. (1985), Measuring the Involvement Construct, Journal of Consumer Research, Vol. 12, pp. 341-352.
56. Zaichkowsky, J. L., (1986) Conceptualizing Involvement. Journal of Advertising, Vol.15 , 4-15.
57. Zeithaml, V. A.(1988), “Consumer Perception of Price, Quality and Value: A Means- end Model and Synthesis of Evidence,” Journal of Marketing, 52, pp.2-22.

中文部分
1. 楊學成、錢明輝(2006),網上口碑對消費者決策的影響及啟示,《當代經濟管
理》,第 28 卷,第 3 期,頁 27-31。
2. 孔方正、張超銘(2012)。消費者產品涉入、產品知識對購買意願之影響-以
替代能源車為例。休閒與社會研究,(5),37-50。doi:10.29947/LSR.201206.0003
3. 榮泰生(1999)。消費者行為。臺北市:五南圖書出版股份有限公司。
4. 黃美文(1997),在電子商務環境下進行網路購物意願之研究:以購買涉入、參考群體與消費者特性探討。國立屏東科技大學資訊管理研究所未出版之碩士論文
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊