|
1.Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021. 71(3): p. 209-249. 2.Skřičková, J., et al., Lung cancer. Cas Lek Cesk, 2018. 157(5): p. 226-236. 3.Alexander, M., S.Y. Kim, and H. Cheng, Update 2020: Management of Non-Small Cell Lung Cancer. Lung, 2020. 198(6): p. 897-907. 4.Chaft, J.E., et al., Evolution of systemic therapy for stages I-III non-metastatic non-small-cell lung cancer. Nat Rev Clin Oncol, 2021. 18(9): p. 547-557. 5.Chapman, A.M., et al., Lung cancer mutation profile of EGFR, ALK, and KRAS: Meta-analysis and comparison of never and ever smokers. Lung Cancer, 2016. 102: p. 122-134. 6.Adderley, H., F.H. Blackhall, and C.R. Lindsay, KRAS-mutant non-small cell lung cancer: Converging small molecules and immune checkpoint inhibition. EBioMedicine, 2019. 41: p. 711-716. 7.Veluswamy, R., et al., KRAS G12C-Mutant Non-Small Cell Lung Cancer: Biology, Developmental Therapeutics, and Molecular Testing. J Mol Diagn, 2021. 23(5): p. 507-520. 8.Moore, A.R., et al., RAS-targeted therapies: is the undruggable drugged? Nat Rev Drug Discov, 2020. 19(8): p. 533-552. 9.Ferrer, I., et al., KRAS-Mutant non-small cell lung cancer: From biology to therapy. Lung Cancer, 2018. 124: p. 53-64. 10.Uras, I.Z., H.P. Moll, and E. Casanova, Targeting KRAS Mutant Non-Small-Cell Lung Cancer: Past, Present and Future. Int J Mol Sci, 2020. 21(12). 11.Ye, J., et al., Relationship Between Progression-Free Survival, Objective Response Rate, and Overall Survival in Clinical Trials of PD-1/PD-L1 Immune Checkpoint Blockade: A Meta-Analysis. Clin Pharmacol Ther, 2020. 108(6): p. 1274-1288. 12.Hamarsheh, S., et al., Immune modulatory effects of oncogenic KRAS in cancer. Nat Commun, 2020. 11(1): p. 5439. 13.Du, Z. and C.M. Lovly, Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer, 2018. 17(1): p. 58. 14.Huang, L. and L. Fu, Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B, 2015. 5(5): p. 390-401. 15.Guin, S., et al., Contributions of KRAS and RAL in non-small-cell lung cancer growth and progression. J Thorac Oncol, 2013. 8(12): p. 1492-501. 16.Győrffy, B., et al., Effects of RAL signal transduction in KRAS- and BRAF-mutated cells and prognostic potential of the RAL signature in colorectal cancer. Oncotarget, 2015. 6(15): p. 13334-46. 17.Liu, J., R. Kang, and D. Tang, The KRAS-G12C inhibitor: activity and resistance. Cancer Gene Ther, 2021. 18.Palma, G., et al., Selective KRAS G12C inhibitors in non-small cell lung cancer: chemistry, concurrent pathway alterations, and clinical outcomes. NPJ Precis Oncol, 2021. 5(1): p. 98. 19.Fu, S.L., et al., Hippo signaling pathway in lung development, regeneration, and diseases. Yi Chuan, 2017. 39(7): p. 597-606. 20.Harvey, K.F., X. Zhang, and D.M. Thomas, The Hippo pathway and human cancer. Nat Rev Cancer, 2013. 13(4): p. 246-57. 21.Lee, K.Y., et al., Upregulation of CD109 Promotes the Epithelial-to-Mesenchymal Transition and Stemness Properties of Lung Adenocarcinomas via Activation of the Hippo-YAP Signaling. Cells, 2020. 10(1). 22.Ling, H.H., et al., Elevation of YAP promotes the epithelial-mesenchymal transition and tumor aggressiveness in colorectal cancer. Exp Cell Res, 2017. 350(1): p. 218-225. 23.Thompson, B.J., YAP/TAZ: Drivers of Tumor Growth, Metastasis, and Resistance to Therapy. Bioessays, 2020. 42(5): p. e1900162. 24.Lee, W.Y., et al., Panobinostat sensitizes KRAS-mutant non-small-cell lung cancer to gefitinib by targeting TAZ. Int J Cancer, 2017. 141(9): p. 1921-1931. 25.Pobbati, A.V. and W. Hong, A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy. Theranostics, 2020. 10(8): p. 3622-3635. 26.Shao, D.D., et al., KRAS and YAP1 converge to regulate EMT and tumor survival. Cell, 2014. 158(1): p. 171-84. 27.Mao, Y., S. Sun, and K.D. Irvine, Role and regulation of Yap in KrasG12D-induced lung cancer. Oncotarget, 2017. 8(67): p. 110877-110889. 28.Zhang, W., et al., YAP promotes malignant progression of Lkb1-deficient lung adenocarcinoma through downstream regulation of survivin. Cancer Res, 2015. 75(21): p. 4450-7. 29.Ostrem, J.M., et al., K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature, 2013. 503(7477): p. 548-51. 30.Zhang, Z., et al., GTP-State-Selective Cyclic Peptide Ligands of K-Ras(G12D) Block Its Interaction with Raf. ACS Cent Sci, 2020. 6(10): p. 1753-1761. 31.Prior, I.A., P.D. Lewis, and C. Mattos, A comprehensive survey of Ras mutations in cancer. Cancer Res, 2012. 72(10): p. 2457-67. 32.Tatli, O. and G. Dinler Doganay, Recent Developments in Targeting RAS Downstream Effectors for RAS-Driven Cancer Therapy. Molecules, 2021. 26(24). 33.Zhang, Y., et al., Cancer vaccines: Targeting KRAS-driven cancers. Expert Rev Vaccines, 2020. 19(2): p. 163-173. 34.Hong, L., et al., Role of Hippo signaling in regulating immunity. Cell Mol Immunol, 2018. 15(12): p. 1003-1009. 35.Zhou, W. and M. Zhao, How Hippo Signaling Pathway Modulates Cardiovascular Development and Diseases. J Immunol Res, 2018. 2018: p. 3696914. 36.Hsu, P.C., et al., Epidermal Growth Factor Receptor (EGFR) Pathway, Yes-Associated Protein (YAP) and the Regulation of Programmed Death-Ligand 1 (PD-L1) in Non-Small Cell Lung Cancer (NSCLC). Int J Mol Sci, 2019. 20(15). 37.Lee, B.S., et al., Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma. Biochem Biophys Res Commun, 2017. 491(2): p. 493-499. 38.Jiao, S., et al., Targeting IRF3 as a YAP agonist therapy against gastric cancer. J Exp Med, 2018. 215(2): p. 699-718. 39.Shen, L., et al., Serine metabolism antagonizes antiviral innate immunity by preventing ATP6V0d2-mediated YAP lysosomal degradation. Cell Metab, 2021. 33(5): p. 971-987.e6. 40.Chatziandreou, I., et al., Comprehensive Molecular Analysis of NSCLC; Clinicopathological Associations. PLoS One, 2015. 10(7): p. e0133859. 41.Hou, P., et al., Tumor Microenvironment Remodeling Enables Bypass of Oncogenic KRAS Dependency in Pancreatic Cancer. Cancer Discov, 2020. 10(7): p. 1058-1077. 42.McCuaig, S., et al., The Interleukin 22 Pathway Interacts with Mutant KRAS to Promote Poor Prognosis in Colon Cancer. Clin Cancer Res, 2020. 26(16): p. 4313-4325. 43.Liu, C., et al., The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Cancer Lett, 2020. 470: p. 95-105. 44.Negrao, M.V., et al., Oncogene-specific differences in tumor mutational burden, PD-L1 expression, and outcomes from immunotherapy in non-small cell lung cancer. J Immunother Cancer, 2021. 9(8). 45.Jeanson, A., et al., Efficacy of Immune Checkpoint Inhibitors in KRAS-Mutant Non-Small Cell Lung Cancer (NSCLC). J Thorac Oncol, 2019. 14(6): p. 1095-1101. 46.Hallin, J., et al., The KRAS(G12C) Inhibitor MRTX849 Provides Insight toward Therapeutic Susceptibility of KRAS-Mutant Cancers in Mouse Models and Patients. Cancer Discov, 2020. 10(1): p. 54-71. 47.Koga, T., et al., KRAS Secondary Mutations That Confer Acquired Resistance to KRAS G12C Inhibitors, Sotorasib and Adagrasib, and Overcoming Strategies: Insights From In Vitro Experiments. J Thorac Oncol, 2021. 16(8): p. 1321-1332. 48.O'Donnell, J.S., M.W.L. Teng, and M.J. Smyth, Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol, 2019. 16(3): p. 151-167. 49.Yap, T.A., et al., Development of Immunotherapy Combination Strategies in Cancer. Cancer Discov, 2021. 11(6): p. 1368-1397. 50.Matson, V., C.S. Chervin, and T.F. Gajewski, Cancer and the Microbiome-Influence of the Commensal Microbiota on Cancer, Immune Responses, and Immunotherapy. Gastroenterology, 2021. 160(2): p. 600-613. 51.Restifo, N.P., M.E. Dudley, and S.A. Rosenberg, Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol, 2012. 12(4): p. 269-81. 52.Farhood, B., M. Najafi, and K. Mortezaee, CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol, 2019. 234(6): p. 8509-8521. 53.Sun, C., R. Mezzadra, and T.N. Schumacher, Regulation and Function of the PD-L1 Checkpoint. Immunity, 2018. 48(3): p. 434-452. 54.Gotwals, P., et al., Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer, 2017. 17(5): p. 286-301. 55.Hegde, P.S. and D.S. Chen, Top 10 Challenges in Cancer Immunotherapy. Immunity, 2020. 52(1): p. 17-35. 56.Zhang, W.W., Antisense oncogene and tumor suppressor gene therapy of cancer. J Mol Med (Berl), 1996. 74(4): p. 191-204. 57.Bhattacharya, S., et al., Melatonin and its ubiquitous anticancer effects. Mol Cell Biochem, 2019. 462(1-2): p. 133-155. 58.Gurunathan, S., et al., Role and Therapeutic Potential of Melatonin in Various Type of Cancers. Onco Targets Ther, 2021. 14: p. 2019-2052. 59.Pourhanifeh, M.H., et al., Melatonin and non-small cell lung cancer: new insights into signaling pathways. Cancer Cell Int, 2019. 19: p. 131. 60.Wang, S.W., et al., Melatonin impedes prostate cancer metastasis by suppressing MMP-13 expression. J Cell Physiol, 2021. 236(5): p. 3979-3990. 61.Li, M., et al., Melatonin sensitises shikonin-induced cancer cell death mediated by oxidative stress via inhibition of the SIRT3/SOD2-AKT pathway. Redox Biol, 2020. 36: p. 101632. 62.Liao, Y., et al., Melatonin synergizes BRAF-targeting agent dabrafenib for the treatment of anaplastic thyroid cancer by inhibiting AKT/hTERT signalling. J Cell Mol Med, 2020. 24(20): p. 12119-12130. 63.Zhou, B., et al., Melatonin Increases the Sensitivity of Hepatocellular Carcinoma to Sorafenib through the PERK-ATF4-Beclin1 Pathway. Int J Biol Sci, 2019. 15(9): p. 1905-1920. 64.Tran, Q.H., et al., Melatonin and doxorubicin synergistically enhance apoptosis via autophagy-dependent reduction of AMPKα1 transcription in human breast cancer cells. Exp Mol Med, 2021. 53(9): p. 1413-1422. 65.Yang, Y.C., et al., Melatonin reduces lung cancer stemness through inhibiting of PLC, ERK, p38, β-catenin, and Twist pathways. Environ Toxicol, 2019. 34(2): p. 203-209. 66.Collin, A., et al., Melatonin Enhances Anti-tumoral Effects of Menadione on Colon Cancer Cells. Anticancer Agents Med Chem, 2021. 67.Luo, J., et al., Effect of melatonin on T/B cell activation and immune regulation in pinealectomy mice. Life Sci, 2020. 242: p. 117191. 68.Maestroni, G.J., et al., Melatonin-induced T-helper cell hematopoietic cytokines resembling both interleukin-4 and dynorphin. J Pineal Res, 1996. 21(3): p. 131-9. 69.Lissoni, P., et al., Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: a randomized trial. J Pineal Res, 2003. 35(1): p. 12-5. 70.Ma, S., et al., Melatonin derivatives combat with inflammation-related cancer by targeting the Main Culprit STAT3. Eur J Med Chem, 2021. 211: p. 113027. 71.Moradkhani, F., et al., Immunoregulatory role of melatonin in cancer. J Cell Physiol, 2020. 235(2): p. 745-757. 72.Chen, N., et al., KRAS mutation-induced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma. Cancer Immunol Immunother, 2017. 66(9): p. 1175-1187. 73.Coelho, M.A., et al., Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity, 2017. 47(6): p. 1083-1099.e6. 74.Huang, L., et al., KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther, 2021. 6(1): p. 386. 75.Lan, B., et al., Association between PD-L1 expression and driver gene status in non-small-cell lung cancer: a meta-analysis. Oncotarget, 2018. 9(7): p. 7684-7699. 76.Scheel, A.H., et al., PD-L1 expression in non-small cell lung cancer: Correlations with genetic alterations. Oncoimmunology, 2016. 5(5): p. e1131379. 77.Wierzbicki, P.M. and A. Rybarczyk, The Hippo pathway in colorectal cancer. Folia Histochem Cytobiol, 2015. 53(2): p. 105-19. 78.Yeh, Y.W., et al., Targeting the VEGF-C/VEGFR3 axis suppresses Slug-mediated cancer metastasis and stemness via inhibition of KRAS/YAP1 signaling. Oncotarget, 2017. 8(3): p. 5603-5618. 79.Zhao, X., et al., Melatonin Protects against Lung Fibrosis by Regulating the Hippo/YAP Pathway. Int J Mol Sci, 2018. 19(4). 80.Lau, A.N., et al., Tumor-propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis. Embo j, 2014. 33(5): p. 468-81. 81.Yang, C.E., et al., Corrigendum to "The antipsychotic chlorpromazine suppresses YAP signaling, stemness properties, and drug resistance in breast cancer cells" [Chem. Biol. Interact. 302 (2019) 28-35]. Chem Biol Interact, 2019. 312: p. 108812. 82.Janse van Rensburg, H.J., et al., The Hippo Pathway Component TAZ Promotes Immune Evasion in Human Cancer through PD-L1. Cancer Res, 2018. 78(6): p. 1457-1470. 83.Chung, C.H., et al., Fucoidan-based, tumor-activated nanoplatform for overcoming hypoxia and enhancing photodynamic therapy and antitumor immunity. Biomaterials, 2020. 257: p. 120227. 84.Liu, H., et al., Role of CD4+ CD25+ regulatory T cells in melatonin-mediated inhibition of murine gastric cancer cell growth in vivo and in vitro. Anat Rec (Hoboken), 2011. 294(5): p. 781-8. 85.Odeh, L.H., W.H. Talib, and I.A. Basheti, Synergistic effect of thymoquinone and melatonin against breast cancer implanted in mice. J Cancer Res Ther, 2018. 14(Supplement): p. S324-s330. 86.Perfilyeva, Y.V., et al., Exogenous Melatonin Up-Regulates Expression of CD62L by Lymphocytes in Aged Mice under Inflammatory and Non-Inflammatory Conditions. Immunol Invest, 2019. 48(6): p. 632-643. 87.Moreno, A.C.R., et al., The Combined Use of Melatonin and an Indoleamine 2,3-Dioxygenase-1 Inhibitor Enhances Vaccine-Induced Protective Cellular Immunity to HPV16-Associated Tumors. Front Immunol, 2018. 9: p. 1914. 88.Hadadi, E. and H. Acloque, Role of circadian rhythm disorders on EMT and tumour-immune interactions in endocrine-related cancers. Endocr Relat Cancer, 2021. 28(2): p. R67-r80.
|