跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 05:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:卓彥君
研究生(外文):CHOU, YEN-CHUN
論文名稱:奈米生醫可吸收陶瓷:功能性與生物相容性檢測及動物研究
論文名稱(外文):Research on Nano Biomedical Absorbable Ceramics: Functionality, Biocompatibility and Animal Study
指導教授:黃瓊芳
指導教授(外文):HUANG, CHIUNG-FANG
口試委員:黃瓊芳彭珮雯藍文謙
口試委員(外文):HUANG, CHIUNG-FANGPENG, PEI-WENLAN, WEN-CHIEN
口試日期:2022-01-14
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:牙體技術學系碩士班
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:50
中文關鍵詞:半水硫酸钙生物陶瓷骨缺损骨移植替代品骨再生
外文關鍵詞:calcium sulfate hemihydratebioceramicbone defectbone graft substitutebone regeneration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
論文名稱:奈米生醫可吸收陶瓷:功能性與生物相容性檢測及動物研究
臺北醫學大學牙體技術學系碩士班
研究生姓名:卓彥君
指導教授:黃瓊芳 臺北醫學大學牙體技術學系 教授

目標:依據ISO 10993-6 規範,將奈米生醫可吸收陶瓷植入兔子腿骨,評估並比較植入奈米生醫可吸收陶瓷後新骨形成以及局部組織反應。
研究方法:將測試物品與無菌水混合(測試物:水= 1:0.6),接著將測試物品填入植入預定位置。對照物和假手術(空白)用作本試驗中的對照組。對照物切成較小塊後再進行植入。在每個時間點 (2 週,4 週,8 週及12 週) 進行μCT分析,計算骨填充物的降解率和新生骨形成率。實驗結束後,將兔子犧牲後取其組織切片進行觀察。


Abstract
Title of Thesis: Research on nano biomedical absorbable ceramics: functionality, biocompatibility and animal study
Author: Chou, Yen-Chun
Thesis advised by: Prof. Chiung-Fang Huang, School of Dental Technology, Taipei Medical University

The present study implanted an innovative bioceramic (α-calcium sulfate hemihydrate; α-CSH) on rabbit models' femur lateral condyle cortical bone. The local effect and micro-computed tomographic (μ-CT) assessment were conducted. The innovative α-CSH bioceramic was synthesized through a green processing technology (microwave irradiation treatment). The bilateral implantation model was performed among 24 New Zealand White rabbits divided into three groups based on the type of filling materials: α-CSH, control, and blank. Treatments were performed in defects with 6 mm diameter and 7 mm depth and observed after 2, 4, 8, and 12 weeks. The present study evaluated material reaction and bone formation after implantation radiographically and histopathologically.
The μ-CT analysis results showed that the degradation of α-CSH and control material was similar at 4 and 8 weeks. The bone volume in the defects indicated the α-CSH increased most in 8 weeks. In histopathological evaluation, for the α-CSH group, the bone defect area filled with lamellar bone and well-grown bone marrow infiltration is similar to that of the control material.
Moreover, the α-CSH revealed a faster degradation rate and better healing progress than the control material under the same conditions. Therefore, the α-CSH was confirmed to help promote osteoconduction and control the resorption rate in bone defects. Further, the innovative α-CSH could be considered a promising bone substitute for reconstructive bone therapy in dental and orthopedic fields.

目錄
目錄 I
TABLE CAPTION III
圖目錄FIGURE CAPTION IV
中文摘要 VI
ABSTRACT VII
INTRODUCTION 1
1-1 PROBLEM STATEMENT 1
1-2 PURPOSE 2
MATERIALS AND METHODS 3
EXPERIMENTAL MATERIALS 3
3-1-1 Materials 3
3-1-2 Experimental grouping 3
3-2 EXPERIMENTAL PROCEDURES 4
3-2-1 Samples preparation 4
3-2-2 Pre-operative preparation and execution 4
3-2-3 Tissue collection 6
3-2-4 μCT analysis 6
3-2-4 Histopathological examination 6
3-2-5 Material residual volume ratio 7
RESULTS 9
4-1 MACROSCOPIC OBSERVATION OF FEMORAL CONDYLE 9
4-2 HISTOPATHOLOGICAL SCORE 9
4-3 HISTOPATHOLOGICAL EVALUATION 9
4-4 ΜCT ASSESSMENT 11
DISCUSSION 13
CONCLUSION 16
REFERENCES 17


Table Caption
Table 3- 1 Experimental groups 30
Table 3- 2 Implantation sites at each point. 31
Table 3- 3 Description of animal groups at 2 weeks. 32
Table 3- 4 Description of animal groups at 4 weeks. 33
Table 3- 5 Description of animal groups at 8 weeks. 34
Table 3- 6 Description of animal groups at 12 weeks. 35

Table 4- 1 Pathological analysis scores around the implantation site at 2 weeks after implantation. 36
Table 4- 2 Pathological analysis scores around the implantation site at 4 weeks after implantation. 37
Table 4- 3 Pathological analysis scores around the implantation site at 8 weeks after implantation. 38
Table 4- 4 Pathological analysis scores around the implantation site at 12 weeks after implantation. 39


Figure Caption
Figure 4- 1 Image of H&E-stained bone tissue of Blank Group 2 weeks after implantation. 40
Figure 4- 2 Image of H&E-stained bone tissue of Control Group 2 weeks after implantation. 41
Figure 4- 3 Image of H&E-stained bone tissue of Alpha-Former Group 2 weeks after implantation. 42
Figure 4- 4 Image of H&E-stained bone tissue of Blank Group 4 weeks after implantation. 43
Figure 4- 5 Image of H&E-stained bone tissue of Control Group 4 weeks after implantation. 44
Figure 4- 6 Image of H&E-stained bone tissue of Alpha-Former Group 4 weeks after implantation. 45
Figure 4- 7 Image of H&E-stained bone tissue of Blank Group 8 weeks after implantation. 46
Figure 4- 8 Image of H&E-stained bone tissue of Control Group 8 weeks after implantation. 47
Figure 4- 9 Image of H&E-stained bone tissue of Alpha-Former Group 8 weeks after implantation. 48
Figure 4- 10 Image of H&E-stained bone tissue of Blank Group 12 weeks after implantation. 49
Figure 4- 11 Image of H&E-stained bone tissue of Control Group 12 weeks after implantation. 50
Figure 4- 12 Image of H&E-stained bone tissue of Alpha-Former Group 12 weeks after implantation. 51
Figure 4- 13 median score of ossification. 52
Figure 4- 14 Micro-computed tomographic (μ-CT images) showing the surgical area and the healing area of Blank group. 53
Figure 4- 15 Micro-computed tomographic (μ-CT images) showing the surgical area and the healing area of Control group. 54
Figure 4- 16 Micro-computed tomographic (μ-CT images) showing the surgical area and the healing area of Alpha-Former Group group. 55
Figure 4- 17 Bone mineral density (BMD) measured by μ-CT evaluation at 2, 4, 8, and 12 weeks after treatment. 56
Figure 4- 18 bone volume percentage in artificially-created defects from μ-CT evaluation at 2, 4, 8 and 12 weeks after treatment. 57
Figure 4- 19 Material volume was calculated by μ-CT scanning in defects at 2, 4, 8, and 12 weeks after implantation. 58



References
[1] D. Smrke, P. Rožman, M. Veselko, B. Gubina, Treatment of bone defects—allogenic platelet gel and autologous bone technique, IntechOpen2013.
[2] H. Xiang, Y. Wang, H. Chang, S. Yang, M. Tu, X. Zhang, B. Yu, Cerium-containing α-calcium sulfate hemihydrate bone substitute promotes osteogenesis, Journal of biomaterials applications, 34 (2019) 250-260.
[3] G. Fernandez de Grado, L. Keller, Y. Idoux-Gillet, Q. Wagner, A.-M. Musset, N. Benkirane-Jessel, F. Bornert, D. Offner, Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management, Journal of tissue engineering, 9 (2018) 2041731418776819.
[4] J. Escoda‐Francolí, M.Á. Sánchez‐Garcés, Á. Gimeno‐Sandig, F. Muñoz‐Guzón, J.R. Barbany‐Cairó, L. Badiella‐Busquets, C. Gay‐Escoda, Guided bone regeneration using beta‐tricalcium phosphate with and without fibronectin—An experimental study in rats, Clinical oral implants research, 29 (2018) 1038-1049.
[5] M. Yamada, H. Egusa, Current bone substitutes for implant dentistry, Journal of prosthodontic research, 62 (2018) 152-161.
[6] H.-S. Sohn, J.-K. Oh, Review of bone graft and bone substitutes with an emphasis on fracture surgeries, Biomaterials research, 23 (2019) 1-7.
[7] D.A. Auston, M. Feibert, T. Craig, T.A. Damron, Unexpected radiographic lucency following grafting of bone defects with calcium sulfate/tricalcium phosphate bone substitute, Skeletal radiology, 44 (2015) 1453-1459.
[8] D.C. Lobb, B.R. DeGeorge Jr, A.B. Chhabra, Bone graft substitutes: current concepts and future expectations, The Journal of hand surgery, 44 (2019) 497-505. e492.
[9] T. Rolvien, M. Barbeck, S. Wenisch, M. Amling, M. Krause, Cellular mechanisms responsible for success and failure of bone substitute materials, International journal of molecular sciences, 19 (2018) 2893.
[10] Y.-C. Fu, Y.-H. Wang, C.-H. Chen, C.-K. Wang, G.-J. Wang, M.-L. Ho, Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects, International journal of nanomedicine, 10 (2015) 7231.
[11] T.-f. Kuo, S.-Y. Lee, H.-D. Wu, M. Poma, Y.-W. Wu, J.-C. Yang, An in vivo swine study for xeno-grafts of calcium sulfate-based bone grafts with human dental pulp stem cells (hDPSCs), Materials Science and Engineering: C, 50 (2015) 19-23.
[12] G. Yang, J. Liu, F. Li, Z. Pan, X. Ni, Y. Shen, H. Xu, Q. Huang, Bioactive calcium sulfate/magnesium phosphate cement for bone substitute applications, Materials Science and Engineering: C, 35 (2014) 70-76.
[13] G. Orsini, J. Ricci, A. Scarano, G. Pecora, G. Petrone, G. Iezzi, A. Piattelli, Bone‐defect healing with calcium‐sulfate particles and cement: An experimental study in rabbit, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 68 (2004) 199-208.
[14] R. Guarnieri, R. Grassi, M. Ripari, G. Pecora, Maxillary sinus augmentation using granular calcium sulfate (surgiplaster sinus): radiographic and histologic study at 2 years, International Journal of Periodontics & Restorative Dentistry, 26 (2006).
[15] R. Bagoff, S. Mamidwar, I. Chesnoiu-Matei, J.L. Ricci, H. Alexander, N.M. Tovar, Socket preservation and sinus augmentation using a medical grade calcium sulfate hemihydrate and mineralized irradiated cancellous bone allograft composite, Journal of Oral Implantology, 39 (2013) 363-371.
[16] R. Guarnieri, G. Pecora, M. Fini, N.N. Aldini, R. Giardino, G. Orsini, A. Piattelli, Medical grade calcium sulfate hemihydrate in healing of human extraction sockets: clinical and histological observations at 3 months, Journal of periodontology, 75 (2004) 902-908.
[17] Z.L. Meng, Z.Q. Wu, B.X. Shen, H.B. Li, Y.Y. Bian, D.L. Zeng, J. Fu, L. Peng, Reconstruction of large segmental bone defects in rabbit using the Masquelet technique with α-calcium sulfate hemihydrate, Journal of orthopaedic surgery and research, 14 (2019) 1-12.
[18] S. Zhang, K. Yang, F. Cui, Y. Jiang, B. Xu, H. Liu, A novel injectable magnesium/calcium sulfate hemihydrate composite cement for bone regeneration, BioMed research international, 2015 (2015).
[19] H.J. Hsu, R.A. Waris, M. Ruslin, Y.H. Lin, C.S. Chen, K.L. Ou, An innovative α‐calcium sulfate hemihydrate bioceramic as a potential bone graft substitute, Journal of the American Ceramic Society, 101 (2018) 419-427.
[20] Y. Kumar, K. Nalini, J. Menon, D.K. Patro, B. Banerji, Calcium sulfate as bone graft substitute in the treatment of osseous bone defects, a prospective study, Journal of clinical and diagnostic research: JCDR, 7 (2013) 2926.
[21] E. Ruga, C. Gallesio, L. Chiusa, P. Boffano, Clinical and histologic outcomes of calcium sulfate in the treatment of postextraction sockets, Journal of Craniofacial Surgery, 22 (2011) 494-498.
[22] S.M. Toloue, I. Chesnoiu‐Matei, S.B. Blanchard, A clinical and histomorphometric study of calcium sulfate compared with freeze‐dried bone allograft for alveolar ridge preservation, Journal of periodontology, 83 (2012) 847-855.
[23] B. Von Rechenberg, O.R. Génot, K. Nuss, L. Galuppo, M. Fulmer, E. Jacobson, P. Kronen, K. Zlinszky, J.A. Auer, Evaluation of four biodegradable, injectable bone cements in an experimental drill hole model in sheep, European Journal of Pharmaceutics and Biopharmaceutics, 85 (2013) 130-138.
[24] K. Mao, F. Zhou, F. Cui, J. Li, X. Hou, P. Li, M. Du, M. Liang, Y. Wang, Preparation and properties of α-calcium sulphate hemihydrate and β-tricalcium phosphate bone substitute, Bio-medical materials and engineering, 23 (2013) 197-210.
[25] B. Guan, Q. Ye, J. Zhang, W. Lou, Z. Wu, Interaction between α-calcium sulfate hemihydrate and superplasticizer from the point of adsorption characteristics, hydration and hardening process, Cement and Concrete Research, 40 (2010) 253-259.


電子全文 電子全文(網際網路公開日期:20270125)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top