跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/21 09:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙苡均
研究生(外文):CHAO,YI-CHUN
論文名稱:褪黑激素抑制KRAS突變的非小細胞肺癌中PD-L1的表現與調節腫瘤免疫機制之探討
論文名稱(外文):Melatonin Downregulates PD-L1 Expression and Modulates Tumor Immunity in KRAS-Mutant Non-Small Cell Lung Cancer
指導教授:林政緯林政緯引用關係
指導教授(外文):LIN,CHENG-WEI
口試委員:林政緯莊校奇吳聲明
口試委員(外文):LIN,CHENG-WEICHUANG, HSIAO-CHIWU,SHENG-MING
口試日期:2022-07-04
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:53
中文關鍵詞:褪黑激素KRAS突變非小細胞肺癌PD-L1的表現腫瘤免疫
外文關鍵詞:MelatoninKRAS-MutantNon-Small Cell Lung CancerPD-L1 ExpressionTumor Immunity
DOI:10.3390/ijms22115649.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
在肺癌形成的過程中,可能伴隨不同的致癌基因突變,攜帶KRAS突變的非小細胞肺癌( NSCLC )者對化學療法的治療效果不佳,並且還會導致對免疫療法的耐受性。在近年的研究中,褪黑激素( Melatonin )被指出具有抗癌、抗氧化及抗發炎的功能。目前並不清楚褪黑激素在肺癌中調節腫瘤免疫的作用。在本研究中,透過褪黑激素的處理顯著降低了KRAS突變NSCLC細胞(A549、H460 和 LLC1)的細胞生長並誘導細胞凋亡。從分子機制上發現攜帶KRAS突變的肺癌細胞有更高表現Programmed death ligand 1 ( PD-L1 )。並且在干擾素Interferon ( IFN )-γ刺激下,褪黑激素顯著降低了PD-L1的表達。此外,KRAS突變肺癌細胞表現出更高的 Yes-associated protein ( YAP ) 和Transcriptional coactivator with PDZ-binding motif ( TAZ );在肺癌細胞中,PD-L1的表達與YAP 和TAZ呈正相關。褪黑激素的處理有效抑制了YAP和TAZ,並伴隨著YAP/TAZ下游基因表達的下降。進一步將褪黑激素和YAP抑制劑共同處理肺癌細胞,更明顯降低了YAP 和 PD-L1的表達。從資料庫的臨床分析顯示,肺癌患者PD-L1與YAP和TAZ呈正相關,並且PD-L1高表達的患者生存率較低。從動物實驗中進一步證實,給予褪黑激素的小鼠,顯著抑制了腫瘤生長並調節了腫瘤免疫。綜合上述,本研究揭示了褪黑激素通過抑制YAP/PD-L1來調節腫瘤免疫抑制性,在未來可成為NSCLC治療策略中一項極具潛力的輔助劑。
Lung cancer is currently the cancer with the highest fatality and incidence rate. Due to the variability of KRAS mutant alleles, which makes the development of targeted drugs difficult. Therefore, in addition to traditional chemotherapy and radiotherapy, immunotherapy is also another option for patients. PD-L1 inhibitor actived the immune system, helping to improve the efficacy and prolong the survival of patients. Hippo signaling pathway regulates cell differentiation and proliferation, and plays an important role in biological development. When the Hippo pathway is abnormal, YAP/TAZ will enter the nucleus and combine with transcription factors to induce cell proliferation and differentiation. YAP/TAZ is highly expressed in many cancers, including lung cancer. In different studies, KRAS and YAP signals can regulate the epithelial-mesenchymal transition (EMT) of lung cancer, which induces cancer cells stemness. The activation of YAP/TAZ plays a crucial role in the tumorigenesis of KRAS oncogene mutations. In recent studies, melatonin has anti-cancer, anti-oxidant and anti-inflammatory functions. Based on the above, the role of melatonin in Hippo-YAP signaling in lung cancer is unclear. In this study, we will explore the mechanism of melatonin in KRAS-mutated lung cancer cells. We want to clarify the effect of melatonin on the tumor microenvironment in lung cancer cells with KRAS mutations, and further prove the effectiveness of melatonin for treatment in animal experiments.
謝誌________________________________________________________________ I

圖表目錄___________________________________________________________ IV

中文摘要____________________________________________________________ 2

英文摘要____________________________________________________________ 3

縮寫表(Abbreviations)_______________________________________________4

第一章、 研究背景(Background)

一、KRAS突變的非小細胞肺癌
(一)、肺癌與其分類______________________________________ 6
(二)、KRAS突變之特徵__________________________________ 6
二、HIPPO與RAS訊息傳遞路徑在肺癌中扮演之角色與作用
(一)、參與KRAS突變的NSCLC中分子調控之核心途徑______ 7
(二)、肺癌中的HIPPO訊息傳遞路徑_______________________ 8
(三)、肺癌中的RAS訊息傳遞路徑 ________________________ 8
三、HIPPO訊息傳遞路徑與KRAS參與腫瘤免疫機制
(一)、HIPPO訊息傳遞路徑在腫瘤免疫上的角色______________ 9
(二)、KRAS在腫瘤免疫上的角色__________________________ 9
(三)、PD-L1在腫瘤免疫上的角色__________________________ 10
(四)、免疫療法之優勢與挑戰______________________________ 11
四、褪黑激素──具有多種生物學功能
(一)、褪黑激素之簡介___________________________________ 11
(二)、褪黑激素具抑制腫瘤生長之能力_____________________ 12
(三)、褪黑激素做為腫瘤治療之潛力_______________________ 12

第二章、 研究特定目標(Study Aim)___________________________________ 13

第三章、 材料與方法(Materials and Methods)

一、細胞培養與試劑(Cell culture and reagents) _________________ 15
二、RNA萃取與即時定量聚合酶鏈鎖反應(RT-qPCR)___________ 15
三、細胞活性分析(Cell viability)_____________________________ 16
四、流式細胞 ( Flow cytometry )________________________________ 16
五、西方墨點法(Western blotting)_____________________________ 16
六、細胞群落形成分析(Colony formation assay) ___________________ 17
七、動物實驗(Animal study) ________________________________ 17
八、資料庫分析(Database analyses)____________________________ 18
九、統計分析(Statistical analyses)_____________________________ 18

第四章、 實驗結果(Results)

一、褪黑激素降低KRAS突變NSCLC細胞的存活並誘導細胞凋亡。___________________________________________________________ 20
二、褪黑激素抑制 KRAS突變NSCLC細胞中PD-L1的表達。___________________________________________________________ 20
三、褪黑激素抑制 YAP / PD-L1訊號 。________________________ 21
四、褪黑激素對小鼠腫瘤生長和腫瘤免疫的影響。_______________ 22
五、結論___________________________________________________ 23

第五章、 討論(Discussion)

一、在NSCLC中PD-L1表達與KRAS、YAP之間的相關性________ 25
二、褪黑激素對HIPPO訊息抑制機轉___________________________26
三、褪黑激素對腫瘤免疫的影響_______________________________ 26

第六章、 參考文獻(References)_______________________________________ 28

第七章、 圖表(Figures and Tables)_____________________________________35

Figure 1. 褪黑激素抑制NSCLC之細胞生長。____________________________36
Figure 2. 褪黑激素抑制NSCLC細胞群落形成。__________________________37
Figure 3. 褪黑激素誘導NSCLC細胞的凋亡。____________________________38
Figure 4. 褪黑激素處理NSCLC細胞後對凋亡相關蛋白的影響。____________39
Figure 5. 在KRAS突變與原生型的肺癌細胞 PD-L1 基因和蛋白表現。______40
Figure 6. 褪黑激素抑制NSCLC細胞之PD-L1蛋白與基因表現。_____________41
Figure 7. 褪黑激素阻礙干擾素IFNγ誘導的PD-L1的表現。__________________42
Figure 8. 在KRAS突變與原生型的肺癌細胞 YAP、TAZ 基因和蛋白表現。__43
Figure 9. YAP和PD-L1基因表現在肺癌細胞的相關性。__________________44
Figure10. 褪黑激素抑制NSCLC細胞之YAP / TAZ蛋白與下游基因表現。___________________________________________________________________ 45
Figure 11. 同時給予褪黑激素與YAP抑制劑(VP)對NSCLC細胞YAP和PD-L1的表現。______________________________________________________________ 46
Figure 12. 資料庫分析 PD-L1、YAP、TAZ相關性。 _____________________ 47
Figure 13. Kaplan-Meier Plotter分析肺癌患者 PD-L1表現高低的總生存率。___________________________________________________________________ 48
Figure 14. 褪黑激素抑制小鼠腫瘤生長。________________________________ 49
Figure 15. 褪黑激素對小鼠腫瘤免疫的影響。____________________________ 50
Figure 16. 流式細胞儀圈選腫瘤浸潤淋巴細胞。__________________________ 51
Figure 17. 本研究之結論示意圖。_______________________________________52
Table 1. 即時定量聚合酶鏈鎖反應(RT-qPCR)之特異性引子序列___________53


1.Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021. 71(3): p. 209-249.
2.Skřičková, J., et al., Lung cancer. Cas Lek Cesk, 2018. 157(5): p. 226-236.
3.Alexander, M., S.Y. Kim, and H. Cheng, Update 2020: Management of Non-Small Cell Lung Cancer. Lung, 2020. 198(6): p. 897-907.
4.Chaft, J.E., et al., Evolution of systemic therapy for stages I-III non-metastatic non-small-cell lung cancer. Nat Rev Clin Oncol, 2021. 18(9): p. 547-557.
5.Chapman, A.M., et al., Lung cancer mutation profile of EGFR, ALK, and KRAS: Meta-analysis and comparison of never and ever smokers. Lung Cancer, 2016. 102: p. 122-134.
6.Adderley, H., F.H. Blackhall, and C.R. Lindsay, KRAS-mutant non-small cell lung cancer: Converging small molecules and immune checkpoint inhibition. EBioMedicine, 2019. 41: p. 711-716.
7.Veluswamy, R., et al., KRAS G12C-Mutant Non-Small Cell Lung Cancer: Biology, Developmental Therapeutics, and Molecular Testing. J Mol Diagn, 2021. 23(5): p. 507-520.
8.Moore, A.R., et al., RAS-targeted therapies: is the undruggable drugged? Nat Rev Drug Discov, 2020. 19(8): p. 533-552.
9.Ferrer, I., et al., KRAS-Mutant non-small cell lung cancer: From biology to therapy. Lung Cancer, 2018. 124: p. 53-64.
10.Uras, I.Z., H.P. Moll, and E. Casanova, Targeting KRAS Mutant Non-Small-Cell Lung Cancer: Past, Present and Future. Int J Mol Sci, 2020. 21(12).
11.Ye, J., et al., Relationship Between Progression-Free Survival, Objective Response Rate, and Overall Survival in Clinical Trials of PD-1/PD-L1 Immune Checkpoint Blockade: A Meta-Analysis. Clin Pharmacol Ther, 2020. 108(6): p. 1274-1288.
12.Hamarsheh, S., et al., Immune modulatory effects of oncogenic KRAS in cancer. Nat Commun, 2020. 11(1): p. 5439.
13.Du, Z. and C.M. Lovly, Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer, 2018. 17(1): p. 58.
14.Huang, L. and L. Fu, Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B, 2015. 5(5): p. 390-401.
15.Guin, S., et al., Contributions of KRAS and RAL in non-small-cell lung cancer growth and progression. J Thorac Oncol, 2013. 8(12): p. 1492-501.
16.Győrffy, B., et al., Effects of RAL signal transduction in KRAS- and BRAF-mutated cells and prognostic potential of the RAL signature in colorectal cancer. Oncotarget, 2015. 6(15): p. 13334-46.
17.Liu, J., R. Kang, and D. Tang, The KRAS-G12C inhibitor: activity and resistance. Cancer Gene Ther, 2021.
18.Palma, G., et al., Selective KRAS G12C inhibitors in non-small cell lung cancer: chemistry, concurrent pathway alterations, and clinical outcomes. NPJ Precis Oncol, 2021. 5(1): p. 98.
19.Fu, S.L., et al., Hippo signaling pathway in lung development, regeneration, and diseases. Yi Chuan, 2017. 39(7): p. 597-606.
20.Harvey, K.F., X. Zhang, and D.M. Thomas, The Hippo pathway and human cancer. Nat Rev Cancer, 2013. 13(4): p. 246-57.
21.Lee, K.Y., et al., Upregulation of CD109 Promotes the Epithelial-to-Mesenchymal Transition and Stemness Properties of Lung Adenocarcinomas via Activation of the Hippo-YAP Signaling. Cells, 2020. 10(1).
22.Ling, H.H., et al., Elevation of YAP promotes the epithelial-mesenchymal transition and tumor aggressiveness in colorectal cancer. Exp Cell Res, 2017. 350(1): p. 218-225.
23.Thompson, B.J., YAP/TAZ: Drivers of Tumor Growth, Metastasis, and Resistance to Therapy. Bioessays, 2020. 42(5): p. e1900162.
24.Lee, W.Y., et al., Panobinostat sensitizes KRAS-mutant non-small-cell lung cancer to gefitinib by targeting TAZ. Int J Cancer, 2017. 141(9): p. 1921-1931.
25.Pobbati, A.V. and W. Hong, A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy. Theranostics, 2020. 10(8): p. 3622-3635.
26.Shao, D.D., et al., KRAS and YAP1 converge to regulate EMT and tumor survival. Cell, 2014. 158(1): p. 171-84.
27.Mao, Y., S. Sun, and K.D. Irvine, Role and regulation of Yap in KrasG12D-induced lung cancer. Oncotarget, 2017. 8(67): p. 110877-110889.
28.Zhang, W., et al., YAP promotes malignant progression of Lkb1-deficient lung adenocarcinoma through downstream regulation of survivin. Cancer Res, 2015. 75(21): p. 4450-7.
29.Ostrem, J.M., et al., K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature, 2013. 503(7477): p. 548-51.
30.Zhang, Z., et al., GTP-State-Selective Cyclic Peptide Ligands of K-Ras(G12D) Block Its Interaction with Raf. ACS Cent Sci, 2020. 6(10): p. 1753-1761.
31.Prior, I.A., P.D. Lewis, and C. Mattos, A comprehensive survey of Ras mutations in cancer. Cancer Res, 2012. 72(10): p. 2457-67.
32.Tatli, O. and G. Dinler Doganay, Recent Developments in Targeting RAS Downstream Effectors for RAS-Driven Cancer Therapy. Molecules, 2021. 26(24).
33.Zhang, Y., et al., Cancer vaccines: Targeting KRAS-driven cancers. Expert Rev Vaccines, 2020. 19(2): p. 163-173.
34.Hong, L., et al., Role of Hippo signaling in regulating immunity. Cell Mol Immunol, 2018. 15(12): p. 1003-1009.
35.Zhou, W. and M. Zhao, How Hippo Signaling Pathway Modulates Cardiovascular Development and Diseases. J Immunol Res, 2018. 2018: p. 3696914.
36.Hsu, P.C., et al., Epidermal Growth Factor Receptor (EGFR) Pathway, Yes-Associated Protein (YAP) and the Regulation of Programmed Death-Ligand 1 (PD-L1) in Non-Small Cell Lung Cancer (NSCLC). Int J Mol Sci, 2019. 20(15).
37.Lee, B.S., et al., Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma. Biochem Biophys Res Commun, 2017. 491(2): p. 493-499.
38.Jiao, S., et al., Targeting IRF3 as a YAP agonist therapy against gastric cancer. J Exp Med, 2018. 215(2): p. 699-718.
39.Shen, L., et al., Serine metabolism antagonizes antiviral innate immunity by preventing ATP6V0d2-mediated YAP lysosomal degradation. Cell Metab, 2021. 33(5): p. 971-987.e6.
40.Chatziandreou, I., et al., Comprehensive Molecular Analysis of NSCLC; Clinicopathological Associations. PLoS One, 2015. 10(7): p. e0133859.
41.Hou, P., et al., Tumor Microenvironment Remodeling Enables Bypass of Oncogenic KRAS Dependency in Pancreatic Cancer. Cancer Discov, 2020. 10(7): p. 1058-1077.
42.McCuaig, S., et al., The Interleukin 22 Pathway Interacts with Mutant KRAS to Promote Poor Prognosis in Colon Cancer. Clin Cancer Res, 2020. 26(16): p. 4313-4325.
43.Liu, C., et al., The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Cancer Lett, 2020. 470: p. 95-105.
44.Negrao, M.V., et al., Oncogene-specific differences in tumor mutational burden, PD-L1 expression, and outcomes from immunotherapy in non-small cell lung cancer. J Immunother Cancer, 2021. 9(8).
45.Jeanson, A., et al., Efficacy of Immune Checkpoint Inhibitors in KRAS-Mutant Non-Small Cell Lung Cancer (NSCLC). J Thorac Oncol, 2019. 14(6): p. 1095-1101.
46.Hallin, J., et al., The KRAS(G12C) Inhibitor MRTX849 Provides Insight toward Therapeutic Susceptibility of KRAS-Mutant Cancers in Mouse Models and Patients. Cancer Discov, 2020. 10(1): p. 54-71.
47.Koga, T., et al., KRAS Secondary Mutations That Confer Acquired Resistance to KRAS G12C Inhibitors, Sotorasib and Adagrasib, and Overcoming Strategies: Insights From In Vitro Experiments. J Thorac Oncol, 2021. 16(8): p. 1321-1332.
48.O'Donnell, J.S., M.W.L. Teng, and M.J. Smyth, Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol, 2019. 16(3): p. 151-167.
49.Yap, T.A., et al., Development of Immunotherapy Combination Strategies in Cancer. Cancer Discov, 2021. 11(6): p. 1368-1397.
50.Matson, V., C.S. Chervin, and T.F. Gajewski, Cancer and the Microbiome-Influence of the Commensal Microbiota on Cancer, Immune Responses, and Immunotherapy. Gastroenterology, 2021. 160(2): p. 600-613.
51.Restifo, N.P., M.E. Dudley, and S.A. Rosenberg, Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol, 2012. 12(4): p. 269-81.
52.Farhood, B., M. Najafi, and K. Mortezaee, CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol, 2019. 234(6): p. 8509-8521.
53.Sun, C., R. Mezzadra, and T.N. Schumacher, Regulation and Function of the PD-L1 Checkpoint. Immunity, 2018. 48(3): p. 434-452.
54.Gotwals, P., et al., Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer, 2017. 17(5): p. 286-301.
55.Hegde, P.S. and D.S. Chen, Top 10 Challenges in Cancer Immunotherapy. Immunity, 2020. 52(1): p. 17-35.
56.Zhang, W.W., Antisense oncogene and tumor suppressor gene therapy of cancer. J Mol Med (Berl), 1996. 74(4): p. 191-204.
57.Bhattacharya, S., et al., Melatonin and its ubiquitous anticancer effects. Mol Cell Biochem, 2019. 462(1-2): p. 133-155.
58.Gurunathan, S., et al., Role and Therapeutic Potential of Melatonin in Various Type of Cancers. Onco Targets Ther, 2021. 14: p. 2019-2052.
59.Pourhanifeh, M.H., et al., Melatonin and non-small cell lung cancer: new insights into signaling pathways. Cancer Cell Int, 2019. 19: p. 131.
60.Wang, S.W., et al., Melatonin impedes prostate cancer metastasis by suppressing MMP-13 expression. J Cell Physiol, 2021. 236(5): p. 3979-3990.
61.Li, M., et al., Melatonin sensitises shikonin-induced cancer cell death mediated by oxidative stress via inhibition of the SIRT3/SOD2-AKT pathway. Redox Biol, 2020. 36: p. 101632.
62.Liao, Y., et al., Melatonin synergizes BRAF-targeting agent dabrafenib for the treatment of anaplastic thyroid cancer by inhibiting AKT/hTERT signalling. J Cell Mol Med, 2020. 24(20): p. 12119-12130.
63.Zhou, B., et al., Melatonin Increases the Sensitivity of Hepatocellular Carcinoma to Sorafenib through the PERK-ATF4-Beclin1 Pathway. Int J Biol Sci, 2019. 15(9): p. 1905-1920.
64.Tran, Q.H., et al., Melatonin and doxorubicin synergistically enhance apoptosis via autophagy-dependent reduction of AMPKα1 transcription in human breast cancer cells. Exp Mol Med, 2021. 53(9): p. 1413-1422.
65.Yang, Y.C., et al., Melatonin reduces lung cancer stemness through inhibiting of PLC, ERK, p38, β-catenin, and Twist pathways. Environ Toxicol, 2019. 34(2): p. 203-209.
66.Collin, A., et al., Melatonin Enhances Anti-tumoral Effects of Menadione on Colon Cancer Cells. Anticancer Agents Med Chem, 2021.
67.Luo, J., et al., Effect of melatonin on T/B cell activation and immune regulation in pinealectomy mice. Life Sci, 2020. 242: p. 117191.
68.Maestroni, G.J., et al., Melatonin-induced T-helper cell hematopoietic cytokines resembling both interleukin-4 and dynorphin. J Pineal Res, 1996. 21(3): p. 131-9.
69.Lissoni, P., et al., Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: a randomized trial. J Pineal Res, 2003. 35(1): p. 12-5.
70.Ma, S., et al., Melatonin derivatives combat with inflammation-related cancer by targeting the Main Culprit STAT3. Eur J Med Chem, 2021. 211: p. 113027.
71.Moradkhani, F., et al., Immunoregulatory role of melatonin in cancer. J Cell Physiol, 2020. 235(2): p. 745-757.
72.Chen, N., et al., KRAS mutation-induced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma. Cancer Immunol Immunother, 2017. 66(9): p. 1175-1187.
73.Coelho, M.A., et al., Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity, 2017. 47(6): p. 1083-1099.e6.
74.Huang, L., et al., KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther, 2021. 6(1): p. 386.
75.Lan, B., et al., Association between PD-L1 expression and driver gene status in non-small-cell lung cancer: a meta-analysis. Oncotarget, 2018. 9(7): p. 7684-7699.
76.Scheel, A.H., et al., PD-L1 expression in non-small cell lung cancer: Correlations with genetic alterations. Oncoimmunology, 2016. 5(5): p. e1131379.
77.Wierzbicki, P.M. and A. Rybarczyk, The Hippo pathway in colorectal cancer. Folia Histochem Cytobiol, 2015. 53(2): p. 105-19.
78.Yeh, Y.W., et al., Targeting the VEGF-C/VEGFR3 axis suppresses Slug-mediated cancer metastasis and stemness via inhibition of KRAS/YAP1 signaling. Oncotarget, 2017. 8(3): p. 5603-5618.
79.Zhao, X., et al., Melatonin Protects against Lung Fibrosis by Regulating the Hippo/YAP Pathway. Int J Mol Sci, 2018. 19(4).
80.Lau, A.N., et al., Tumor-propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis. Embo j, 2014. 33(5): p. 468-81.
81.Yang, C.E., et al., Corrigendum to "The antipsychotic chlorpromazine suppresses YAP signaling, stemness properties, and drug resistance in breast cancer cells" [Chem. Biol. Interact. 302 (2019) 28-35]. Chem Biol Interact, 2019. 312: p. 108812.
82.Janse van Rensburg, H.J., et al., The Hippo Pathway Component TAZ Promotes Immune Evasion in Human Cancer through PD-L1. Cancer Res, 2018. 78(6): p. 1457-1470.
83.Chung, C.H., et al., Fucoidan-based, tumor-activated nanoplatform for overcoming hypoxia and enhancing photodynamic therapy and antitumor immunity. Biomaterials, 2020. 257: p. 120227.
84.Liu, H., et al., Role of CD4+ CD25+ regulatory T cells in melatonin-mediated inhibition of murine gastric cancer cell growth in vivo and in vitro. Anat Rec (Hoboken), 2011. 294(5): p. 781-8.
85.Odeh, L.H., W.H. Talib, and I.A. Basheti, Synergistic effect of thymoquinone and melatonin against breast cancer implanted in mice. J Cancer Res Ther, 2018. 14(Supplement): p. S324-s330.
86.Perfilyeva, Y.V., et al., Exogenous Melatonin Up-Regulates Expression of CD62L by Lymphocytes in Aged Mice under Inflammatory and Non-Inflammatory Conditions. Immunol Invest, 2019. 48(6): p. 632-643.
87.Moreno, A.C.R., et al., The Combined Use of Melatonin and an Indoleamine 2,3-Dioxygenase-1 Inhibitor Enhances Vaccine-Induced Protective Cellular Immunity to HPV16-Associated Tumors. Front Immunol, 2018. 9: p. 1914.
88.Hadadi, E. and H. Acloque, Role of circadian rhythm disorders on EMT and tumour-immune interactions in endocrine-related cancers. Endocr Relat Cancer, 2021. 28(2): p. R67-r80.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top