跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/19 14:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林冠儀
研究生(外文):Kuan-Yi Lin
論文名稱:FPGA驗證整數運算: 以DC/DC轉換器為例
論文名稱(外文):Verification of Integer Arithmetic in FPGA: DC/DC Converter as an Example
指導教授:劉寅春
指導教授(外文):Peter Liu
口試委員:邱謙松江東昇李揚漢李世安
口試日期:2022-06-22
學位類別:博士
校院名稱:淡江大學
系所名稱:電機工程學系博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:64
中文關鍵詞:整數運算模糊控制器硬體實現直流電壓轉換器
外文關鍵詞:Integer arithmericFuzzy controlHardware implementationDC/DC converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:1
隨著使用者需求提升系統運算日漸複雜,而過去使用軟體單晶片實現控
制器及演算法的模式已不足負荷龐大運算量,因此硬體實現演算法及控
制器逐漸成為系統開發的主要趨勢。大部分的演算法及控制器均以數學
模型為運算基底,因此浮點運算成為了實現過程中不可或缺的部分,在
浮點運算實現方面,IEEE 754 格式、定點數格式及查表法為最常見的
實現方式。本論文不僅透過參考文獻分析上述之實現方式,亦提出一個
容易實現及有效的整數運算,該運算乃將系統中的數值放大一百萬倍,
藉此達到逼近IEEE 754 單精格式的精準度。
在實驗驗證方面,本論文透過提出之整數運算格式實現模糊控制
器,並透過QuartusII vector waveform timing simulation 驗證每一
個運算模組,在運算模組驗證後,本論文將其應用於直流降壓轉換器及
直流升壓轉換器,直流電壓轉換器的實驗結果顯示本論文所提出之運算
方式可有效實現控制器所需之運算。
Along user requirements become more and more complex and the operating
loading will make software implementation of micro control unit overloading.
Therefore, algorithm and controller hardware implementation is becoming a
trend. Majority algorithm and controller are constructed by mathematical
models. While implementing the mathematical models, floating point process
in hardware will be necessary. Generally, IEEE 754 format, fixed point format
and lookup table are the methods to implement floating point. This thesis
not only analysis each implementation method by literature review and but
also propose an efficiency integer implementation method. In this method each
value in the system will be scaling one million, which can make the precision
close to IEEE 754 single precision.
In experimental result, this thesis constructs a fuzzy controller by
proposed method and verifying each circuit module by Quartus II vector waveform
timing simulation. After the calculation verification, this thesis applies
the fuzzy controller to control DC/DC buck converter and DC/DC boost
converter. The experimental results show that the proposed method can realize
controller efficiency.
Contents
Abstract in Chinese I
Abstract in English II
Table of Contents III
List of Figures V
List of Tables VIII
Nomenclature 1
1 INTRODUCTION 3
1.1 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Fuzzy Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Micro Control Unit(MCU) . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Field Programmable Gate Array(FPGA) . . . . . . . . . . . . . . . . . 14
1.6 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2 Problem Statement 23
3 Software and Hardware Implementation 24
3.1 Software Implementation on MCU . . . . . . . . . . . . . . . . . . . . . 24
3.2 Hardware Implementation on FPGA . . . . . . . . . . . . . . . . . . . 25
3.3 Implementation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Integer Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4 Application on DC-DC Converter 38
4.1 Fuzzy Controller to DC-DC Buck Converter . . . . . . . . . . . . . . . 38
4.1.1 Fuzzy Controller design . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Hardware Implementation and simulation results . . . . . . . . 41
4.1.3 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Fuzzy Controller Control DC-DC Boost Converter . . . . . . . . . . . . 55
4.2.1 Fuzzy Controller Design . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . 57
5 Conclusions 60
Bibliography 61
List of Figures
1.1 Fuzzy operate mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Pending type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Linear type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 General Bell type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Triangle type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Trapwzoidal type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Gaussian type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.8 Buck structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.9 Buck switch turn on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.10 Buck switch turn off. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.11 Boost structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.12 Boost switch turn on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.13 Boost switch turn off.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.14 MCU structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.15 FPGA structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.16 IEEE754 single-precision format. . . . . . . . . . . . . . . . . . . . . . 16
1.17 IEEE754 single precision format example. . . . . . . . . . . . . . . . . 17
1.18 Binary fixed point format. . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.19 Binary fixed point format example. . . . . . . . . . . . . . . . . . . . . 18
1.20 Look up table example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Arduino uno development board. . . . . . . . . . . . . . . . . . . . . . 25
3.2 Terasic DE0 Nano development board. . . . . . . . . . . . . . . . . . . 27
3.3 Remove extra scaling factor case. . . . . . . . . . . . . . . . . . . . . . 28
3.4 Addition operator circuit design. . . . . . . . . . . . . . . . . . . . . . 29
3.5 Subtraction operator circuit design. . . . . . . . . . . . . . . . . . . . . 30
3.6 Multiply operator circuit design. . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Divisor operator circuit design. . . . . . . . . . . . . . . . . . . . . . . 31
3.8 Performance testing sample. . . . . . . . . . . . . . . . . . . . . . . . . 33
3.9 IEEE754 single precision gate counts. . . . . . . . . . . . . . . . . . . . 33
3.10 Binary fixed point gate counts. . . . . . . . . . . . . . . . . . . . . . . 34
3.11 Integer arithmetic gate counts. . . . . . . . . . . . . . . . . . . . . . . . 34
3.12 IEEE 754 single precision calculation result. . . . . . . . . . . . . . . . 35
3.13 Binary fixed point calculation result. . . . . . . . . . . . . . . . . . . . 36
3.14 Integer arithmetic calculation result. . . . . . . . . . . . . . . . . . . . 37
4.1 Buck converter experiment circuit. . . . . . . . . . . . . . . . . . . . . 38
4.2 Buck converter control system structure. . . . . . . . . . . . . . . . . . 39
4.3 Fuzzy interface membership function to fuzzy input. . . . . . . . . . . . 40
4.4 Fuzzy interface membership function to fuzzy output. . . . . . . . . . . 41
4.5 Fuzzy control DC-DC buck converter circuit structure. . . . . . . . . . 43
4.6 Main structure of fuzzy controller. . . . . . . . . . . . . . . . . . . . . . 44
4.7 Error module design structure. . . . . . . . . . . . . . . . . . . . . . . . 46
4.8 Error module simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.9 Membership function structure. . . . . . . . . . . . . . . . . . . . . . . 46
4.10 Membership function NB simulation. . . . . . . . . . . . . . . . . . . . 47
4.11 Membership function NMB simulation. . . . . . . . . . . . . . . . . . . 47
4.12 Membership function NMS simulation. . . . . . . . . . . . . . . . . . . 47
4.13 Membership function NS simulation. . . . . . . . . . . . . . . . . . . . 48
4.14 Membership function Z simulation. . . . . . . . . . . . . . . . . . . . . 48
4.15 Membership function PS simulation. . . . . . . . . . . . . . . . . . . . 48
4.16 Membership function PMS simulation. . . . . . . . . . . . . . . . . . . 49
4.17 Membership function PMP simulation. . . . . . . . . . . . . . . . . . . 49
4.18 Membership function PB simulation. . . . . . . . . . . . . . . . . . . . 49
4.19 Defuzzication module structure. . . . . . . . . . . . . . . . . . . . . . 50
4.20 Defuzzication simulation. . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.21 Arduino fuzzy control implementation on DC-DC buck converter. . . . 52
4.22 Hardware fuzzy control implementation on DC-DC buck converter. . . 53
4.23 Hardware fuzzy control implementation on DC-DC buck converter in
smaller scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.24 Boost experiment circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.25 DC/DC boost converter maximum voltage output duty ration at different load resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.26 Membershipt function of DC/DC boost fuzzy control duty ratio. . . . . 57
4.27 Hardware fuzzy control implementation on DC-DC boost converter in
goal of 10V to 20V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.28 Hardware fuzzy control implementation on DC-DC boost converter in
15V to 20V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
List of Tables
1.1 Fuzzy table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Compare of each implementation method . . . . . . . . . . . . . . . . . 21
3.1 Arduino Uno specications . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Terasic DE0 Nano specications . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Arithmetic simulation summerize. . . . . . . . . . . . . . . . . . . . . . 37
4.1 DC-DC buck converter fuzzy table . . . . . . . . . . . . . . . . . . . . 40
4.2 DC-DC boost converter fuzzy table . . . . . . . . . . . . . . . . . . . . 57
[1] D. Goldberg, \What every computer scientist should know about
oating-point
arithmetic," ACM Computing Surveys (CSUR), vol. 23, no. 1, pp. 5{48, 1991.
[2] A. Sasidharan and P. Nagarajan, \Vhdl implementation of ieee 754
oating point
unit," in International Conference on Information Communication and Embedded
Systems (ICICES2014), 2014, pp. 1{5.
[3] J. Wadgaonkar, K. Bhole, and P. Singh, \Floating point fpga architecture of pid
controller," in 2015 International Conference on Industrial Instrumentation and
Control (ICIC), 2015, pp. 1259{1263.
[4] J.-S. Kim, H.-W. Jeon, and S. Jung, \Hardware implementation of nonlinear pid
controller with fpga based on
oating point operation for 6-dof manipulator robot
arm," in 2007 International Conference on Control, Automation and Systems,
2007, pp. 1066{1071.
[5] S. Mondal and P. Chattapadhyay, \Fuzzy vs. neuro-fuzzy: Implementation on the
recongurable fpga system," in 2015 International Conference on Energy, Power
and Environment: Towards Sustainable Growth (ICEPE), 2015, pp. 1{5.
[6] Q. Li, X. Zhang, J. Xiong, W.-M. Hwu, and D. Chen, \Ecient methods for
mapping neural machine translator on fpgas," IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 7, pp. 1866{1877, 2021.
[7] L. Jing-kui, \A fast fuzzy stator condition monitoring algorithm using fpga," in
2011 IEEE 3rd International Conference on Communication Software and Net-
works, 2011, pp. 267{272.
[8] H. Xiao, K. Li, and M. Zhu, \Fpga-based scalable and highly concurrent convo-
lutional neural network acceleration," in 2021 IEEE International Conference on
Power Electronics, Computer Applications (ICPECA), 2021, pp. 367{370.
[9] T. V. Huynh, \Deep neural network accelerator based on fpga," in 2017 4th
NAFOSTED Conference on Information and Computer Science, 2017, pp. 254{
257.
[10] M. I. Iamaev and S. P. Shipitsin, \Performance comparison of fpga-based convolu-
tional neural networks by internal representations," in 2020 IEEE Conference of
Russian Young Researchers in Electrical and Electronic Engineering (EIConRus),
2020, pp. 1814{1817.
[11] Y. Xu, K. Shuang, S. Jiang, and X. Wu, \Fpga implementation of a best-precision
xed-point digital pid controller," in 2009 International Conference on Measuring
Technology and Mechatronics Automation, vol. 3, 2009, pp. 384{387.
[12] A. AL-GIZI, B. AL-RAWE, M. AL-SAADI, and A. CRACIUNESCU, \Step by
step fpga-based implementation of mppt fuzzy controller for pv systems," in
2019 11th International Symposium on Advanced Topics in Electrical Engineering
(ATEE), 2019, pp. 1{6.
[13] S. Gdaim, A. Mtibaa, and M. F. Mimouni, \Design and experimental implemen-
tation of dtc of an induction machine based on fuzzy logic control on fpga," IEEE
Transactions on Fuzzy Systems, vol. 23, no. 3, pp. 644{655, 2015.
[14] R. Solovyev, A. Kustov, D. Telpukhov, V. Rukhlov, and A. Kalinin, \Fixed-
point convolutional neural network for real-time video processing in FPGA," in
2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic
Engineering (EIConRus). IEEE, jan 2019.
[15] S. Ivanov, S. Stankov, and T. Nenov, \Fpga based neural networks for characters
recognition," in 2018 20th International Symposium on Electrical Apparatus and
Technologies (SIELA), 2018, pp. 1{3.
[16] H. Liu, A. Panahi, D. Andrews, and A. Nelson, \An fpga-based upper-limb rehabil-
itation device for gesture recognition and motion evaluation using multi-task recur-
rent neural networks," in 2020 International Conference on Field-Programmable
Technology (ICFPT), 2020, pp. 296{297.
[17] Q. Liu, T. Liang, Z. Huang, and V. Dinavahi, \Real-time fpga-based hardware
neural network for fault detection and isolation in more electric aircraft," IEEE
Access, vol. 7, pp. 159 831{159 841, 2019.
[18] K. Sun, M. Koch, Z.Wang, S. Jovanovic, H. Rabah, and S. Simon, \An fpga-based
residual recurrent neural network for real-time video super-resolution," IEEE
Transactions on Circuits and Systems for Video Technology, vol. 32, no. 4, pp.
1739{1750, 2022.
[19] A. Sanchez, A. de Castro, and J. Garrido, \Parametrizable xed-point arithmetic
for hil with small simulation steps," IEEE Journal of Emerging and Selected Topics
in Power Electronics, vol. 7, no. 4, pp. 2467{2475, 2019.
[20] P. Dondon, J. Carvalho, R. Gardere, P. Lahalle, G. Tsenov, and V. Mladenov, \Im-
plementation of a feed-forward articial neural network in vhdl on fpga," in 12th
Symposium on Neural Network Applications in Electrical Engineering (NEUREL),
2014, pp. 37{40.
[21] D. L. N. Hettiarachchi, V. S. P. Davuluru, and E. J. Balster, \Integer vs.
oating-
point processing on modern fpga technology," in 2020 10th Annual Computing
and Communication Workshop and Conference (CCWC), 2020, pp. 0606{0612.
[22] M. Wang, S. Rasoulinezhad, P. H. Leong, and H. K.-H. So, \Niti: Training integer
neural networks using integer-only arithmetic," IEEE Transactions on Parallel and
Distributed Systems, pp. 1{1, 2022.
[23] T. Matsui, T. Oda, N. Saito, A. Hirata, M. Hirota, and K. Katayama, \Fpga
implementation of a fuzzy inference based quadrotor attitude control system," in
2021 IEEE 10th Global Conference on Consumer Electronics (GCCE), 2021, pp.
691{692.
[24] C.-F. Juang and C.-Y. Chen, \An interval type-2 neural fuzzy chip with on-chip
incremental learning ability for time-varying data sequence prediction and system
control," IEEE Transactions on Neural Networks and Learning Systems, vol. 25,
no. 1, pp. 216{228, 2014.
[25] Y. Kamina, K. Iwai, T. Matsubara, and T. Kurokawa, \A translator from fdl to
systemverilog for fpga implementation of fuzzy inference," in 2020 Eighth Interna-
tional Symposium on Computing and Networking Workshops (CANDARW), 2020,
pp. 87{92.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top