跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 03:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭至勛
研究生(外文):HSIAO, CHIH-HSUN
論文名稱:奈米鑽石根管沖洗液之粒徑大小於管壁塗抹層之影響
論文名稱(外文):The effect of nano-diamond’s particle size in endodonticirrigation on the smear layer removal efficiency
指導教授:謝松志黃豪銘
指導教授(外文):Hsieh, Sung-ChihHuang, Haw-Ming
口試委員:謝松志黃豪銘楊正昌鄧乃嘉張煥正
口試委員(外文):Hsieh, Sung-ChihHuang, Haw-MingYang, Jen-ChangTeng, Nai-ChiaChang, Huan-Cheng
口試日期:2022-06-27
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:牙醫學系碩士班
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:145
中文關鍵詞:奈米鑽石塗抹層音波超音波根管治療
外文關鍵詞:nano-diamondsmear layersonicultrasonicendodontic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
實驗背景 : 近年來根管治療流程因為牙科顯微鏡的發達,鎳鈦根管挫針表面處理的進步,與生物陶瓷類根管糊劑的發展,可在更為保守的根管修型下使用液壓式封填完成根管治療。保守的根管修型有助於降低日後牙根斷裂之機率,但同時如何更有效的清潔根管系統成為重要的課題。根管治療時管壁之塗抹層內含有細菌,不但阻塞牙本質小管,降低糊劑與管壁間的鍵結力量,亦會形成細菌滲漏的通道。
17% EDTA 為移除塗抹層常用溶液,在螯合作用下若與管壁接觸過久,將造成牙本質小管過度侵蝕、齒質微硬度與抗斷裂強度下降。次氯酸鈉與EDTA 混合會加速游離氯離子濃度下降,造成溶解有機物能力降低,臨床治療過程於根管清潔擴大階段時僅會使用次氯酸鈉沖洗,待修型完成後,再以EDTA 做塗抹層及殘留碎屑的移除。因此若發展清潔擴大階段同時具備溶解有機物以及塗抹層之根管沖液,推論次氯酸鈉應可滲入傳統過程被塗抹層覆蓋的牙本質小管,不但增進清潔效力,亦可減少沖洗步驟增進臨床治療效率。前期實驗已證實使用粒徑500nm 次微米鑽石配置 10mg/ml 濃度的沖洗液配合音波器械輔助沖洗具備移除塗抹層能力,且與次氯酸鈉混合後不會降低其溶解能力,但不同粒徑奈米鑽石是否會對沖洗效果造成影響仍未有實驗討論。臨床治療中用於輔助震盪EDTA 的工具可分為音波及超音波兩種選項,然何種工具具備顯著較佳的清潔效果未有定論。由於過去未有於次氯酸鈉中加入固體粒子清潔管壁的研究,因此本研究的實驗目的其一為探討不同粒徑大小的奈米鑽石配置之次氯酸鈉沖洗液是否有不同的去除塗抹層效力、其二為配合何種輔助工具沖洗會有較佳的結果。
實驗方法 : 本實驗以不同粒徑大小鑽石顆粒配置之次氯酸鈉溶液,在髓腔開闊與清潔擴大後以音波與超音波器械震盪。將牙齒縱向剖半後於掃描式電子顯微鏡下觀察冠部、中段、及根尖影像,依塗抹層覆蓋牙本質小管狀況以1-4 級評分,使用Kruskal-Wallis test 統計。
實驗結果 : 本實驗結果顯示音波器械震盪組於50nm、100nm、500nm、1000nm 具顯著移除塗抹層效果 (p<0.05 )。超音波器械震盪組於500nm、1000nm 具顯著移除塗抹層效果(p<0.05 )。音波與超音波組別皆呈現由冠部往根尖移除效果漸弱的趨勢。而在冠部、中段與根尖在不同工具作用下,音波組別移除效果較超音波組別佳。於音波工具輔助下,10nm 奈米鑽石次氯酸鈉根管沖洗液並無顯著去除塗抹層效果,50nm、100nm、500nm、1000nm 奈米鑽石次氯酸鈉根管沖洗液具備移除塗抹層效果。於超音波工具輔助下,10nm、50nm、100nm奈米鑽石次氯酸鈉根管沖洗液並無顯著去除塗抹曾效果,500nm、1000nm奈米鑽石次氯酸鈉根管沖洗液具備移除塗抹曾效果。於同粒徑組別比較下,音波工具效果較超音波工具顯著。
結論 : 由於奈米鑽石根管沖洗液是藉由音波與超音波輔助切削管壁,其能量有機會將根管內的生物膜結構破壞,配合次氯酸鈉的殺菌力,在根管治療的臨床應用潛力可期。
Background :A successful root canal treatment relies on our prudent technique at every treatment stage. One of the factors which induces failure is the remaining bacteria in the root canal system. Nowadays, the strategy of removing infected tissues or microbes is roughly divided in two parts, which are physical enlargement of the canals and chemical irrigation. The stainless steel files or Ni-Ti rotary instruments are not able to contact all of the canal surface, hence the irrigation is important for disinfecting in narrow space of the canals.After cleaning and shaping of the root canal, EDTA was commonly used for smear layer removal over half of a centry. According to the preliminary data, nanodiamond mixed with sodium hypochlorite is able to remove smear layer. However, there is no report discussed about the effect of different sizes of nanodiamonds application on smear layer removal efficacy.
Generally, the devices which are used in clinical irrigation aresonic and ultrasonic devices. Since there is no irrigant composed of liquid and solid particles by far, the purposes of this study are to evaluate whether the smear layer removal efficacy changes with different particle sizes of nanodiamond,and whether the smear layer removal efficacy is different from sonic or ultrasonic irrigation.
Material and methods :This study compared of 5 different sizes of nanodiamond of 10 nm, 50 nm, 100 nm, 500 nm, 1000 nm. The results were analysized from SEM images and Kruskal-Wallis test.
Results : 10 nm nanodiamond (ND) sodium hypochloride showed no significant efficacy of smear layer removal, whereas 50 nm, 100 nm, 500nm, 1000 nm ND sodium hypochloride showed significant efficacy of smear layerremoval (P<0.05). In the cases of ultrasonic irrigation, 10 nm, 50 nm, 100 nm ND sodium hypochloride showed no significant efficacy of smear layer removal, whereas, 500nm, 1000 nm ND sodium hypochloride showed significant efficacy of smear layer removal (P<0.05).
Conclusion : To compare different devices in the same sizes of nanodiamond irrigation, sonic devices have better efficacy than ultrasonic devices. The development of the nanodiamond sodium hypochloride composed of proper sizes particle of nanodiamonds and irrigated with sonic devices may promote the smear layer removal and disinfection efficacy in endodontic treatment process.
總目錄
中文摘要…………………………………………….….…........2-4
ABSTRACT……………………………………….….………….5-7
第一章 緒論……………………………………….….………..14-21
第二章 文獻回顧………………………………….….………22-28
第三章 研究動機、目的與說…………………….………29-30
3.1. 研究動機……………………………………….….………29
3.2. 研究目的……………………………………….….………29
3.3. 研究假說…………………………………………………..30
第四章 研究材料及方法……………………………………31-37
4.1 研究材料……………………………………………………31
4.2 儀器設備……………………………………………………31-32
4.3 研究方法……………………………………………………32-37
第五章 實驗結果………………………………………………38-45
第六章 討論……………………………………………….........46-56
第七章 結論……………………………………………………..57
第八章 參考文獻………………………………………………58-69
表次………………………………………………………………….70-82
表一 音波輔助沖洗組別各組評分……………………………….70-72
表二 超音波輔助沖洗組別各組評分……………………………72-74
表三 音波組冠部盒鬚圖……………………………………………..75
表四 音波組中段盒鬚圖……………………………………………..75
表五 音波組根尖盒鬚圖……………………………………………..75
表六 超音波組冠部盒鬚圖………………………………………….76
表七 超音波組中段盒鬚圖………………………………………….76
表八 超音波組根尖盒鬚圖………………………………………….76
表九 音波組冠部統計…………………………………………..........77
表十 音波組中段統計…………………………………………..........78
表十一 音波組根尖統計……………………………………………..79
表十二 超音波組冠部統計………………………………………….80
表十三 超音波組中段統計………………………………………….81
表十四 超音波組根尖統計………………………………………….82
圖次………………………………………………………………….83-145
圖一 10nm 奈米鑽石/音波沖洗十秒 樣品 5……………..83
圖二 10nm 奈米鑽石/音波沖洗十秒 樣品 6……………..84
圖三 10nm 奈米鑽石/音波沖洗十秒 樣品 7……………..85
圖四 10nm 奈米鑽石/音波沖洗十秒 樣品 8……………..86
圖五 10nm 奈米鑽石/音波沖洗十秒 樣品 9……………..87
圖六 50nm 奈米鑽石/音波沖洗十秒 樣品 10……………..88
圖七 50nm 奈米鑽石/音波沖洗十秒 樣品 11……………..89
圖八 50nm 奈米鑽石/音波沖洗十秒 樣品 12……………..90
圖九 50nm 奈米鑽石/音波沖洗十秒 樣品 13……………..91
圖十 50nm 奈米鑽石/音波沖洗十秒 樣品 14……………..92
圖十一 100nm 奈米鑽石/音波沖洗十秒 樣品 15………..93
圖十二 100nm 奈米鑽石/音波沖洗十秒 樣品 16………..94
圖十三 100nm 奈米鑽石/音波沖洗十秒 樣品 17………..95
圖十四 100nm 奈米鑽石/音波沖洗十秒 樣品 18………..96
圖十五 100nm 奈米鑽石/音波沖洗十秒 樣品 19………..97
圖十六 500nm 奈米鑽石/音波沖洗十秒 樣品 20………..98
圖十七 500nm 奈米鑽石/音波沖洗十秒 樣品 21………..99
圖十八 500nm 奈米鑽石/音波沖洗十秒 樣品 22………..100
圖十九 500nm 奈米鑽石/音波沖洗十秒 樣品 23………..101
圖二十 500nm 奈米鑽石/音波沖洗十秒 樣品 24………..102
圖二十一 1000nm 奈米鑽石/音波沖洗十秒 樣品 25…..103
圖二十二 1000nm 奈米鑽石/音波沖洗十秒 樣品 26…..104
圖二十三 1000nm 奈米鑽石/音波沖洗十秒 樣品 27…..105
圖二十四 1000nm 奈米鑽石/音波沖洗十秒 樣品 28…..106
圖二十五 1000nm 奈米鑽石/音波沖洗十秒 樣品 29…..107
圖二十六 10nm 奈米鑽石/超音波沖洗十秒 樣品 38…..108
圖二十七 10nm 奈米鑽石/超音波沖洗十秒 樣品 39…..109
圖二十八 10nm 奈米鑽石/超音波沖洗十秒 樣品 40…..110
圖二十九 10nm 奈米鑽石/超音波沖洗十秒 樣品 41…..111
圖三十 10nm 奈米鑽石/超音波沖洗十秒 樣品 42…..112
圖三十一 50nm 奈米鑽石/超音波沖洗十秒 樣品 43…..113
圖三十二 50nm 奈米鑽石/超音波沖洗十秒 樣品 44…..114
圖三十三 50nm 奈米鑽石/超音波沖洗十秒 樣品 45…..115
圖三十四 50nm 奈米鑽石/超音波沖洗十秒 樣品 46…..116
圖三十五 50nm 奈米鑽石/超音波沖洗十秒 樣品 47…..117
圖三十六 100nm 奈米鑽石/超音波沖洗十秒 樣品 48…118
曾永華, 陳柏穎, 鄭宇明, 游銘永. (2014). 人造鑽石的合成與應用.科學發展,
97, 60-67
張煥正. (2015). 螢光奈米鑽石. 自然科學簡訊, 27, 150-153
張育嘉. (2021) 奈米鑽石於根管沖洗液的應用與評估. 臺北醫學大學碩士論文,
1-99
Abou-Rass, M., & Piccinino, M. V. (1982). The effectiveness of four clinical
irrigation methods on the removal of root canal debris. Oral Surgery,
Oral Medicine, Oral Pathology, 54(3), 323-328.
Adigüzel, Ö., Yiğit-Özer, S., Kaya, S., Uysal, İ., Ganidağli-Ayaz, S., & Akkuş,
Z. (2011). Effectiveness of ethylenediaminetetraacetic acid (EDTA) and
MTAD on debris and smear layer removal using a self-adjusting
file. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and
Endodontology, 112(6), 803-808.
Bertacci, A., Baroni, C., Breschi, L., Venturi, M., & Prati, C. (2007). The
influence of smear layer in lateral channels filling. Clinical oral
investigations, 11(4), 353-359.
Boutsioukis, C., Lambrianidis, T., Verhaagen, B., Versluis, M., Kastrinakis, E.,
Wesselink, P. R., & van der Sluis, L. W. (2010). The effect of needle
insertion depth on the irrigant flow in the root canal: evaluation using
an unsteady computational fluid dynamics model. Journal of
Endodontics, 36(10), 1664-1668.
Bra, M., & Johnson, G. (1974). Effects of various conditioners and cleaning
agents on prepared dentin surfaces: a scanning electron microscopic
investigation. The Journal of prosthetic dentistry, 31(4), 422-430.
Brennen, C. E. (2014). Cavitation and bubble dynamics. Cambridge
university press.
Bukhari, S., Kim, D., Liu, Y., Karabucak, B., & Koo, H. (2018). Novel
endodontic disinfection approach using catalytic nanoparticles.
Journal of endodontics, 44(5), 806-812.
Calt, S., & Serper, A. (2002). Time-dependent effects of EDTA on dentin
structures. Journal of endodontics, 28(1), 17-19.
Caron, G., Nham, K., Bronnec, F., & Machtou, P. (2010). Effectiveness of
different final irrigant activation protocols on smear layer removal in
curved canals. Journal of endodontics, 36(8), 1361-1366.
Carpio-Perochena, A., Kishen, A., Felitti, R., Bhagirath, A. Y., Medapati, M.
R., Lai, C., & Cunha, R. S. (2017). Antibacterial properties of chitosan
nanoparticles and propolis associated with calcium hydroxide against
single-and multispecies biofilms: an in vitro and in situ study. Journal
of endodontics, 43(8), 1332-1336.
Chaudhry, S., Yadav, S., Talwar, S., & Verma, M. (2017). Effect of
EndoActivator and Er, Cr: YSGG laser activation of Qmix, as final
endodontic irrigant, on sealer penetration: A Confocal microscopic
study. Journal of clinical and experimental dentistry, 9(2), e218.
Chu, J. H., Chia, K. Y., Qui, A. L., Moule, A., & Ha, W. N. (2020). The effects
of sodium hypochlorite and ethylenediaminetetraacetic acid on the
microhardness of Mineral Trioxide Aggregate and TotalFill Bioceramic
Putty. Australian Endodontic Journal, 46(1), 33-39.
Clark-Holke, D., Drake, D., Walton, R., Rivera, E., & Guthmiller, J. M. (2003).
Bacterial penetration through canals of endodontically treated teeth in
the presence or absence of the smear layer. Journal of Dentistry, 31(4),
275-281.
Çobankara, F. K., Adanır, N., & Belli, S. (2004). Evaluation of the influence
of smear layer on the apical and coronal sealing ability of two sealers.
Journal of Endodontics, 30(6), 406-409.
De‐Deus, G., Paciornik, S., & Mauricio, M. H. P. (2006). Evaluation of the
effect of EDTA, EDTAC and citric acid on the microhardness of root
dentine. International Endodontic Journal, 39(5), 401-407.
de Gregorio, C., Estevez, R., Cisneros, R., Heilborn, C., & Cohenca, N. (2009).
Effect of EDTA, sonic, and ultrasonic activation on the penetration of
sodium hypochlorite into simulated lateral canals: an in vitro study.
Journal of endodontics, 35(6), 891-895.
Garrido, Â. D. B., Fonseca, T. S., Alfredo, E., Silva-Sousa, Y. T. C., & Sousa-
Neto, M. D. (2004). Influence of ultrasound, with and without water
spray cooling, on removal of posts cemented with resin or zinc
phosphate cements. Journal of endodontics, 30(3), 173-176.
Grawehr, M., Sener, B., Waltimo, T., & Zehnder, M. (2003). Interactions of
ethylenediamine tetraacetic acid with sodium hypochlorite in aqueous
solutions. International endodontic journal, 36(6), 411-415.
Gu, X. H., Mao, C. Y., & Kern, M. (2009). Effect of different irrigation on
smear layer removal after post space preparation. Journal of
endodontics, 35(4), 583-586.
Güzel, C., Uzunoglu, E., & Buzoglu, H. D. (2018). Effect of low–surface
tension EDTA solutions on the bond strength of resin-based sealer to
young and old root canal dentin. Journal of Endodontics, 44(3), 485-
488.
Hülsmann, M., Heckendorff, M., & Schäfers, F. (2002). Comparative invitro
evaluation of three chelator pastes. International Endodontic
Journal, 35(8), 668-679.
Kuah, H. G., Lui, J. N., Tseng, P. S., & Chen, N. N. (2009). The effect of EDTA
with and without ultrasonics on removal of the smear layer. Journal of
endodontics, 35(3), 393-396.
Lee, D. K., Kim, S. V., Limansubroto, A. N., Yen, A., Soundia, A., Wang, C.
Y., ... & Ho, D. (2015). Nanodiamond–gutta percha composite
biomaterials for root canal therapy. ACS nano, 9(11), 11490-11501.
Lee, S. J., Wu, M. K., & Wesselink, P. R. (2004). The efficacy of ultrasonic
irrigation to remove artificially placed dentine debris from differentsized
simulated plastic root canals. International Endodontic Journal,
37(9), 607-612.
Lui, J. N., Kuah, H. G., & Chen, N. N. (2007). Effect of EDTA with and without
surfactants or ultrasonics on removal of smear layer. Journal of
endodontics, 33(4), 472-475.
Machnick, T. K., Torabinejad, M., Munoz, C. A., & Shabahang, S. (2003).
Effect of MTAD on the bond strength to enamel and dentin. Journal of
Endodontics, 29(12), 818-821.
Mader, C. L., Baumgartner, J. C., & Peters, D. D. (1984). Scanning electron
microscopic investigation of the smeared layer on root canal walls.
Journal of endodontics, 10(10), 477-483.
Mancini, M., Cerroni, L., Iorio, L., Armellin, E., Conte, G., & Cianconi, L.
(2013). Smear layer removal and canal cleanliness using different
irrigation systems (EndoActivator, EndoVac, and passive ultrasonic
irrigation): field emission scanning electron microscopic evaluation in
an in vitro study. Journal of endodontics, 39(11), 1456-1460.
McComb, D., & Smith, D. C. (1975). A preliminary scanning electron
microscopic study of root canals after endodontic procedures. Journal
of endodontics, 1(7), 238-242.
Mochalin, V., Shenderova, O., Ho, D., & Gogotsi, Y. (2020). The properties
and applications of nanodiamonds. Nano-Enabled Medical
Applications, 313-350.
Mohammadi, Z., Shalavi, S., & Jafarzadeh, H. (2013).
Ethylenediaminetetraacetic acid in endodontics. European journal of
dentistry, 7(S 01), S135-S142.
Morago, A., Ordinola-Zapata, R., Ferrer-Luque, C. M., Baca, P., Ruiz-
Linares, M., & Arias-Moliz, M. T. (2016). Influence of smear layer on the
antimicrobial activity of a sodium hypochlorite/etidronic acid irrigating
solution in infected dentin. Journal of endodontics, 42(11), 1647-1650.
Neelakantan, P., Sharma, S., Shemesh, H., & Wesselink, P. R. (2015).
Influence of irrigation sequence on the adhesion of root canal sealers
to dentin: a Fourier transform infrared spectroscopy and push-out
bond strength analysis. Journal of endodontics, 41(7), 1108-1111.
Neelakantan, P., Varughese, A. A., Sharma, S., Subbarao, C. V., Zehnder,
M., & De‐Deus, G. (2012). Continuous chelation irrigation improves the
adhesion of epoxy resin‐based root canal sealer to root dentine.
International endodontic journal, 45(12), 1097-1102.
Nikiforuk, G., & Sreebny, L. (1953). Demineralization of hard tissues by
organic chelating agents at neutral pH. Journal of dental research, 32(6),
859-867.
Nunes, V. H., Silva, R. G., Alfredo, E., Sousa-Neto, M. D., & Silva-Sousa, Y.
T. (2008). Adhesion of Epiphany and AH Plus sealers to human root
dentin treated with different solutions. Brazilian dental journal, 19, 46-
50.
Ostby, N. (1957). Chelating in root canal therapy. Ethylene-diamine
tetraacetic acid for cleansing and widening of root canals. Odontol
Tidskr, 65, 3-11.
Paqué, F., Ganahl, D., & Peters, O. A. (2009). Effects of root canal
preparation on apical geometry assessed by micro–computed
tomography. Journal of endodontics, 35(7), 1056-1059.
Paqué, F., Boessler, C., & Zehnder, M. (2011). Accumulated hard tissue
debris levels in mesial roots of mandibular molars after sequential
irrigation steps. International endodontic journal, 44(2), 148-153.
Paulson, L., Ballal, N. V., & Bhagat, A. (2018). Effect of root dentin
conditioning on the pushout bond strength of biodentine. Journal of
Endodontics, 44(7), 1186-1190.
Rath, P. P., Yiu, C. K., Matinlinna, J. P., Kishen, A., & Neelakantan, P. (2020).
The effects of sequential and continuous chelation on dentin. Dental
Materials, 36(12), 1655-1665.
Sabins, R. A., Johnson, J. D., & Hellstein, J. W. (2003). A comparison of the
cleaning efficacy of short-term sonic and ultrasonic passive irrigation
after hand instrumentation in molar root canals. Journal of endodontics,
29(10), 674-678.
Sadr Lahijani, M. S., Raoof Kateb, H. R., Heady, R., & Yazdani, D. (2006).
The effect of German chamomile (Marticaria recutita L.) extract and tea
tree (Melaleuca alternifolia L.) oil used as irrigants on removal of smear
layer: a scanning electron microscopy study. International endodontic
journal, 39(3), 190-195.
Saleh, I. M., Ruyter, I. E., Haapasalo, M., & Ørstavik, D. (2008). Bacterial
penetration along different root canal filling materials in the presence
or absence of smear layer. International Endodontic Journal, 41(1), 32-
40.
Serper, A., & Çalt, S. (2002). The demineralizing effects of EDTA at
different concentrations and pH. Journal of endodontics, 28(7), 501-
502.
Siqueira Jr, J. F. (2001). Aetiology of root canal treatment failure: why welltreated
teeth can fail. International endodontic journal, 34(1), 1-10.
Tay, F. R., Gu, L. S., Schoeffel, G. J., Wimmer, C., Susin, L., Zhang, K., ... &
Pashley, D. H. (2010). Effect of vapor lock on root canal debridement
by using a side-vented needle for positive-pressure irrigant delivery.
Journal of endodontics, 36(4), 745-750.
Uzunoglu, E., Aktemur, S., Uyanik, M. O., Durmaz, V., & Nagas, E. (2012).
Effect of ethylenediaminetetraacetic acid on root fracture with respect
to concentration at different time exposures. Journal of endodontics,
38(8), 1110-1113.
Vyas, N., Dehghani, H., Sammons, R. L., Wang, Q. X., Leppinen, D. M., &
Walmsley, A. D. (2017). Imaging and analysis of individual cavitation
microbubbles around dental ultrasonic scalers. Ultrasonics, 81, 66-72.
Walters, J. D., & Rawal, S. Y. (2007). Severe periodontal damage by an
ultrasonic endodontic device: a case report. Dental Traumatology,
23(2), 123-127.
Weiger, R., ElAyouti, A., & Löst, C. (2002). Efficiency of hand and rotary
instruments in shaping oval root canals. Journal of Endodontics, 28(8),
580-583.
Wright, P. P., Scott, S., Kahler, B., & Walsh, L. J. (2020). Organic tissue
dissolution in clodronate and etidronate mixtures with sodium
hypochlorite. Journal of Endodontics, 46(2), 289-294.
Wu, D., Fan, W., Kishen, A., Gutmann, J. L., & Fan, B. (2014). Evaluation of
the antibacterial efficacy of silver nanoparticles against Enterococcus
faecalis biofilm. Journal of endodontics, 40(2), 285-290.
Wu, L., Mu, Y., Deng, X., Zhang, S., & Zhou, D. (2012). Comparison of the
effect of four decalcifying agents combined with 60 C 3% sodium
hypochlorite on smear layer removal. Journal of endodontics, 38(3),
381-384.
Yildirim, T., Oruçoğlu, H., & Çobankara, F. K. (2008). Long-term evaluation
of the influence of smear layer on the apical sealing ability of MTA.
Journal of endodontics, 34(12), 1537-1540.
Zehnder, M., Schmidlin, P., Sener, B., & Waltimo, T. (2005). Chelation in
root canal therapy reconsidered. Journal of endodontics, 31(11), 817-
820.
Zmener, O., & Banegas, G. (1996). Comparison of three instrumentation
techniques in the preparation of simulated curved root canals.
International endodontic journal, 29(5), 315-319.
Zollinger, A., Mohn, D., Zeltner, M., & Zehnder, M. (2018). Short‐term
storage stability of Na OC l solutions when combined with Dual Rinse
HEDP. International Endodontic Journal, 51(6), 691-696.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top