|
REFERENCE
1.Dobrzański, L.A., L.B. Dobrzański, A.D. Dobrzańska-Danikiewicz, and J. Dobrzańska, The Concept of Sustainable Development of Modern Dentistry. Processes, 2020 2.Brånemark, P.I., Osseointegration and its experimental background. J Prosthet Dent, 1983 3.Meyer, J., Census 2000 Data on Aging, in Census 2000 Brief. 2001. 4.agency, C.n.s., Health Promotion Survey Canada. Statistics Canada, 1990, record number 3828. July 14, 2007 5.Schwartz, N.L., L.D. Whitsett, T.G. Berry, and J.L. Stewart, Unserviceable crowns and fixed partial dentures: life-span and causes for loss of serviceability. J Am Dent Assoc, 1970 6.Goodacre, C.J., G. Bernal, K. Rungcharassaeng, and J.Y. Kan, Clinical complications in fixed prosthodontics. J Prosthet Dent, 2003 7.Wetherell, J.D. and R.J. Smales, Partial denture failures: a long-term clinical survey. J Dent, 1980 8.Vermeulen, A.H., H.M. Keltjens, M.A. van't Hof, and A.F. Kayser, Ten-year evaluation of removable partial dentures: survival rates based on retreatment, not wearing and replacement. J Prosthet Dent, 1996 9.Carlsson, G.E., B. Hedegård, and K.K. Koivumaa, Studies in partial dental prosthesis. IV. Final results of a 4-year longitudinal investigation of dentogingivally supported partial dentures. Acta Odontol Scand, 1965 10.Fiske, J., D.M. Davis, C. Frances, and S. Gelbier, The emotional effects of tooth loss in edentulous people. Br Dent J, 1998 11.Zarb, G.A. and A. Schmitt, The edentulous predicament. I: A prospective study of the effectiveness of implant-supported fixed prostheses. J Am Dent Assoc, 1996 12.Sun, X., J.J. Zhai, J. Liao, M.H. Teng, A. Tian, and X. Liang, Masticatory efficiency and oral health-related quality of life with implant-retained mandibular overdentures. Saudi Med J, 2014 13.Rocha, C.O.M., D. Longhini, R.P. Pereira, A.L.O. Lima, F.S.S. Bonafé, and J.N. Arioli Filho, Masticatory efficiency in complete denture and single implant-retained mandibular overdenture wearers with different occlusion schemes: A randomized clinical trial. J Prosthet Dent, 2021 14.Jasser, E., Z. Salami, F. El Hage, J. Makzoumé, and P.J. Boulos, Masticatory Efficiency in Implant-Supported Fixed Complete Dentures Compared with Conventional Dentures: A Randomized Clinical Trial by Color-Mixing Analysis Test. Int J Oral Maxillofac Implants, 2020 15.Brånemark, P.I., R. Adell, U. Breine, B.O. Hansson, J. Lindström, and A. Ohlsson, Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg, 1969 16.Adell, R., U. Lekholm, B. Rockler, and P.I. Brånemark, A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg, 1981 17.Wang, T., L. Wang, Q. Lu, and Z. Fan, Changes in the esthetic, physical, and biological properties of a titanium alloy abutment treated by anodic oxidation. J Prosthet Dent, 2019 18.Thoma, D.S., A. Ioannidis, E. Cathomen, C.H. Hämmerle, J. Hüsler, and R.E. Jung, Discoloration of the Peri-implant Mucosa Caused by Zirconia and Titanium Implants. Int J Periodontics Restorative Dent, 2016 19.Kim, A., S.D. Campbell, M.A. Viana, and K.L. Knoernschild, Abutment Material Effect on Peri-implant Soft Tissue Color and Perceived Esthetics. J Prosthodont, 2016 20.Vagkopoulou, T., S.O. Koutayas, P. Koidis, and J.R. Strub, Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic. Eur J Esthet Dent, 2009 21.Wang, H., M.N. Aboushelib, and A.J. Feilzer, Strength influencing variables on CAD/CAM zirconia frameworks. Dent Mater, 2008 22.Gahlert, M., T. Gudehus, S. Eichhorn, E. Steinhauser, H. Kniha, and W. Erhardt, Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs. Clin Oral Implants Res, 2007 23.Petrie, T.A., C.D. Reyes, K.L. Burns, and A.J. García, Simple application of fibronectin-mimetic coating enhances osseointegration of titanium implants. J Cell Mol Med, 2009 24.Gao, X., et al., Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering. Int J Nanomedicine, 2015 25.Albertini, M., et al., Advances in surfaces and osseointegration in implantology. Biomimetic surfaces. Med Oral Patol Oral Cir Bucal, 2015 26.Egusa, H., N. Ko, T. Shimazu, and H. Yatani, Suspected association of an allergic reaction with titanium dental implants: a clinical report. J Prosthet Dent, 2008 27.Koth, D.L., R.V. McKinney, D.E. Steflik, and Q.B. Davis, Clinical and statistical analyses of human clinical trials with the single crystal aluminum oxide endosteal dental implant: five-year results. J Prosthet Dent, 1988 28.Hannink, R.H.J., P.M. Kelly, and B.C. Muddle, Transformation Toughening in Zirconia-Containing Ceramics. Journal of the American Ceramic Society, 2000 29.Kelly, J.R. and I. Denry, Stabilized zirconia as a structural ceramic: an overview. Dent Mater, 2008 30.Zembic, A., I. Sailer, R.E. Jung, and C.H. Hämmerle, Randomized-controlled clinical trial of customized zirconia and titanium implant abutments for single-tooth implants in canine and posterior regions: 3-year results. Clin Oral Implants Res, 2009 31.Glauser, R., I. Sailer, A. Wohlwend, S. Studer, M. Schibli, and P. Schärer, Experimental zirconia abutments for implant-supported single-tooth restorations in esthetically demanding regions: 4-year results of a prospective clinical study. Int J Prosthodont, 2004 32.Manicone, P.F., P. Rossi Iommetti, and L. Raffaelli, An overview of zirconia ceramics: basic properties and clinical applications. J Dent, 2007 33.Cionca, N., D. Hashim, and A. Mombelli, Zirconia dental implants: where are we now, and where are we heading? Periodontol 2000, 2017 34.van Brakel, R., G.J. Meijer, J.W. Verhoeven, J. Jansen, C. de Putter, and M.S. Cune, Soft tissue response to zirconia and titanium implant abutments: an in vivo within-subject comparison. J Clin Periodontol, 2012 35.Rimondini, L., L. Cerroni, A. Carrassi, and P. Torricelli, Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. Int J Oral Maxillofac Implants, 2002 36.Wennerberg, A., C. Hallgren, C. Johansson, and S. Danelli, A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implants Res, 1998 37.Lazzara, R.J., T. Testori, P. Trisi, S.S. Porter, and R.L. Weinstein, A human histologic analysis of osseotite and machined surfaces using implants with 2 opposing surfaces. Int J Periodontics Restorative Dent, 1999 38.Smeets, R., et al., Impact of Dental Implant Surface Modifications on Osseointegration. Biomed Res Int, 2016 39.Wennerberg, A. and T. Albrektsson, Effects of titanium surface topography on bone integration: a systematic review. Clinical Oral Implants Research, 2009 40.Albrektsson, T. and A. Wennerberg, Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont, 2004 41.Laub, M., M. Chatzinikolaidou, H. Rumpf, and H.P. Jennissen, Modelling of Protein-Protein Interactions of Bone Morphogenetic Protein-2 (BMP-2) by 3D-Rapid Prototyping. Materialwissenschaft und Werkstofftechnik, 2002 42.Kundu, R. and M. Rathee, Effect of Platelet-Rich-Plasma (PRP) and Implant Surface Topography on Implant Stability and Bone. J Clin Diagn Res, 2014 43.Frank-Kamenetskii, D.A., Plasma-The Fourth State of Matter (3rd ed.). 1972 44.Tonks, L. and I. Langmuir, Oscillations in Ionized Gases. Physical Review, 1929 45.Crookes, W., On radiant matter spectroscopy : A new method of spectrum analysis. Journal of the Franklin Institute, 1883 46.Chen, F.F., Plasma Physics and Controlled Fusion. Plenum Press., 1984 47.P, S.D., The Fluorescent Lamp: A plasma you can use. 2010 48.Mittal, K.L., ‘‘Surface contamination: An Overview’’. Surface contamination: An Overview 49.von Woedtke, T., H.-R. Metelmann, and K.-D. Weltmann, Clinical Plasma Medicine: State and Perspectives of in Vivo Application of Cold Atmospheric Plasma. Contributions to Plasma Physics, 2014 50.Takeuchi, M., Y. Abe, Y. Yoshida, Y. Nakayama, M. Okazaki, and Y. Akagawa, Acid pretreatment of titanium implants. Biomaterials, 2003 51.Holmberg, K.V., M. Abdolhosseini, Y. Li, X. Chen, S.-U. Gorr, and C. Aparicio, Bio-inspired stable antimicrobial peptide coatings for dental applications. Acta biomaterialia, 2013 52.Ozden, N., F. Akaltan, S. Suzer, and G. Akovali, Time-related wettability characteristic of acrylic resin surfaces treated by glow discharge. J Prosthet Dent, 1999 53.Hesby, R.M., C.R. Haganman, and C.M. Stanford, Effects of radiofrequency glow discharge on impression material surface wettability. J Prosthet Dent, 1997 54.Finke, B., et al., Aging of plasma-polymerized allylamine nanofilms and the maintenance of their cell adhesion capacity. Langmuir, 2014 55.Rebl, H., Osteoblast physiology and morphology on cell adhesive plasma-polymerized allylamine and ethylenediamine layers . Ph.D. Thesis, University of Rostock, Rostock, Germany, 2014 56.Nebe, B., Finke, B., Lüthen, F., Bergemann, C., Schröder, K., Rychly, J., Liefeith, K., Ohl, A.,, Improved initial osteoblast functions on amino-functionalized titanium surfaces. Biomolecular Engineering,. 2007 57.Lawrence, P.G. and Y. Lapitsky, Ionically cross-linked poly(allylamine) as a stimulus-responsive underwater adhesive: ionic strength and pH effects. Langmuir, 2015 58.Pankov, R. and K.M. Yamada, Fibronectin at a glance. Journal of Cell Science, 2002 59.Pankov, R. and K.M. Yamada, Fibronectin at a glance. J Cell Sci, 2002 60.Dolatshahi-Pirouz, A., et al., Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces. ACS Nano, 2010 61.Elkarargy, A., Biological functionalization of dental implants with fibronectin: a scanning electron microscopic study. Int J Health Sci (Qassim), 2014 62.Dean, J.W., 3rd, K.C. Culbertson, and A.M. D'Angelo, Fibronectin and laminin enhance gingival cell attachment to dental implant surfaces in vitro. Int J Oral Maxillofac Implants, 1995 63.Elias, C.N., P.A. Gravina, C.E. Silva Filho, and P.A. Nascente, Preparation of Bioactive Titanium Surfaces via Fluoride and Fibronectin Retention. Int J Biomater, 2012 64.Webb, K., K. Caldwell, and P.A. Tresco, Fibronectin immobilized by a novel surface treatment regulates fibroblast attachment and spreading. Crit Rev Biomed Eng, 2000 65.Yamamoto, H., Y. Shibata, and T. Miyazaki, Anode glow discharge plasma treatment of titanium plates facilitates adsorption of extracellular matrix proteins to the plates. J Dent Res, 2005 66.Huang, H.M., S.C. Hsieh, N.C. Teng, S.W. Feng, K.L. Ou, and W.J. Chang, Biological surface modification of titanium surfaces using glow discharge plasma. Med Biol Eng Comput, 2011 67.Chang, W.J., et al., Type I collagen grafting on titanium surfaces using low-temperature glow discharge. Dent Mater J, 2008 68.Oshida, Y., A. Hashem, T. Nishihara, and M.V. Yapchulay, Fractal dimension analysis of mandibular bones: toward a morphological compatibility of implants. Biomed Mater Eng, 1994 69.Lampin, M., C. Warocquier, C. Legris, M. Degrange, and M.F. Sigot-Luizard, Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J Biomed Mater Res, 1997 70.Goddard, J. and J.H.M. Hotchkiss, Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science, 2007 71.Hatano, K., et al., Effect of surface roughness on proliferation and alkaline phosphatase expression of rat calvarial cells cultured on polystyrene. Bone, 1999 72.Pae, A., S.S. Kim, H.S. Kim, and Y.H. Woo, Osteoblast-like cell attachment and proliferation on turned, blasted, and anodized titanium surfaces. Int J Oral Maxillofac Implants, 2011 73.Bächle, M. and R.J. Kohal, A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Clin Oral Implants Res, 2004 74.McClary, K.B., T. Ugarova, and D.W. Grainger, Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold. J Biomed Mater Res, 2000 75.Cho, J. and D.F. Mosher, Enhancement of thrombogenesis by plasma fibronectin cross-linked to fibrin and assembled in platelet thrombi. Blood, 2006 76.Stine, R., C.L. Cole, K.M. Ainslie, S.P. Mulvaney, and L.J. Whitman, Formation of primary amines on silicon nitride surfaces: a direct, plasma-based pathway to functionalization. Langmuir, 2007 77.Rohr, N., K. Fricke, C. Bergemann, J.B. Nebe, and J. Fischer, Efficacy of Plasma-Polymerized Allylamine Coating of Zirconia after Five Years. J Clin Med, 2020 78.Chang, Y.C., et al., Fibronectin-Grafted Titanium Dental Implants: An In Vivo Study. Biomed Res Int, 2016 79.Ebnesajjad, S., 4 - Surface and Material Characterization Techniques, in Handbook of Adhesives and Surface Preparation, S. Ebnesajjad, Editor. 2011, William Andrew Publishing: Oxford. 80.Gontard, L.C., A. Fernández, R.E. Dunin-Borkowski, T. Kasama, S. Lozano-Pérez, and S. Lucas, Transmission electron microscopy of unstained hybrid Au nanoparticles capped with PPAA (plasma-poly-allylamine): structure and electron irradiation effects. Micron, 2014 81.Engelhard, M.H., T.C. Droubay, and Y. Du, X-Ray Photoelectron Spectroscopy Applications, in Encyclopedia of Spectroscopy and Spectrometry (Third Edition), J.C. Lindon, G.E. Tranter, and D.W. Koppenaal, Editors. 2017, Academic Press: Oxford. 82.Schwarz, F., et al., Potential of chemically modified hydrophilic surface characteristics to support tissue integration of titanium dental implants. J Biomed Mater Res B Appl Biomater, 2009 83.Parisi, L., et al., Titanium dental implants hydrophilicity promotes preferential serum fibronectin over albumin competitive adsorption modulating early cell response. Mater Sci Eng C Mater Biol Appl, 2020 84.Chang, Y.C., et al., Surface analysis of titanium biological modification with glow discharge. Clin Implant Dent Relat Res, 2015 85.Liu, Y.T., T.M. Lee, and T.S. Lui, Enhanced osteoblastic cell response on zirconia by bio-inspired surface modification. Colloids Surf B Biointerfaces, 2013 86.Liamas, E., K. Kubiak-Ossowska, R.A. Black, O.R.T. Thomas, Z.J. Zhang, and P.A. Mulheran, Adsorption of Fibronectin Fragment on Surfaces Using Fully Atomistic Molecular Dynamics Simulations. International journal of molecular sciences, 2018 87.Jemat, A., M.J. Ghazali, M. Razali, and Y. Otsuka, Microstructural, Surface roughness and wettability of titanium alloy coated by YZP-30WT. % TIO2 for dental application. Jurnal Teknologi, 2018 88.Pan, Y.H., et al., Glow Discharge Plasma Treatment on Zirconia Surface to Enhance Osteoblastic-Like Cell Differentiation and Antimicrobial Effects. Materials (Basel), 2020 89.Esposito, M., Y. Ardebili, and H.V. Worthington, Interventions for replacing missing teeth: different types of dental implants. Cochrane Database Syst Rev, 2014 90.Yeo, I.S., Reality of dental implant surface modification: a short literature review. Open Biomed Eng J, 2014 91.Kurachi, T., H. Nagao, H. Nagura, and S. Enomoto, Effect of a titanium surface on bone marrow-derived osteoblastic cells in vitro. Arch Oral Biol, 1997 92.Feng, B., J. Weng, B.C. Yang, S.X. Qu, and X.D. Zhang, Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion. Biomaterials, 2004 93.Wang, G., F. Meng, C. Ding, P.K. Chu, and X. Liu, Microstructure, bioactivity and osteoblast behavior of monoclinic zirconia coating with nanostructured surface. Acta Biomater, 2010 94.Chang, Y.C., et al., In Vitro Analysis of Fibronectin-Modified Titanium Surfaces. PLoS One, 2016 95.Van Straalen, J.P., E. Sanders, M.F. Prummel, and G.T. Sanders, Bone-alkaline phosphatase as indicator of bone formation. Clin Chim Acta, 1991 96.Siller, A.F. and M.P. Whyte, Alkaline Phosphatase: Discovery and Naming of Our Favorite Enzyme. J Bone Miner Res, 2018 97.Kawai, H., Y. Shibata, and T. Miyazaki, Glow discharge plasma pretreatment enhances osteoclast differentiation and survival on titanium plates. Biomaterials, 2004 98.Clover, J. and M. Gowen, Are MG-63 and HOS TE85 human osteosarcoma cell lines representative models of the osteoblastic phenotype? Bone, 1994 99.Duda, R.J., Jr., J.F. O'Brien, J.A. Katzmann, J.M. Peterson, K.G. Mann, and B.L. Riggs, Concurrent assays of circulating bone Gla-protein and bone alkaline phosphatase: effects of sex, age, and metabolic bone disease. J Clin Endocrinol Metab, 1988 100.Kang, Y., et al., Fibronectin stimulates the osteogenic differentiation of murine embryonic stem cells. J Tissue Eng Regen Med, 2017 101.Att, W., M. Takeuchi, T. Suzuki, K. Kubo, M. Anpo, and T. Ogawa, Enhanced osteoblast function on ultraviolet light-treated zirconia. Biomaterials, 2009 102.Chopra, D., A. Jayasree, T. Guo, K. Gulati, and S. Ivanovski, Advancing dental implants: Bioactive and therapeutic modifications of zirconia. Bioact Mater, 2022 103.Bharadwaj, S., A.G. Naidu, G.V. Betageri, N.V. Prasadarao, and A.S. Naidu, Milk ribonuclease-enriched lactoferrin induces positive effects on bone turnover markers in postmenopausal women. Osteoporos Int, 2009 104.Kwan Tat, S., J.P. Pelletier, D. Lajeunesse, H. Fahmi, M. Lavigne, and J. Martel-Pelletier, The differential expression of osteoprotegerin (OPG) and receptor activator of nuclear factor kappaB ligand (RANKL) in human osteoarthritic subchondral bone osteoblasts is an indicator of the metabolic state of these disease cells. Clin Exp Rheumatol, 2008 105.Yoshida, C.A., et al., SP7 inhibits osteoblast differentiation at a late stage in mice. PLoS One, 2012 106.Inoue, D., [OPG(osteoprotegerin)/OCIF(osteoclastogenesis inhibitory factor)]. Nihon Rinsho, 2004 107.Caetano-Lopes, J., H. Canhão, and J.E. Fonseca, Osteoblasts and bone formation. Acta Reumatol Port, 2007 108.Holleville, N., S. Matéos, M. Bontoux, K. Bollerot, and A.H. Monsoro-Burq, Dlx5 drives Runx2 expression and osteogenic differentiation in developing cranial suture mesenchyme. Dev Biol, 2007 109.Rodan, G.A. and M. Noda, Gene expression in osteoblastic cells. Crit Rev Eukaryot Gene Expr, 1991 110.Schierano, G., et al., Role of rhBMP-7, Fibronectin, And Type I Collagen in Dental Implant Osseointegration Process: An Initial Pilot Study on Minipig Animals. Materials (Basel), 2021 111.Morini, M., et al., Mutually exclusive expression of DLX2 and DLX5/6 is associated with the metastatic potential of the human breast cancer cell line MDA-MB-231. BMC Cancer, 2010 112.Park, J.W., T. Hanawa, and J.H. Chung, The relative effects of Ca and Mg ions on MSC osteogenesis in the surface modification of microrough Ti implants. Int J Nanomedicine, 2019 113.Cho, Y., J. Hong, H. Ryoo, D. Kim, J. Park, and J. Han, Osteogenic responses to zirconia with hydroxyapatite coating by aerosol deposition. J Dent Res, 2015 114.Tang, S., J. Zhang, N. Ding, and Z. Zhang, Biological activity of titania coating prepared with zirconium oxychloride and titania on zirconia surface. J Mech Behav Biomed Mater, 2021 115.Xu, Y., L. Zhang, J. Xu, J. Li, H. Wang, and F. He, Strontium-incorporated titanium implant surfaces treated by hydrothermal treatment enhance rapid osseointegration in diabetes: A preclinical vivo experimental study. Clin Oral Implants Res, 2021 116.Bergemann, C., et al., Microstructured zirconia surfaces modulate osteogenic marker genes in human primary osteoblasts. J Mater Sci Mater Med, 2015
|