跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/22 18:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭康維
研究生(外文):VIVI TANG KANG WEE
論文名稱:發酵米糠水萃物對葡聚糖硫酸鈉引致之腸炎小鼠腸道發炎反應及腸道菌相之影響
論文名稱(外文):Effects of fermented rice bran water extract on colonic inflammation and microbial microbiota in dextran sodium sulfate-induced colitis mice
指導教授:葉秋莉
指導教授(外文):YEH, CHIU-LI
口試委員:邱琬淳陳雅琳葉秋莉
口試委員(外文):CHIU, WAN-CHUNCHEN, YA-LINGYEH, CHIU-LI
口試日期:2022-07-08
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:保健營養學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:110
中文關鍵詞:發炎性腸道疾病發酵米糠水萃物先天性淋巴細胞葡聚醣硫酸鈉芳香烴受體
外文關鍵詞:inflammatory bowel diseasefermented rice bran extractinnate lymphoid celldextran sodium sulfatearyl hydrocarbon receptor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
發炎性腸道疾病 (Inflammatory bowel disease, IBD) 與腸道免疫系統和菌相失衡,導致腸黏膜發炎與組織受損相關。發酵米糠水萃物 (Fermented rice bran extract, FRBe) 具有抗氧化與抗發炎功效但針對腸炎狀態下腸道先天性淋巴細胞之分佈及菌相之研究仍未知,故本實驗擬給予小鼠FRBe之介入後再使用Dextran sodium sulfate (DSS) 誘發腸炎以探討腸道先天性免疫及菌相組成之影響。本研究使用C57BL/6雄性小鼠,適應兩週後分為:正常飲食控制組 (Normal control, NC):給予AIN-93M飲食、發酵米糠控制組 (5% Fermented rice bran, 5% FRB):以AIN-93M為基礎給予佔飼料重量百分比5% (w/w) FRBe取代部分飼料,飲食介入四週後細分出正常飲食腸炎組 (NC+DSS, NCD) 以及發酵米糠腸炎組 (5% FRB+DSS, 5% FRBD),於腸炎組飲水添加2% DSS連續5天為引發期,而後五天之正常飲水為恢復期如此可誘發結腸炎並於第六天以心臟採血進行犧牲,收集血液、結腸、結腸沖洗液和糞便以待後續分析。結果顯示相較於正常組,腸炎小鼠疾病活動指數、腸道通透性、促發炎細胞激素及結腸損傷程度顯著增加,但腸黏膜完整性之表現量和Innate lymphoid cell (ILC) 3比例顯著降低。而給予5% FRBe取代部分飼料後經DSS誘導小鼠腸炎可通過增加腸道益生菌的生長、促進ILC3與腸道上皮細胞之間的Cross talk,活化Aryl hydrocarbon receptor (AhR) 細胞下游路徑產生Interleukin (IL)-22,維持腸黏膜屏障完整性及降低腸道發炎反應,以減輕腸炎造成之腸道通透性增加和結腸損傷,維持腸道正常生理功能。
Inflammatory bowel disease (IBD) is associated with an abnormal immune reactions to the gut microflora, leading to epithelial barrier disruption, recurrent inflammation and tissue damage. Fermented rice bran extract (FRBe), is rich in bioactive compounds and exhibits anti-colitis activity. However, the mechanism of FRBe regulates the interaction between gut microbiota and host immunity to ameliorate intestinal inflammation still remains unclear. In present study, C57BL/6 male mice were used and rando mLy divided into normal control group (NC) which was administered AIN-93M and 5% fermented rice bran group (5% FRB) which was provided control diet supplemented with 5% (w/w) FRBe instead apart of AIN-93M. After four weeks, the mice were subdivided into normal control colitis group (NCD) and 5% fermented rice bran colitis group (5% FRBD), 2% dextran sodium sulfate (DSS) mixed with drinking water were administered for 5 days to induce colitis, followed by 5 days recovery period which only drinking water was provided. Mice were sacrificed in day 6, and their serum, colon, colonic lavage fluid (CLF) and feces were collected for further analysis. Compared with normal condition mice, colitis mice showed elevated in disease activity index, intestinal permeability, pro-inflammatory cytokines and the colon histopathological scores including decrease the expression of intestinal tight junction and the distribution of innate lymphoid cell (ILC) 3. In contrast, DSS induced-colitis mice with 5% FRBe diet attenuated the microbiota dybiosis and promote the cross talk between ILC3 and intestinal epithelial cell, activated aryl hydrocarbon receptor (AhR) downstream pathway, triggering the production of interleukin (IL)-22 to maintain the mucosal barrier integrity and reduced intestinal inflammatory response, alleviates intestinal permeability and colon damage. Hence, these findings suggest that the FRB potently ameliorate colitis as a functional food.
中文摘要 I
英文摘要 II
目錄 III
圖目次 VIII
表目次 X
縮寫表 XI
第一章、 文獻回顧 1
第一節、 發炎性腸道疾病 (Inflammatory bowel disease, IBD) 簡介 1
1.1.1 發炎性腸道疾病的定義 1
1.1.2 IBD的盛行率 1
1.1.3 UC和CD的區別 3
1.1.4 DSS誘發腸炎的機制 4
1.1.5 發炎性腸道疾病的發病機制 5
1.1.6 IBD與芳香烴受體的關係 6
第二節、 芳香烴受體 (The aryl hydrocarbon receptor, AhR) 之介紹 6
1.2.1 AhR之構造 6
1.2.2 AhR之配體 (Ligand) 7
1.2.3 AhR Complex 9
1.2.4 AhR之活化路徑—AhR genomic和non genomic pathway 10
(1). AhR genomic pathway 10
(2). AhR non genomic pathway 11
第三節、 AhR路徑與黏膜上皮細胞之相關性 12
1.3.1 AhR調控腸道上皮細胞 (Intestinal epithelial cell, IEC) 之機轉 12
第四節、 先天性淋巴細胞 (Innate lymphoid cell, ILC) 之介紹 13
1.4.1 ILC之分類及其生理功能 13
(1). 第一類先天性淋巴細胞 (Group 1 ILC) 13
(2). 第二類先天性淋巴細胞 (Group 2 ILC) 14
(3). 第三類先天性淋巴細胞 (Group 3 ILC) 14
1.4.2 ILC與AhR之間的關係 17
(1). AhR與ILC1/NK cell之間的關係 17
(2). AhR與ILC2 cell之間的關係 17
(3). AhR與ILC3 cell之間的關係 17
1.4.3 AhR調控ILC細胞之可塑性 (Plasticity) 18
1.4.4 AhR調控ILC與其他細胞Cross talk之機轉 18
(1). ILC與腸道菌的cross talk 18
(2). ILC與黏膜上皮細胞的cross talk 18
(3). ILC與先天和後天性免疫反應的cross talk 19
1.4.5 IL-22調控腸道組織之介紹 21
1.4.6 腸道菌叢的重要性—腸肺軸 (Gut-Lung Axis, GLA) 之平衡 24
第五節、 發酵米糠簡介 27
1.5.1 發酵米糠之營養成分及保健功效 27
第二章、 研究動機與目的 30
第三章、 研究材料與方法 31
第一節、 實驗材料 31
3.1.1 發酵米糠水萃物 (Fermented rice bran extract, FRBe) 的製備 31
3.1.2 飼料配製 32
3.1.3 實驗動物飼養 33
第二節、 實驗方法與分析項目 34
3.2.1 實驗設計 34
3.2.2 分析項目 37
(1). 腸道內容物樣本分析 38
(2). 血清樣本分析 39
(3). 腸道樣本分析 40
(4). 結腸沖洗液 (Colonic lavage fluid, CLF) 樣本分析 45
(5). 結腸樣本分析 46
1. 反轉錄聚合酶連鎖反應 (RT-PCR) 47
2. 結腸組織中IL-22 (abcam) 之分析 50
3. 結腸組織中ZO-1 (FineTest®) 之分析 50
4. 結腸組織染色分析 51
5. 結腸脂質過氧化產物分析 53
第三節、 統計分析方法 54
第四章、 結果 55
第一節、 體重變化、平均攝食量、DSS飲用量、疾病活動指數 55
4.1.1 體重變化 55
4.1.2 平均攝食量、DSS飲用量 55
4.1.3 疾病活動指數 (DAI score)、結腸外觀與長度 55
第二節、 腸道通透性分析 56
4.2.1 血清中FITC-dextran的濃度 56
4.2.2 結腸組織中ZO-1蛋白質表現量 56
4.2.3 結腸組織Tight junction相關蛋白 (Occludin、ZO-1) 之mRNA表現量 56
第三節、 腸道Lamina propria中ILC3細胞之百分比含量 57
第四節、 AhR/IL-22/Stat 3細胞下游路徑相關之表現量 57
4.4.1 結腸組織中IL-22細胞激素的濃度 57
4.4.2 結腸組織中AhR/IL-22R/Stat 3細胞下游路徑之基因表現量 57
4.4.3 結腸組織中黏液素和Antibacterial peptides (AMPs) 之基因表現量 57
第五節、 結腸組織中促發炎細胞激素、趨化因子及其接收器之mRNA表現量 58
第六節、 結腸沖洗液 (CLF) 中IgA的濃度 58
第七節、 腸道菌相的多樣性、組成、各組別的特殊菌門及菌科 59
4.7.1 腸道菌相β-多樣性 59
4.7.2 腸道菌相組成 59
4.7.3 各組別的特殊腸道菌群 60
第八節、 結腸損傷程度 61
第九節、 氧化壓力指標MDA 61
第五章、 討論 83
第一節、 2% DSS飲水成功模擬腸炎模式 83
第二節、 發酵米糠水萃物之實際攝取量與人體劑量換算 84
第三節、 發酵米糠水萃物對結腸炎小鼠腸道通透性之影響 85
第四節、 發酵米糠水萃物對結腸炎小鼠Lamina propria中ILC3細胞比例之影響 87
第五節、 發酵米糠水萃物對結腸炎小鼠AhR/IL-22/Stat 3路徑之影響 88
第六節、 發酵米糠水萃物對結腸炎小鼠促發炎細胞因子之影響 90
第七節、 發酵米糠水萃物對結腸炎小鼠腸道菌相之影響 92
第八節、 發酵米糠水萃物對結腸炎小鼠結腸損傷和氧化壓力之影響 93
第六章、 結論 94
參考資料 95
附錄一、實驗動物照護及使用委員會審查同意書 110
圖一、台灣 UC 和 CD 的盛行率,2000-2010 2
圖二、 DSS 誘導結腸炎之示意圖 4
圖三、IBD 的致病機轉 5
圖四、AhR 的結構 6
圖五、AhR 內源性配體 8
圖六、The AhR genomic pathway 10
圖七、The AhR non genomic pathway 11
圖八、ILC 的分類 16
圖九、Group 3 ILC 的分化與發展 16
圖十、AhR 調控 ILC 與其他細胞之間 Cross talk 之機轉 20
圖十一、IL-22/Stat 3 路徑 23
圖十二、實驗流程圖 36
圖十三、小鼠於 DSS 介入期間之體重變化和趨勢 62
圖十四、疾病活動指數 64
圖十五、小鼠結腸外觀與長度 64
圖十六、血清中 FITC-dextran 的濃度 65
圖十七、結腸組織中 ZO-1 的濃度 65
圖十八、結腸組織中 Occludin 和 Claudin-1 之 mRNA 表現量 66
圖十九、腸道中 ILC3 細胞之圈選方式與百分比 (%) 含量 67
圖二十、結腸組織中 IL-22 細胞激素之濃度 68
圖二十一、結腸組織中 AhR/IL-22R/Stat 3 路徑相關之 mRNA 表現量 69
圖二十二、結腸組織中黏液素和 Antibacterial peptides (AMPs) 之基因表現量 70
圖二十三、結腸組織中促發炎細胞激素、趨化因子及其接收器之 mRNA 表現量 71
圖二十四、結腸沖洗液 (CLF) 中 IgA 的濃度 72
圖二十五、腸道菌相 β-多樣性 74
圖二十六、小鼠菌門 (Phylum) 階層的腸道菌相組成 75
圖二十七、各組別特殊腸道菌之 LDA 分支圖 76
圖二十八、各組別特殊腸道菌之 LDA 分數 77
圖二十九、NC 和 NCD 組特殊益生菌之相對含量比較 78
圖三十、NC 和 NCD 組特殊病原菌之相對含量比較 79
圖三十一、NCD 和 5% FRBD 組之特殊腸道菌相對含量比較 80
圖三十二、結腸組織切片之結果圖 81
圖三十三、腸道受損指數 82
圖三十四、結腸組織中過氧化指標 MDA 82
表一、UC 和 CD 的區別 3
表二、非發酵米糠與發酵米糠之營養組成 28
表三、非發酵米糠與發酵米糠之胺基酸組成分 29
表四、飼料組成分 32
表五、疾病活動指數 (DAI scorea) 之評分標準 35
表六、分析項目與方法 37
表七、分析腸道 ILC3 細胞分佈所使用的抗體 44
表八、目標基因引子 49
表九、結腸損傷之評分標準 52
表十、小鼠於 DSS 介入前後之體重、體重變化和體重變化百分比 62
表十一、各組小鼠平均攝食量和 DSS 飲用量 63
表十二、PERMANOVA 分析結果 73

1.Kuo, C.J., et al., The Trend of Inflammatory Bowel Diseases in Taiwan: A Population-Based Study. Dig Dis Sci, 2015. 60(8): p. 2454-62.
2.Ouyang, Q., et al., Management consensus of inflammatory bowel disease for the Asia-Pacific region. J Gastroenterol Hepatol, 2006. 21(12): p. 1772-82.
3.Chassaing, B., et al., Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol, 2014. 104: p. 15.25.1-15.25.14.
4.Abdel Hadi, L., C. Di Vito, and L. Riboni, Fostering Inflammatory Bowel Disease: Sphingolipid Strategies to Join Forces. Mediators Inflamm, 2016. 2016: p. 3827684.
5.Kirsner, J.B., Historical origins of current IBD concepts. World J Gastroenterol, 2001. 7(2): p. 175-84.
6.Qiu, J., et al., Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity, 2013. 39(2): p. 386-99.
7.Wang, Q., et al., Aryl hydrocarbon receptor inhibits inflammation in DSS‑induced colitis via the MK2/p‑MK2/TTP pathway. Int J Mol Med, 2018. 41(2): p. 868-876.
8.Arsenescu, R., et al., Role of the xenobiotic receptor in inflammatory bowel disease. Inflamm Bowel Dis, 2011. 17(5): p. 1149-62.
9.Yi, T., et al., Aryl Hydrocarbon Receptor: A New Player of Pathogenesis and Therapy in Cardiovascular Diseases. Biomed Res Int, 2018. 2018: p. 6058784.
10.Stejskalova, L., Z. Dvorak, and P. Pavek, Endogenous and exogenous ligands of aryl hydrocarbon receptor: current state of art. Curr Drug Metab, 2011. 12(2): p. 198-212.
11.Esser, C. and A. Rannug, The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol Rev, 2015. 67(2): p. 259-79.
12.Larigot, L., et al., AhR signaling pathways and regulatory functions. Biochim Open, 2018. 7: p. 1-9.
13.Ito, S., et al., Dietary phytochemicals regulate whole-body CYP1A1 expression through an arylhydrocarbon receptor nuclear translocator-dependent system in gut. J Clin Invest, 2007. 117(7): p. 1940-50.
14.Luang-In, V., et al., The metabolism of methylsulfinylalkyl- and methylthioalkyl-glucosinolates by a selection of human gut bacteria. Mol Nutr Food Res, 2014. 58(4): p. 875-83.
15.Yanofsky, C., V. Horn, and P. Gollnick, Physiological studies of tryptophan transport and tryptophanase operon induction in Escherichia coli. J Bacteriol, 1991. 173(19): p. 6009-17.
16.Lamas, B., J.M. Natividad, and H. Sokol, Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol, 2018. 11(4): p. 1024-1038.
17.Hahn, M.E., et al., Molecular evolution of two vertebrate aryl hydrocarbon (dioxin) receptors (AHR1 and AHR2) and the PAS family. Proc Natl Acad Sci U S A, 1997. 94(25): p. 13743-8.
18.Zhu, K., et al., Aryl hydrocarbon receptor pathway: Role, regulation and intervention in atherosclerosis therapy (Review). Mol Med Rep, 2019. 20(6): p. 4763-4773.
19.Tomkiewicz, C., et al., The aryl hydrocarbon receptor regulates focal adhesion sites through a non-genomic FAK/Src pathway. Oncogene, 2013. 32(14): p. 1811-20.
20.Diry, M., et al., Activation of the dioxin/aryl hydrocarbon receptor (AhR) modulates cell plasticity through a JNK-dependent mechanism. Oncogene, 2006. 25(40): p. 5570-4.
21.Matsumura, F., The significance of the nongenomic pathway in mediating inflammatory signaling of the dioxin-activated Ah receptor to cause toxic effects. Biochem Pharmacol, 2009. 77(4): p. 608-26.
22.Kamada, N. and G. Núñez, Regulation of the immune system by the resident intestinal bacteria. Gastroenterology, 2014. 146(6): p. 1477-88.
23.Cervantes-Barragan, L. and M. Colonna, AHR signaling in the development and function of intestinal immune cells and beyond. Semin Immunopathol, 2018. 40(4): p. 371-377.
24.Lanis, J.M., et al., Tryptophan metabolite activation of the aryl hydrocarbon receptor regulates IL-10 receptor expression on intestinal epithelia. Mucosal Immunol, 2017. 10(5): p. 1133-1144.
25.Yu, M., et al., Aryl Hydrocarbon Receptor Activation Modulates Intestinal Epithelial Barrier Function by Maintaining Tight Junction Integrity. Int J Biol Sci, 2018. 14(1): p. 69-77.
26.Metidji, A., et al., The Environmental Sensor AHR Protects from Inflammatory Damage by Maintaining Intestinal Stem Cell Homeostasis and Barrier Integrity. Immunity, 2018. 49(2): p. 353-362.e5.
27.Ji, T., et al., Aryl Hydrocarbon Receptor Activation Down-Regulates IL-7 and Reduces Inflammation in a Mouse Model of DSS-Induced Colitis. Dig Dis Sci, 2015. 60(7): p. 1958-66.
28.Rothhammer, V. and F.J. Quintana, The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat Rev Immunol, 2019. 19(3): p. 184-197.
29.Zheng, Y., et al., Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med, 2008. 14(3): p. 282-9.
30.Zhong, C., et al., Group 3 innate lymphoid cells continuously require the transcription factor GATA-3 after commitment. Nat Immunol, 2016. 17(2): p. 169-78.
31.Kiessling, R., et al., "Natural" killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol, 1975. 5(2): p. 117-21.
32.Mebius, R.E., P. Rennert, and I.L. Weissman, Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity, 1997. 7(4): p. 493-504.
33.Spits, H. and J.P. Di Santo, The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol, 2011. 12(1): p. 21-7.
34.Eberl, G., et al., Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science, 2015. 348(6237): p. aaa6566.
35.An, Z., et al., Pleiotropic Role and Bidirectional Immunomodulation of Innate Lymphoid Cells in Cancer. Front Immunol, 2019. 10: p. 3111.
36.Klose, C.S.N., et al., Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell, 2014. 157(2): p. 340-356.
37.Zhang, K., et al., Cutting Edge: Notch Signaling Promotes the Plasticity of Group-2 Innate Lymphoid Cells. J Immunol, 2017. 198(5): p. 1798-1803.
38.Mohapatra, A., et al., Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis. Mucosal Immunol, 2016. 9(1): p. 275-86.
39.Monticelli, L.A., et al., IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc Natl Acad Sci U S A, 2015. 112(34): p. 10762-7.
40.Pantazi, E. and N. Powell, Group 3 ILCs: Peacekeepers or Troublemakers? What's Your Gut Telling You?! Front Immunol, 2019. 10: p. 676.
41.Eberl, G., et al., An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol, 2004. 5(1): p. 64-73.
42.Klose, C.S., et al., A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature, 2013. 494(7436): p. 261-5.
43.Gladiator, A., et al., Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol, 2013. 190(2): p. 521-5.
44.Buonocore, S., et al., Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature, 2010. 464(7293): p. 1371-5.
45.Shin, J.H., et al., Modulation of natural killer cell antitumor activity by the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A, 2013. 110(30): p. 12391-6.
46.Zhang, L.H., et al., The aryl hydrocarbon receptor is required for the maintenance of liver-resident natural killer cells. J Exp Med, 2016. 213(11): p. 2249-2257.
47.Molofsky, A.B., et al., Interleukin-33 and Interferon-γ Counter-Regulate Group 2 Innate Lymphoid Cell Activation during Immune Perturbation. Immunity, 2015. 43(1): p. 161-74.
48.Qiu, J., et al., The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity, 2012. 36(1): p. 92-104.
49.Xia, P., et al., WASH maintains NKp46(+) ILC3 cells by promoting AHR expression. Nat Commun, 2017. 8: p. 15685.
50.Kiss, E.A., et al., Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science, 2011. 334(6062): p. 1561-5.
51.Song, C., et al., Unique and redundant functions of NKp46+ ILC3s in models of intestinal inflammation. J Exp Med, 2015. 212(11): p. 1869-82.
52.Vonarbourg, C., et al., Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt(+) innate lymphocytes. Immunity, 2010. 33(5): p. 736-51.
53.Bernink, J.H., et al., Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol, 2013. 14(3): p. 221-9.
54.Bernink, J.H., et al., Interleukin-12 and -23 Control Plasticity of CD127(+) Group 1 and Group 3 Innate Lymphoid Cells in the Intestinal Lamina Propria. Immunity, 2015. 43(1): p. 146-60.
55.Hughes, T., et al., The transcription Factor AHR prevents the differentiation of a stage 3 innate lymphoid cell subset to natural killer cells. Cell Rep, 2014. 8(1): p. 150-62.
56.Lee, J.S., M. Cella, and M. Colonna, AHR and the Transcriptional Regulation of Type-17/22 ILC. Front Immunol, 2012. 3: p. 10.
57.Gury-BenAri, M., et al., The Spectrum and Regulatory Landscape of Intestinal Innate Lymphoid Cells Are Shaped by the Microbiome. Cell, 2016. 166(5): p. 1231-1246.e13.
58.Schiering, C., et al., Feedback control of AHR signalling regulates intestinal immunity. Nature, 2017. 542(7640): p. 242-245.
59.Goto, Y., et al., Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science, 2014. 345(6202): p. 1254009.
60.Lindemans, C.A., et al., Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature, 2015. 528(7583): p. 560-564.
61.Goudot, C., et al., Aryl Hydrocarbon Receptor Controls Monocyte Differentiation into Dendritic Cells versus Macrophages. Immunity, 2017. 47(3): p. 582-596.e6.
62.Satoh-Takayama, N., et al., Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity, 2008. 29(6): p. 958-70.
63.Longman, R.S., et al., CX₃CR1⁺ mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med, 2014. 211(8): p. 1571-83.
64.Ivanov, II, et al., Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell, 2009. 139(3): p. 485-98.
65.Atarashi, K., et al., Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells. Cell, 2015. 163(2): p. 367-80.
66.Li, J., et al., Aryl Hydrocarbon Receptor Activation Suppresses EBF1 and PAX5 and Impairs Human B Lymphopoiesis. J Immunol, 2017. 199(10): p. 3504-3515.
67.Li, S., J.W. Bostick, and L. Zhou, Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor. Front Immunol, 2017. 8: p. 1909.
68.Xie, M.H., et al., Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem, 2000. 275(40): p. 31335-9.
69.Wolk, K., et al., IL-22 increases the innate immunity of tissues. Immunity, 2004. 21(2): p. 241-54.
70.Cella, M., et al., A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature, 2009. 457(7230): p. 722-5.
71.Zenewicz, L.A., et al., Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity, 2008. 29(6): p. 947-57.
72.Zindl, C.L., et al., IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proc Natl Acad Sci U S A, 2013. 110(31): p. 12768-73.
73.Korn, L.L., et al., Conventional CD4+ T cells regulate IL-22-producing intestinal innate lymphoid cells. Mucosal Immunol, 2014. 7(5): p. 1045-57.
74.Huber, S., et al., IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature, 2012. 491(7423): p. 259-63.
75.Wolk, K., et al., IL-22 induces lipopolysaccharide-binding protein in hepatocytes: a potential systemic role of IL-22 in Crohn's disease. J Immunol, 2007. 178(9): p. 5973-81.
76.Penel-Sotirakis, K., et al., Differential capacity of human skin dendritic cells to polarize CD4+ T cells into IL-17, IL-21 and IL-22 producing cells. PLoS One, 2012. 7(11): p. e45680.
77.Tumanov, A.V., et al., Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe, 2011. 10(1): p. 44-53.
78.Macho-Fernandez, E., et al., Lymphotoxin beta receptor signaling limits mucosal damage through driving IL-23 production by epithelial cells. Mucosal Immunol, 2015. 8(2): p. 403-13.
79.Lamas, B., et al., CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med, 2016. 22(6): p. 598-605.
80.Dhama, K., et al., Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci, 2019. 6: p. 91.
81.Bevins, C.L. and N.H. Salzman, Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol, 2011. 9(5): p. 356-68.
82.Furumatsu, K., et al., A role of the aryl hydrocarbon receptor in attenuation of colitis. Dig Dis Sci, 2011. 56(9): p. 2532-44.
83.Morita, H., K. Moro, and S. Koyasu, Innate lymphoid cells in allergic and nonallergic inflammation. J Allergy Clin Immunol, 2016. 138(5): p. 1253-1264.
84.Deitch, E.A., Gut lymph and lymphatics: a source of factors leading to organ injury and dysfunction. Ann N Y Acad Sci, 2010. 1207 Suppl 1: p. E103-11.
85.Flint, H.J., et al., The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol, 2012. 9(10): p. 577-89.
86.Ndongo, S., et al., "Ihubacter massiliensis": a new bacterium isolated from the human gut. New Microbes New Infect, 2016. 13: p. 104-5.
87.Morris, A., et al., Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med, 2013. 187(10): p. 1067-75.
88.Shreiner, A.B., J.Y. Kao, and V.B. Young, The gut microbiome in health and in disease. Curr Opin Gastroenterol, 2015. 31(1): p. 69-75.
89.Massart, A. and D.P. Hunt, Pulmonary Manifestations of Inflammatory Bowel Disease. Am J Med, 2020. 133(1): p. 39-43.
90.Metsälä, J., et al., Prenatal and post-natal exposure to antibiotics and risk of asthma in childhood. Clin Exp Allergy, 2015. 45(1): p. 137-45.
91.Gensollen, T., et al., How colonization by microbiota in early life shapes the immune system. Science, 2016. 352(6285): p. 539-44.
92.Russell, S.L., et al., Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma. Gut Microbes, 2013. 4(2): p. 158-64.
93.Dilantika, C., et al., Influenza virus infection among pediatric patients reporting diarrhea and influenza-like illness. BMC Infect Dis, 2010. 10: p. 3.
94.Samuelson, D.R., et al., Analysis of the intestinal microbial community and inferred functional capacities during the host response to Pneumocystis pneumonia. Exp Lung Res, 2016. 42(8-10): p. 425-439.
95.Sze, M.A., et al., Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs. PLoS One, 2014. 9(10): p. e111228.
96.Ichinohe, T., et al., Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci U S A, 2011. 108(13): p. 5354-9.
97.Qian, G., et al., LPS inactivation by a host lipase allows lung epithelial cell sensitization for allergic asthma. J Exp Med, 2018. 215(9): p. 2397-2412.
98.Budden, K.F., et al., Emerging pathogenic links between microbiota and the gut–lung axis. Nature Reviews Microbiology, 2017. 15(1): p. 55.
99.Trompette, A., et al., Dietary Fiber Confers Protection against Flu by Shaping Ly6c(-) Patrolling Monocyte Hematopoiesis and CD8(+) T Cell Metabolism. Immunity, 2018. 48(5): p. 992-1005.e8.
100.Zelante, T., et al., Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity, 2013. 39(2): p. 372-85.
101.Huang, Y., et al., S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science, 2018. 359(6371): p. 114-119.
102.Wypych, T.P., L.C. Wickramasinghe, and B.J. Marsland, The influence of the microbiome on respiratory health. Nat Immunol, 2019. 20(10): p. 1279-1290.
103.Gasteiger, G., et al., Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science, 2015. 350(6263): p. 981-5.
104.Gray, J., et al., Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Sci Transl Med, 2017. 9(376).
105.Trinovita, E., F. Chany Saputri, and A. Mun'im, Potential Gastroprotective Activity of Rice Bran (Oryza sativa L.) Extracted by Ionic Liquid-Microwave-Assisted Extraction against Ethanol-Induced Acute Gastric Ulcers in Rat Model. Sci Pharm, 2018. 86(3).
106.Jolfaie, N.R., et al., Rice Bran Oil Decreases Total and LDL Cholesterol in Humans: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Horm Metab Res, 2016. 48(7): p. 417-26.
107.Norazalina, S., et al., Anticarcinogenic efficacy of phytic acid extracted from rice bran on azoxymethane-induced colon carcinogenesis in rats. Exp Toxicol Pathol, 2010. 62(3): p. 259-68.
108.Ogawa, S., Chemical components of rice bran: myo-inositol and related compounds: a review. Anticancer Res, 1999. 19(5a): p. 3635-44.
109.Kim, K.M., et al., Anti-stress and anti-fatigue effects of fermented rice bran. Biosci Biotechnol Biochem, 2001. 65(10): p. 2294-6.
110.Alauddin, M., et al., Fermented rice bran supplementation mitigates metabolic syndrome in stroke-prone spontaneously hypertensive rats. BMC Complement Altern Med, 2016. 16(1): p. 442.
111.Kataoka, K., et al., Inhibitory effects of fermented brown rice on induction of acute colitis by dextran sulfate sodium in rats. Dig Dis Sci, 2008. 53(6): p. 1601-8.
112.Islam, J., et al., Dietary supplementation of fermented rice bran effectively alleviates dextran sodium sulfate-induced colitis in mice. Nutrients, 2017. 9(7): p. 747.
113.Islam, J., et al., Dietary tryptophan alleviates dextran sodium sulfate-induced colitis through aryl hydrocarbon receptor in mice. The Journal of nutritional biochemistry, 2017. 42: p. 43-50.
114.Huang, C.H., et al., A soybean and fish oil mixture with different n-6/n-3 PUFA ratios modulates the inflammatory reaction in mice with dextran sulfate sodium-induced acute colitis. Clin Nutr, 2015. 34(5): p. 1018-24.
115.Park, Y.H., et al., Adequate Dextran Sodium Sulfate-induced Colitis Model in Mice and Effective Outcome Measurement Method. J Cancer Prev, 2015. 20(4): p. 260-7.
116.Hou, Y.C., et al., Effects of alanyl-glutamine dipeptide on the expression of colon-inflammatory mediators during the recovery phase of colitis induced by dextran sulfate sodium. Eur J Nutr, 2013. 52(3): p. 1089-98.
117.Islam, J., et al., Fermented rice bran supplementation attenuates chronic colitis-associated extraintestinal manifestations in female C57BL/6N mice. J Nutr Biochem, 2022. 99: p. 108855.
118.Kiesler, P., I.J. Fuss, and W. Strober, Experimental Models of Inflammatory Bowel Diseases. Cell Mol Gastroenterol Hepatol, 2015. 1(2): p. 154-170.
119.Ahmed, T., et al., Management of severe malnutrition and diarrhea. Indian J Pediatr, 2001. 68(1): p. 45-51.
120.Nordgren, S., et al., Small bowel length in inflammatory bowel disease. Int J Colorectal Dis, 1997. 12(4): p. 230-4.
121.Salzman, N.H., Microbiota-immune system interaction: an uneasy alliance. Curr Opin Microbiol, 2011. 14(1): p. 99-105.
122.Caruso, R., B.C. Lo, and G. Núñez, Host-microbiota interactions in inflammatory bowel disease. Nat Rev Immunol, 2020. 20(7): p. 411-426.
123.Salminen, S., Y. Benno, and W. de Vos, Intestinal colonisation, microbiota and future probiotics? Asia Pac J Clin Nutr, 2006. 15(4): p. 558-62.
124.Neish, A.S., Microbes in gastrointestinal health and disease. Gastroenterology, 2009. 136(1): p. 65-80.
125.Seki, E. and B. Schnabl, Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J Physiol, 2012. 590(3): p. 447-58.
126.Ilan, Y., Leaky gut and the liver: a role for bacterial translocation in nonalcoholic steatohepatitis. World J Gastroenterol, 2012. 18(21): p. 2609-18.
127.Yan, Y., et al., Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis. PLoS One, 2009. 4(6): p. e6073.
128.Poritz, L.S., et al., Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J Surg Res, 2007. 140(1): p. 12-9.
129.Poritz, L.S., et al., Increase in the tight junction protein claudin-1 in intestinal inflammation. Dig Dis Sci, 2011. 56(10): p. 2802-9.
130.Monteleone, I., F. Pallone, and G. Monteleone, Aryl hydrocarbon receptor and colitis. Semin Immunopathol, 2013. 35(6): p. 671-5.
131.Sabihi, M., et al., Microbiota-Dependent Effects of IL-22. Cells, 2020. 9(10).
132.Blander, J.M., et al., Regulation of inflammation by microbiota interactions with the host. Nat Immunol, 2017. 18(8): p. 851-860.
133.Round, J.L. and S.K. Mazmanian, The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol, 2009. 9(5): p. 313-23.
134.Zasloff, M., Antimicrobial Peptides of Multicellular Organisms: My Perspective. Adv Exp Med Biol, 2019. 1117: p. 3-6.
135.Ganz, T., Antimicrobial polypeptides. J Leukoc Biol, 2004. 75(1): p. 34-8.
136.Vaishnava, S., et al., Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A, 2008. 105(52): p. 20858-63.
137.Forkel, M. and J. Mjösberg, Dysregulation of Group 3 Innate Lymphoid Cells in the Pathogenesis of Inflammatory Bowel Disease. Curr Allergy Asthma Rep, 2016. 16(10): p. 73.
138.Grady, W.M., Making the case for DCC and UNC5C as tumor-suppressor genes in the colon. Gastroenterology, 2007. 133(6): p. 2045-9.
139.Rojas-Cartagena, C., I. Flores, and C.B. Appleyard, Role of tumor necrosis factor receptors in an animal model of acute colitis. Cytokine, 2005. 32(2): p. 85-93.
140.Su, L., et al., TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology, 2013. 145(2): p. 407-15.
141.Al-Sadi, R., et al., Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One, 2014. 9(3): p. e85345.
142.Suzuki, T., N. Yoshinaga, and S. Tanabe, Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem, 2011. 286(36): p. 31263-71.
143.Dinarello, C.A., Biologic basis for interleukin-1 in disease. Blood, 1996. 87(6): p. 2095-147.
144.Dinarello, C.A., Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol, 2009. 27: p. 519-50.
145.Satsangi, J., et al., Interleukin 1 in Crohn's disease. Clin Exp Immunol, 1987. 67(3): p. 594-605.
146.Mahida, Y.R., K. Wu, and D.P. Jewell, Enhanced production of interleukin 1-beta by mononuclear cells isolated from mucosa with active ulcerative colitis of Crohn's disease. Gut, 1989. 30(6): p. 835-8.
147.Panés, J. and D.N. Granger, Leukocyte-endothelial cell interactions: molecular mechanisms and implications in gastrointestinal disease. Gastroenterology, 1998. 114(5): p. 1066-90.
148.Elliott, S.N. and J.L. Wallace, Neutrophil-mediated gastrointestinal injury. Can J Gastroenterol, 1998. 12(8): p. 559-68.
149.Luther, S.A. and J.G. Cyster, Chemokines as regulators of T cell differentiation. Nat Immunol, 2001. 2(2): p. 102-7.
150.Allavena, P., et al., Induction of natural killer cell migration by monocyte chemotactic protein-1, -2 and -3. Eur J Immunol, 1994. 24(12): p. 3233-6.
151.Bischoff, S.C., et al., RANTES and related chemokines activate human basophil granulocytes through different G protein-coupled receptors. Eur J Immunol, 1993. 23(3): p. 761-7.
152.Carr, M.W., et al., Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A, 1994. 91(9): p. 3652-6.
153.Leonard, E.J. and T. Yoshimura, Human monocyte chemoattractant protein-1 (MCP-1). Immunol Today, 1990. 11(3): p. 97-101.
154.Banks, C., et al., Chemokine expression in IBD. Mucosal chemokine expression is unselectively increased in both ulcerative colitis and Crohn's disease. J Pathol, 2003. 199(1): p. 28-35.
155.Cummings, C.J., et al., Expression and function of the chemokine receptors CXCR1 and CXCR2 in sepsis. J Immunol, 1999. 162(4): p. 2341-6.
156.Ritzman, A.M., et al., The chemokine receptor CXCR2 ligand KC (CXCL1) mediates neutrophil recruitment and is critical for development of experimental Lyme arthritis and carditis. Infect Immun, 2010. 78(11): p. 4593-600.
157.Adams, J.M., et al., Early trauma polymorphonuclear neutrophil responses to chemokines are associated with development of sepsis, pneumonia, and organ failure. J Trauma, 2001. 51(3): p. 452-6; discussion 456-7.
158.Wang, D., R.N. Dubois, and A. Richmond, The role of chemokines in intestinal inflammation and cancer. Curr Opin Pharmacol, 2009. 9(6): p. 688-96.
159.Chami, B., et al., The role of CXCR3 in DSS-induced colitis. PLoS One, 2014. 9(7): p. e101622.
160.Cole, K.E., et al., Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med, 1998. 187(12): p. 2009-21.
161.Schroepf, S., et al., Strong overexpression of CXCR3 axis components in childhood inflammatory bowel disease. Inflamm Bowel Dis, 2010. 16(11): p. 1882-90.
162.Matsuoka, K. and T. Kanai, The gut microbiota and inflammatory bowel disease. Semin Immunopathol, 2015. 37(1): p. 47-55.
163.Khan, I., et al., Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens, 2019. 8(3).
164.Carvalho, F.A., et al., Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe, 2012. 12(2): p. 139-52.
165.McMurtry, V.E., et al., Bacterial diversity and Clostridia abundance decrease with increasing severity of necrotizing enterocolitis. Microbiome, 2015. 3: p. 11.
166.Xu, X., et al., Histological and ultrastructural changes of the colon in dextran sodium sulfate-induced mouse colitis. Exp Ther Med, 2020. 20(3): p. 1987-1994.
167.Baumgart, D.C. and W.J. Sandborn, Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet, 2007. 369(9573): p. 1641-57.
168.Melgar, S., A. Karlsson, and E. Michaëlsson, Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. Am J Physiol Gastrointest Liver Physiol, 2005. 288(6): p. G1328-38.
169.Taghipour, N., et al., An experimental model of colitis induced by dextran sulfate sodium from acute progresses to chronicity in C57BL/6: correlation between conditions of mice and the environment. Gastroenterol Hepatol Bed Bench, 2016. 9(1): p. 45-52.
170.Tanaka, M., et al., Morphologic criteria applicable to biopsy specimens for effective distinction of inflammatory bowel disease from other forms of colitis and of Crohn's disease from ulcerative colitis. Scand J Gastroenterol, 1999. 34(1): p. 55-67.
171.Geboes, K. and I. Dalle, Influence of treatment on morphological features of mucosal inflammation. Gut, 2002. 50 Suppl 3(Suppl 3): p. Iii37-42.
172.Cherian, D.A., et al., Malondialdehyde as a Marker of Oxidative Stress in Periodontitis Patients. J Pharm Bioallied Sci, 2019. 11(Suppl 2): p. S297-s300.
173.Kangari, P., et al., Enzymatic Antioxidant and Lipid Peroxidation Evaluation in the Newly Diagnosed Breast Cancer Patients in Iran. Asian Pac J Cancer Prev, 2018. 19(12): p. 3511-3515.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊