跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/03 22:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃加
研究生(外文):HUANG, JIA
論文名稱:Asiatic Acid和Rigosertib對T315I Bcr-Abl CML細胞凋亡 和有氧糖酵解的影響
論文名稱(外文):Effects of asiatic acid and rigosertib on apoptosis and aerobic glycolysis in T315I Bcr-Abl CML cells
指導教授:黃惠美黃惠美引用關係
指導教授(外文):HUANG, HUEI-MEI
口試委員:張淑芬張榮善黃惠美
口試委員(外文):CHANG, SHWU-FENCHANG, JUNG-SHANHUANG, HUEI-MEI
口試日期:2022-07-15
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:32
中文關鍵詞:慢性骨髓白血病Bcr-Abl T315I耐藥積雪草酸Rigosertib
外文關鍵詞:Chronic myeloid leukemiaBcr-Abl T315I ResistanceAsiatic AcidRigosertib
相關次數:
  • 被引用被引用:0
  • 點閱點閱:51
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
Chronic myeloid leukemia (CML)是一種由 Bcr-Abl 融合基因引起的骨髓增殖性疾病 ,其中 T315I 突變使 CML 細胞對 imatinib 產生耐藥性 。第三代酪氨酸激酶抑製劑 ponatinib 雖然可以抑制 Bcr-Abl 激 酶 ,但也存在嚴重的副作用 。Warburg effect ,即有氧糖酵解,是腫瘤細胞獲取能量的重要來源 。先 前的研究證明 ,抑制 Warburg effect 可能是一種有前途的癌症治療策略 。本研究旨在探討 rigosertib 和 Asiatic Acid(AA)對 T315I 突變 CML 細胞 的影響及機制 。 Rigosertib 是一種非 ATP 競爭性多靶向 抑製劑 ,可抑制 CML 細胞增殖 。AA 是一種天然小分子藥物 , 可誘導實體瘤細胞凋亡 。我們首先發現 AA 在 48 小時處理後抑制 K562、BaF3/p210 和 BaF3/T315I 細胞的增殖並誘導細胞凋亡 。 Rigosertib 和 AA 具有誘導 K562、BaF3/p210 和 BaF3/T315I 細胞凋亡的能力 。AA 在處理 48 後能 夠增加 c-caspase3/PARP 蛋白量表達 。Rigosertib 和 AA 在處理 48 小時後能夠下調 K562、 BaF3/p210 和 BaF3/T315I 細胞 HK1、HK2、HIF1α、PDK1 和 Glut1 Warburg effect 相關基因 mRNA 的表達 。Rigosertib 能夠誘導 K562、BaF3/p210 和 BaF3/T315I 細胞凋亡,並下調 HK2,PDK1 蛋白 表達與增加細胞週期的 G2/M 期停滯 。這些結果表明 ,rigosertib 和 AA 可通過抑制具有 T315I 突變 的 CML 細胞的 Warburg 效應來誘導生長抑制和細胞凋亡 。
Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by the Bcr-Abl fusion gene, in which the T315I mutation makes CML cells resistant to imatinib. Although the third-generation tyrosine kinase inhibitor ponatinib can inhibit Bcr-Abl kinase, it also has serious side effects. Warburg effect, known as aerobic glycolysis, is an important source of energy acquisition for tumor cells. Previous studies showed that inhibition of Warburg effect may be a promising strategy for cancer therapy. The aim of this study was to explore the influence and mechanism of rigosertib and asiatic acid (AA) on Warburg effect in CML cells with T315I mutation. Rigosertib is a non-ATP competitive multi-targeting inhibitor. It can induce growth inhibition and apoptosis in CML cells with Bcr-Abl T315I mutation. AA is a natural small-molecule drug that also can induce growth inhibition and apoptosis in solid tumor cells. We first found that AA inhibited the proliferation and induced apoptosis in K562, BaF3/p210, and BaF3/T315I cells after 48h treatment. Rigosertib and AA were able to down regulate the Warburg effect related genes HK1, HK2, HIF1α, PDK1, and Glut1 mRNA expression after 48h treatment. Rigosertib induced apoptosis in K562, BaF3/p210, and BaF3/T315I cells and down regulated HK2 and PDK1 proteins level and increased cell cycle G2/M arrest. These results suggested that rigosertib and AA induce growth inhibition and apoptosis by inhibiting Warburg effect in CML cells with T315I mutation.
目錄Ⅰ
表目錄Ⅲ
中文摘要Ⅳ
AbstractⅤ
第一章:緒論1
1.1 Chronic myelocytic leukemia(CML)1
1.2 Warburg effect4
1.3 Warburg effect相關調控蛋白4
1.4 新型小分子藥物Rigosertib與Asiatic acid5
研究目的7
第二章:材料與方法8
2.1 實驗藥物配製8
2.2 細胞培養8
2.3 細胞數量計算8
2.4 細胞存活率分析(MTT assay)9
2.5 流式細胞儀分析(Flow cytometry assay)9
2.6 蛋白質萃取與Western blot10
2.7 RNA萃取11
2.8 RT-PCR12
2.9 統計方法12
第三章:實驗結果14
3.1 Asiatic acid抑制CML細胞存活率14
3.2 Rigosertib與AA誘導CML細胞凋亡14
3.3 AA增加c-PARP與c-caspase3蛋白表達水平15
3.4 Rigosertib與AA下調CML細胞中Warbrug effect相關mRNA表達15
3.5 Rigosertib下調CML細胞中Warbrug effect相關蛋白水平15
3.6 Rigosertib使CML細胞週期停滯在G2/M期16
第四章:討論17
第五章:圖表19
圖1. AA抑制K562, BaF3/p210,BaF3/T315I細胞存活率19
圖2. AA與Rigosertib誘導K562, BaF3/p210,BaF3/T315I細胞凋亡20
圖3. AA通過c-caspase3/PARP路徑誘導CML細胞凋亡21
圖4. Rigosertib與AA下調CML細胞中Warbrug effect相關mRNA表達22
圖5. Rigosertib下調CML細胞中Warbrug effect相關蛋白水平23
圖6. Rigosertib使CML細胞週期停滯在G2/M期:24
參考文獻:25
表目錄
實驗使用引子12
參考文獻:
Aaron M. Hosios; Brendan D. Manning. (2021). Cancer signaling drives cancer metabolism: AKT and the Warburg effect. Cancer Research, 81(19): 4896–4898

Amendola, C. R., Mahaffey, J. P., Parker, S. J., Ahearn, I. M., Chen, W.-C., Zhou, M., … Philips, M. R. (2019). KRAS4A directly regulates hexokinase 1. Nature, 576(7787), 482–486

Atas E, Oberhuber M and Kenner L. (2020). The Implications of PDK1–4 on Tumor energy metabolism,
aggressiveness and therapy resistance. Front. Oncol, 10:583217.


Bhaskar B.,Mohd Feroz Mohd O., Richie S. (2016). The Warburg effect and drug resistance. British Journal of Pharmacology, 173(6), 970–979

Bhattacharya, B., Low, S. H. H., Soh, C., Kamal Mustapa, N., Beloueche-Babari, M., Koh, K. X., … Soong, R. (2014). Increased drug resistance is associated with reduced glucose levels and an enhanced glycolysis phenotype. British Journal of Pharmacology, 171(13), 3255–3267

Buller, C. L., Heilig, C. W., Brosius, F. C. (2011). GLUT1 enhances mTOR activity independently of TSC2 and AMPK. American Journal of Physiology-Renal Physiology. (2010). 301(3), 588–596

Chan, O., Talati, C., Isenalumhe, L., Shams, S., Nodzon, L., Fradley, M., Sweet, K., Pinilla-Ibarz, J. (2020). Side-effects profile and outcomes of ponatinib in the treatment of chronic myeloid leukemia. Blood Advances, 4(3), 530–538

Chen, X., Li, L., Guan, Y., Yang, J., Cheng, Y. (2016). Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect. Acta Pharmacologica Sinica, 37(8), 1013–1019

Christofk, H., Vander Heiden, M., Wu, N. et al. (2008). Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature, 452, 181–186

Cortes, J., Rousselot, P., Kim, D.-W., Ritchie, E., Hamerschlak, N., Coutre, S., … Baccarani, M. (2007). Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood, 109(8), 3207–3213

Chung, C. (2021). Targeting the Myeloid Lineages and the Immune Microenvironment in Myelodysplastic Syndromes: Novel and Evolving Therapeutic Strategies. Annals of Pharmacotherapy, 56(4), 475-487

Dai, W., Meng, X., Mo, S., Xiang, W., Xu, Y., Zhang, L., … Cai, G. (2020). FOXE1 represses cell proliferation and Warburg effect by inhibiting HK2 in colorectal cancer. Cell Communication and Signaling, 18,7

Dawson, D. M., Goodfriend, T. L., Kaplan, N. O., Kaplan, N. O. (1964). Lactic Dehydrogenases: Functions of the Two Types. Science, 143(3609), 929–933

Deng, Y., Li, X., Feng, J., & Zhang, X. (2018). Overexpression of miR-202 resensitizes imatinib resistant chronic myeloid leukemia cells through targetting Hexokinase 2 . Bioscience Reports, 38(3), BSR20171383

Denko, N. C. (2008). Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Reviews Cancer, 8(9), 705–713

Doherty, J. R., Cleveland, J. L. (2013). Targeting lactate metabolism for cancer therapeutics. Journal of Clinical Investigation, 123(9), 3685–3692

Faderl, S., Talpaz, M., Estrov, Z., O’Brien, S., Kurzrock, R., Kantarjian, H. M. (1999). The Biology of Chronic Myeloid Leukemia. New England Journal of Medicine, 341(3), 164–172

Gambacorti-Passerini, C., Antolini, L., Mahon, F.-X., Guilhot, F., Deininger, M., Fava, C., … Kim, D.-W. (2011). Multicenter Independent Assessment of Outcomes in Chronic Myeloid Leukemia Patients Treated With Imatinib. Journal of the National Cancer Institute, 103(7), 553–561

Gao, Z.-H., Gao, R.-R., Dong, X.-R., Zou, Z.-M., Wang, Q., Zhou, D.-M., Sun, D.-A. (2017). Selective oxidation-reduction and esterification of asiatic acid by Pestalotiopsis microspora and anti-HCV activity. Phytochemistry Letters, 19, 108–113

Gatenby, R. A., Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews Cancer, 4(11), 891–899

Gottschalk, S. (2004). Imatinib (STI571)-Mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clinical Cancer Research, 10(19), 6661–6668

Gou, X., Bai, H., Liu, L., Chen, H., Shi, Q., Chang, L., … Zhang, L. (2020). Asiatic Acid Interferes with Invasion and Proliferation of Breast Cancer Cells by Inhibiting WAVE3 Activation through PI3K/AKT Signaling Pathway. BioMed Research International, 1–12

Gumireddy, K., Reddy, M. V. R., Cosenza, S. C., Nathan, R. B., Baker, S. J., Papathi, N., … Reddy, E. P. (2005). ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell, 7(3), 275–286

Hehlmann, R., Hochhaus, A., Baccarani, M. (2007). Chronic myeloid leukaemia. The Lancet, 370(9584), 342–350

Hirschhaeuser, F., Sattler, U. G. A., Mueller-Klieser, W. (2011). Lactate: A Metabolic Key Player in Cancer. Cancer Research, 71(22), 6921–6925

Hyoda, T., Tsujioka, T., Nakahara, T., Suemori, S., Okamoto, S., Kataoka, M., Tohyama, K. (2015). Rigosertib induces cell death of a myelodysplastic syndrome-derived cell line by DNA damage-induced G2/M arrest. Cancer Science, 106(3), 287–293

Iyer, N. V., Kotch, L. E., Agani, F., Leung, S. W., Laughner, E., Wenger, R. H., … Semenza, G. L. (1998). Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1alpha. Genes Development, 12(2), 149–162

Jabbour, E., Kantarjian, H. (2012). Chronic myeloid leukemia: 2012 update on diagnosis, monitoring, and management. American Journal of Hematology, 87(11), 1037–1045

Jacquel, A., Colosetti, P., Grosso, S., Belhacene, N., Puissant, A., Marchetti, S., … Auberger, P. (2006). Apoptosis and erythroid differentiation triggered by Bcr-Abl inhibitors in CML cell lines are fully distinguishable processes that exhibit different sensitivity to caspase inhibition. Oncogene, 26(17), 2445–2458

Jost, M., Chen, Y., Gilbert, L. A., Horlbeck, M. A., Krenning, L., Menchon, G., … Weissman, J. S. (2020). Pharmaceutical-Grade Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 79(1), 191–198

Kavitha, C. V., Jain, A. K., Agarwal, C., Pierce, A., Keating, A., Huber, K. M., … Deep, G. (2014). Asiatic acid induces endoplasmic reticulum stress and apoptotic death in glioblastoma multiforme cells both in vitro and in vivo. Molecular Carcinogenesis, 54(11), 1417–1429

Liberti, M. V., Locasale, J. W. (2016). The Warburg Effect: How Does it Benefit Cancer Cells? Trends in Biochemical Sciences, 41(3), 211–218

Li, R., Li, H., Zhu, L., Zhang, X., Liu, D., Li, Q., Ni, B., Hu, L.,Zhang, Z., Zhang, Y., Wang, X., Jiang, S. (2021). Reciprocal regulation of LOXL2 and HIF1α drives the Warburg effect to support pancreatic cancer aggressiveness.
Cell Death and Disease.12, 1106
Li, W.-C., Huang, C.-H., Hsieh, Y.-T., Chen, T.-Y., Cheng, L.-H., Chen, C.-Y., … Chang, K.-W. (2020). Regulatory Role of Hexokinase 2 in Modulating Head and Neck Tumorigenesis. Frontiers in Oncology, 10,176

Lin, G., Wu, Y., Cai, F., Li, Z., Su, S., Wang, J., … Ma, L. (2019). Matrine Promotes Human Myeloid Leukemia Cells Apoptosis Through Warburg Effect Mediated by Hexokinase 2. Frontiers in Pharmacology, 10,1069

Liu, T., Yin, H. (2016). PDK1 promotes tumor cell proliferation and migration by enhancing the Warburg effect in non-small cell lung cancer. Oncology Reports, 37(1), 193–200

Lv, J., Sharma, A., Zhang, T., Wu, Y., Ding, X. (2018). Pharmacological Review on Asiatic Acid and Its Derivatives: A Potential Compound. Slas technology: Translating Life Sciences Innovation, 23(2), 111–127

McFate, T., Mohyeldin, A., Lu, H., Thakar, J., Henriques, J., Halim, N. D., … Verma, A. (2008). Pyruvate Dehydrogenase Complex Activity Controls Metabolic and Malignant Phenotype in Cancer Cells. Journal of Biological Chemistry, 283(33), 22700–22708

Meng, F., Luo, X., Li, C., Wang, G. (2022). LncRNA LINC00525 activates HIF-1α through miR-338-3p / UBE2Q1 / β-catenin axis to regulate the Warburg effect in colorectal cancer. Bioengineered, 13(2), 2552-2565

Nicolini, F. E., Mauro, M. J., Martinelli, G., Kim, D.-W., Soverini, S., Muller, M. C., … Zhou, W. (2009). Epidemiologic study on survival of chronic myeloid leukemia and Ph+ acute lymphoblastic leukemia patients with BCR-ABL T315I mutation. Blood, 114(26), 5271–5278

Nie, Z.-Y., Liu, X.-J., Zhan, Y., Liu, M.-H., Zhang, X.-Y., Li, Z.-Y., … Yang, L. (2019). miR-140-5p induces cell apoptosis and decreases Warburg effect in chronic myeloid leukemia by targeting SIX1. Bioscience Reports, 39(4)
Nogueira, V., Park, Y., Chen, C.-C., Xu, P.-Z., Chen, M.-L., Tonic, I., … Hay, N. (2008). Akt Determines Replicative Senescence and Oxidative or Oncogenic Premature Senescence and Sensitizes Cells to Oxidative Apoptosis. Cancer Cell, 14(6), 458–470

O’Hare, T., Shakespeare, W. C., Zhu, X., Eide, C. A., Rivera, V. M., Wang, F., … Clackson, T. (2009). AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance. Cancer Cell, 16(5), 401–412

Okabe S, Tauchi T, Tanaka Y, Sakuta J, Ohyashiki K. (2015). Efficacy of the polo-like kinase inhibitor rigosertib, alone or in combination with Abelson tyrosine kinase inhibitors, against break point cluster region-c-Abelson-positive leukemia cells. Oncotarget, 6(24):20231-40

Padda J, Khalid K, Kakani V. (2021). Metabolic Acidosis in Leukemia. Cureus, 13(9), e17732.

Park, B. C., Bosire, K. O., Lee, E.-S., Lee, Y. S., Kim, J.-A. (2005). Asiatic acid induces apoptosis in SK-MEL-2 human melanoma cells. Cancer Letters, 218(1), 81–90

Pricl S, Fermeglia M, Ferrone M, Tamborini E. (2005 ). T315I-mutated Bcr-Abl in chronic myeloid leukemia and imatinib: insights from a computational study. Molecular Cancer Therapeutics
, 4(8):1167-74

Roskoski, R. (2003). STI-571: an anticancer protein-tyrosine kinase inhibitor. Biochemical and Biophysical Research Communications, 309(4), 709–7175

Schofield, C., Ratcliffe, P. (2004). Oxygen sensing by HIF hydroxylases. Nature Reviews Molecular Cell Biology,
5, 343–354

Seagroves, T. N., Ryan, H. E., Lu, H., Wouters, B. G., Knapp, M., Thibault, P., … Johnson, R. S. (2001). Transcription Factor HIF-1 Is a Necessary Mediator of the Pasteur Effect in Mammalian Cells. Molecular and Cellular Biology, 21(10), 3436–3444

Semenza, G. L. (2004). Hydroxylation of HIF-1: Oxygen Sensing at the Molecular Level. Physiology, 19(4), 176–182

Sloma, I., Jiang, X., Eaves, A. C., Eaves, C. J. (2010). Insights into the stem cells of chronic myeloid leukemia. Leukemia, 24(11), 1823–1833

Soverini, S., Iacobucci, I., Baccarani, M., Martinelli, G. (2007). Targeted therapy and the T315I mutation in Philadelphia-positive leukemias. Haematologica, 92(4), 437–439

Tan, V. P., Miyamoto, S. (2015). HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection. Autophagy, 11(6), 963–964

Tefferi A, Dewald GW, Litzow ML, Cortes J, Mauro MJ, Talpaz M, Kantarjian HM. (2005). Chronic myeloid leukemia: current application of cytogenetics and molecular testing for diagnosis and treatment. Mayo Clinic Proceedings, 80(3), 390-402

Thorens, B., Mueckler, M. (2010). Glucose transporters in the 21st Century. American Journal of Physiology-Endocrinology and Metabolism, 298(2), 141–145

Tomiyama, A., Serizawa, S., Tachibana, K., Sakurada, K., Samejima, H., Kuchino, Y., Kitanaka, C. (2006). Critical Role for Mitochondrial Oxidative Phosphorylation in the Activation of Tumor Suppressors Bax and Bak. Journal of the National Cancer Institute, 98(20), 1462–1473

Tong, L., Xu, N., Zhou, X., Huang, J., Wu, W.,Chen, C., Liang, L.,Liu, Q., Liu, X.(2018). PKM2 Mediates Chronic Myeloid Leukemia Imatinib Resistance By Regulating Glycolysis Energy Metabolism. blood, 132(1), 1724

Vander Heiden, M. G., Cantley, L. C., Thompson, C. B. (2009). Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science, 324(5930), 1029–1033

Wang, J.-J., Wang, Y., Hou, L., Xin, F., Fan, B., Lu, C., … Li, S. (2019). Immunomodulatory Protein from Nectria haematococca Induces Apoptosis in Lung Cancer Cells via the P53 Pathway. International Journal of Molecular Sciences, 20(21), 5348

Wu, T., Geng, J., Guo, W., Gao, J., Zhu, X. (2017). Asiatic acid inhibits lung cancer cell growth in vitro and in vivo by destroying mitochondria. Acta Pharmaceutica Sinica B, 7(1), 65–72

Wu, K., Guo, C., Li, y., Yang, J., Zhou, Q., Cheng, S., Li, Y., Nie, B And Zeng, Y. (2021). MicroRNA18a5p regulates the Warburg effect by targeting hypoxiainducible factor 1α in the K562/ADM cell line. Experimental And Therapeutic Medicine, 22(4), 1069

Xu, L., Li, Y., Zhou, L., Dorfman, R., Liu, L., Cai, R., Jiang, C., Tang, D., Wang, Y., Zou, X., Wang, L., Zhang, M. (2019). Cancer Medicine, 2019;8:2380–2391


Yu, H., Yin, Y., Yi, Y., Cheng, Z., Kuang, W., Li, R., … Zhang, G. (2020). Targeting lactate dehydrogenase A ( LDHA ) exerts antileukemic effects on T‐cell acute lymphoblastic leukemia. Cancer Communications, 40, 501-517

Zabkiewicz, J., Pearn, L., Hills, R. K., Morgan, R. G., Tonks, A., Burnett, A. K., & Darley, R. L. (2013). The PDK1 master kinase is over-expressed in acute myeloid leukemia and promotes PKC-mediated survival of leukemic blasts. Haematologica, 99(5), 858–864
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top