|
References [1] D. Smrke, P. Rožman, M. Veselko, B. Gubina, Treatment of bone defects—allogenic platelet gel and autologous bone technique, IntechOpen2013. [2] H. Xiang, Y. Wang, H. Chang, S. Yang, M. Tu, X. Zhang, B. Yu, Cerium-containing α-calcium sulfate hemihydrate bone substitute promotes osteogenesis, Journal of biomaterials applications, 34 (2019) 250-260. [3] G. Fernandez de Grado, L. Keller, Y. Idoux-Gillet, Q. Wagner, A.-M. Musset, N. Benkirane-Jessel, F. Bornert, D. Offner, Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management, Journal of tissue engineering, 9 (2018) 2041731418776819. [4] J. Escoda‐Francolí, M.Á. Sánchez‐Garcés, Á. Gimeno‐Sandig, F. Muñoz‐Guzón, J.R. Barbany‐Cairó, L. Badiella‐Busquets, C. Gay‐Escoda, Guided bone regeneration using beta‐tricalcium phosphate with and without fibronectin—An experimental study in rats, Clinical oral implants research, 29 (2018) 1038-1049. [5] M. Yamada, H. Egusa, Current bone substitutes for implant dentistry, Journal of prosthodontic research, 62 (2018) 152-161. [6] H.-S. Sohn, J.-K. Oh, Review of bone graft and bone substitutes with an emphasis on fracture surgeries, Biomaterials research, 23 (2019) 1-7. [7] D.A. Auston, M. Feibert, T. Craig, T.A. Damron, Unexpected radiographic lucency following grafting of bone defects with calcium sulfate/tricalcium phosphate bone substitute, Skeletal radiology, 44 (2015) 1453-1459. [8] D.C. Lobb, B.R. DeGeorge Jr, A.B. Chhabra, Bone graft substitutes: current concepts and future expectations, The Journal of hand surgery, 44 (2019) 497-505. e492. [9] T. Rolvien, M. Barbeck, S. Wenisch, M. Amling, M. Krause, Cellular mechanisms responsible for success and failure of bone substitute materials, International journal of molecular sciences, 19 (2018) 2893. [10] Y.-C. Fu, Y.-H. Wang, C.-H. Chen, C.-K. Wang, G.-J. Wang, M.-L. Ho, Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects, International journal of nanomedicine, 10 (2015) 7231. [11] T.-f. Kuo, S.-Y. Lee, H.-D. Wu, M. Poma, Y.-W. Wu, J.-C. Yang, An in vivo swine study for xeno-grafts of calcium sulfate-based bone grafts with human dental pulp stem cells (hDPSCs), Materials Science and Engineering: C, 50 (2015) 19-23. [12] G. Yang, J. Liu, F. Li, Z. Pan, X. Ni, Y. Shen, H. Xu, Q. Huang, Bioactive calcium sulfate/magnesium phosphate cement for bone substitute applications, Materials Science and Engineering: C, 35 (2014) 70-76. [13] G. Orsini, J. Ricci, A. Scarano, G. Pecora, G. Petrone, G. Iezzi, A. Piattelli, Bone‐defect healing with calcium‐sulfate particles and cement: An experimental study in rabbit, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 68 (2004) 199-208. [14] R. Guarnieri, R. Grassi, M. Ripari, G. Pecora, Maxillary sinus augmentation using granular calcium sulfate (surgiplaster sinus): radiographic and histologic study at 2 years, International Journal of Periodontics & Restorative Dentistry, 26 (2006). [15] R. Bagoff, S. Mamidwar, I. Chesnoiu-Matei, J.L. Ricci, H. Alexander, N.M. Tovar, Socket preservation and sinus augmentation using a medical grade calcium sulfate hemihydrate and mineralized irradiated cancellous bone allograft composite, Journal of Oral Implantology, 39 (2013) 363-371. [16] R. Guarnieri, G. Pecora, M. Fini, N.N. Aldini, R. Giardino, G. Orsini, A. Piattelli, Medical grade calcium sulfate hemihydrate in healing of human extraction sockets: clinical and histological observations at 3 months, Journal of periodontology, 75 (2004) 902-908. [17] Z.L. Meng, Z.Q. Wu, B.X. Shen, H.B. Li, Y.Y. Bian, D.L. Zeng, J. Fu, L. Peng, Reconstruction of large segmental bone defects in rabbit using the Masquelet technique with α-calcium sulfate hemihydrate, Journal of orthopaedic surgery and research, 14 (2019) 1-12. [18] S. Zhang, K. Yang, F. Cui, Y. Jiang, B. Xu, H. Liu, A novel injectable magnesium/calcium sulfate hemihydrate composite cement for bone regeneration, BioMed research international, 2015 (2015). [19] H.J. Hsu, R.A. Waris, M. Ruslin, Y.H. Lin, C.S. Chen, K.L. Ou, An innovative α‐calcium sulfate hemihydrate bioceramic as a potential bone graft substitute, Journal of the American Ceramic Society, 101 (2018) 419-427. [20] Y. Kumar, K. Nalini, J. Menon, D.K. Patro, B. Banerji, Calcium sulfate as bone graft substitute in the treatment of osseous bone defects, a prospective study, Journal of clinical and diagnostic research: JCDR, 7 (2013) 2926. [21] E. Ruga, C. Gallesio, L. Chiusa, P. Boffano, Clinical and histologic outcomes of calcium sulfate in the treatment of postextraction sockets, Journal of Craniofacial Surgery, 22 (2011) 494-498. [22] S.M. Toloue, I. Chesnoiu‐Matei, S.B. Blanchard, A clinical and histomorphometric study of calcium sulfate compared with freeze‐dried bone allograft for alveolar ridge preservation, Journal of periodontology, 83 (2012) 847-855. [23] B. Von Rechenberg, O.R. Génot, K. Nuss, L. Galuppo, M. Fulmer, E. Jacobson, P. Kronen, K. Zlinszky, J.A. Auer, Evaluation of four biodegradable, injectable bone cements in an experimental drill hole model in sheep, European Journal of Pharmaceutics and Biopharmaceutics, 85 (2013) 130-138. [24] K. Mao, F. Zhou, F. Cui, J. Li, X. Hou, P. Li, M. Du, M. Liang, Y. Wang, Preparation and properties of α-calcium sulphate hemihydrate and β-tricalcium phosphate bone substitute, Bio-medical materials and engineering, 23 (2013) 197-210. [25] B. Guan, Q. Ye, J. Zhang, W. Lou, Z. Wu, Interaction between α-calcium sulfate hemihydrate and superplasticizer from the point of adsorption characteristics, hydration and hardening process, Cement and Concrete Research, 40 (2010) 253-259.
|