|
參考文獻: Aaron M. Hosios; Brendan D. Manning. (2021). Cancer signaling drives cancer metabolism: AKT and the Warburg effect. Cancer Research, 81(19): 4896–4898
Amendola, C. R., Mahaffey, J. P., Parker, S. J., Ahearn, I. M., Chen, W.-C., Zhou, M., … Philips, M. R. (2019). KRAS4A directly regulates hexokinase 1. Nature, 576(7787), 482–486
Atas E, Oberhuber M and Kenner L. (2020). The Implications of PDK1–4 on Tumor energy metabolism, aggressiveness and therapy resistance. Front. Oncol, 10:583217.
Bhaskar B.,Mohd Feroz Mohd O., Richie S. (2016). The Warburg effect and drug resistance. British Journal of Pharmacology, 173(6), 970–979
Bhattacharya, B., Low, S. H. H., Soh, C., Kamal Mustapa, N., Beloueche-Babari, M., Koh, K. X., … Soong, R. (2014). Increased drug resistance is associated with reduced glucose levels and an enhanced glycolysis phenotype. British Journal of Pharmacology, 171(13), 3255–3267
Buller, C. L., Heilig, C. W., Brosius, F. C. (2011). GLUT1 enhances mTOR activity independently of TSC2 and AMPK. American Journal of Physiology-Renal Physiology. (2010). 301(3), 588–596
Chan, O., Talati, C., Isenalumhe, L., Shams, S., Nodzon, L., Fradley, M., Sweet, K., Pinilla-Ibarz, J. (2020). Side-effects profile and outcomes of ponatinib in the treatment of chronic myeloid leukemia. Blood Advances, 4(3), 530–538
Chen, X., Li, L., Guan, Y., Yang, J., Cheng, Y. (2016). Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect. Acta Pharmacologica Sinica, 37(8), 1013–1019
Christofk, H., Vander Heiden, M., Wu, N. et al. (2008). Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature, 452, 181–186
Cortes, J., Rousselot, P., Kim, D.-W., Ritchie, E., Hamerschlak, N., Coutre, S., … Baccarani, M. (2007). Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood, 109(8), 3207–3213
Chung, C. (2021). Targeting the Myeloid Lineages and the Immune Microenvironment in Myelodysplastic Syndromes: Novel and Evolving Therapeutic Strategies. Annals of Pharmacotherapy, 56(4), 475-487
Dai, W., Meng, X., Mo, S., Xiang, W., Xu, Y., Zhang, L., … Cai, G. (2020). FOXE1 represses cell proliferation and Warburg effect by inhibiting HK2 in colorectal cancer. Cell Communication and Signaling, 18,7
Dawson, D. M., Goodfriend, T. L., Kaplan, N. O., Kaplan, N. O. (1964). Lactic Dehydrogenases: Functions of the Two Types. Science, 143(3609), 929–933
Deng, Y., Li, X., Feng, J., & Zhang, X. (2018). Overexpression of miR-202 resensitizes imatinib resistant chronic myeloid leukemia cells through targetting Hexokinase 2 . Bioscience Reports, 38(3), BSR20171383
Denko, N. C. (2008). Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Reviews Cancer, 8(9), 705–713
Doherty, J. R., Cleveland, J. L. (2013). Targeting lactate metabolism for cancer therapeutics. Journal of Clinical Investigation, 123(9), 3685–3692
Faderl, S., Talpaz, M., Estrov, Z., O’Brien, S., Kurzrock, R., Kantarjian, H. M. (1999). The Biology of Chronic Myeloid Leukemia. New England Journal of Medicine, 341(3), 164–172
Gambacorti-Passerini, C., Antolini, L., Mahon, F.-X., Guilhot, F., Deininger, M., Fava, C., … Kim, D.-W. (2011). Multicenter Independent Assessment of Outcomes in Chronic Myeloid Leukemia Patients Treated With Imatinib. Journal of the National Cancer Institute, 103(7), 553–561
Gao, Z.-H., Gao, R.-R., Dong, X.-R., Zou, Z.-M., Wang, Q., Zhou, D.-M., Sun, D.-A. (2017). Selective oxidation-reduction and esterification of asiatic acid by Pestalotiopsis microspora and anti-HCV activity. Phytochemistry Letters, 19, 108–113
Gatenby, R. A., Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews Cancer, 4(11), 891–899
Gottschalk, S. (2004). Imatinib (STI571)-Mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clinical Cancer Research, 10(19), 6661–6668
Gou, X., Bai, H., Liu, L., Chen, H., Shi, Q., Chang, L., … Zhang, L. (2020). Asiatic Acid Interferes with Invasion and Proliferation of Breast Cancer Cells by Inhibiting WAVE3 Activation through PI3K/AKT Signaling Pathway. BioMed Research International, 1–12
Gumireddy, K., Reddy, M. V. R., Cosenza, S. C., Nathan, R. B., Baker, S. J., Papathi, N., … Reddy, E. P. (2005). ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell, 7(3), 275–286
Hehlmann, R., Hochhaus, A., Baccarani, M. (2007). Chronic myeloid leukaemia. The Lancet, 370(9584), 342–350
Hirschhaeuser, F., Sattler, U. G. A., Mueller-Klieser, W. (2011). Lactate: A Metabolic Key Player in Cancer. Cancer Research, 71(22), 6921–6925
Hyoda, T., Tsujioka, T., Nakahara, T., Suemori, S., Okamoto, S., Kataoka, M., Tohyama, K. (2015). Rigosertib induces cell death of a myelodysplastic syndrome-derived cell line by DNA damage-induced G2/M arrest. Cancer Science, 106(3), 287–293
Iyer, N. V., Kotch, L. E., Agani, F., Leung, S. W., Laughner, E., Wenger, R. H., … Semenza, G. L. (1998). Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1alpha. Genes Development, 12(2), 149–162
Jabbour, E., Kantarjian, H. (2012). Chronic myeloid leukemia: 2012 update on diagnosis, monitoring, and management. American Journal of Hematology, 87(11), 1037–1045
Jacquel, A., Colosetti, P., Grosso, S., Belhacene, N., Puissant, A., Marchetti, S., … Auberger, P. (2006). Apoptosis and erythroid differentiation triggered by Bcr-Abl inhibitors in CML cell lines are fully distinguishable processes that exhibit different sensitivity to caspase inhibition. Oncogene, 26(17), 2445–2458
Jost, M., Chen, Y., Gilbert, L. A., Horlbeck, M. A., Krenning, L., Menchon, G., … Weissman, J. S. (2020). Pharmaceutical-Grade Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 79(1), 191–198
Kavitha, C. V., Jain, A. K., Agarwal, C., Pierce, A., Keating, A., Huber, K. M., … Deep, G. (2014). Asiatic acid induces endoplasmic reticulum stress and apoptotic death in glioblastoma multiforme cells both in vitro and in vivo. Molecular Carcinogenesis, 54(11), 1417–1429
Liberti, M. V., Locasale, J. W. (2016). The Warburg Effect: How Does it Benefit Cancer Cells? Trends in Biochemical Sciences, 41(3), 211–218
Li, R., Li, H., Zhu, L., Zhang, X., Liu, D., Li, Q., Ni, B., Hu, L.,Zhang, Z., Zhang, Y., Wang, X., Jiang, S. (2021). Reciprocal regulation of LOXL2 and HIF1α drives the Warburg effect to support pancreatic cancer aggressiveness. Cell Death and Disease.12, 1106 Li, W.-C., Huang, C.-H., Hsieh, Y.-T., Chen, T.-Y., Cheng, L.-H., Chen, C.-Y., … Chang, K.-W. (2020). Regulatory Role of Hexokinase 2 in Modulating Head and Neck Tumorigenesis. Frontiers in Oncology, 10,176
Lin, G., Wu, Y., Cai, F., Li, Z., Su, S., Wang, J., … Ma, L. (2019). Matrine Promotes Human Myeloid Leukemia Cells Apoptosis Through Warburg Effect Mediated by Hexokinase 2. Frontiers in Pharmacology, 10,1069
Liu, T., Yin, H. (2016). PDK1 promotes tumor cell proliferation and migration by enhancing the Warburg effect in non-small cell lung cancer. Oncology Reports, 37(1), 193–200
Lv, J., Sharma, A., Zhang, T., Wu, Y., Ding, X. (2018). Pharmacological Review on Asiatic Acid and Its Derivatives: A Potential Compound. Slas technology: Translating Life Sciences Innovation, 23(2), 111–127
McFate, T., Mohyeldin, A., Lu, H., Thakar, J., Henriques, J., Halim, N. D., … Verma, A. (2008). Pyruvate Dehydrogenase Complex Activity Controls Metabolic and Malignant Phenotype in Cancer Cells. Journal of Biological Chemistry, 283(33), 22700–22708
Meng, F., Luo, X., Li, C., Wang, G. (2022). LncRNA LINC00525 activates HIF-1α through miR-338-3p / UBE2Q1 / β-catenin axis to regulate the Warburg effect in colorectal cancer. Bioengineered, 13(2), 2552-2565
Nicolini, F. E., Mauro, M. J., Martinelli, G., Kim, D.-W., Soverini, S., Muller, M. C., … Zhou, W. (2009). Epidemiologic study on survival of chronic myeloid leukemia and Ph+ acute lymphoblastic leukemia patients with BCR-ABL T315I mutation. Blood, 114(26), 5271–5278
Nie, Z.-Y., Liu, X.-J., Zhan, Y., Liu, M.-H., Zhang, X.-Y., Li, Z.-Y., … Yang, L. (2019). miR-140-5p induces cell apoptosis and decreases Warburg effect in chronic myeloid leukemia by targeting SIX1. Bioscience Reports, 39(4) Nogueira, V., Park, Y., Chen, C.-C., Xu, P.-Z., Chen, M.-L., Tonic, I., … Hay, N. (2008). Akt Determines Replicative Senescence and Oxidative or Oncogenic Premature Senescence and Sensitizes Cells to Oxidative Apoptosis. Cancer Cell, 14(6), 458–470
O’Hare, T., Shakespeare, W. C., Zhu, X., Eide, C. A., Rivera, V. M., Wang, F., … Clackson, T. (2009). AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance. Cancer Cell, 16(5), 401–412
Okabe S, Tauchi T, Tanaka Y, Sakuta J, Ohyashiki K. (2015). Efficacy of the polo-like kinase inhibitor rigosertib, alone or in combination with Abelson tyrosine kinase inhibitors, against break point cluster region-c-Abelson-positive leukemia cells. Oncotarget, 6(24):20231-40
Padda J, Khalid K, Kakani V. (2021). Metabolic Acidosis in Leukemia. Cureus, 13(9), e17732.
Park, B. C., Bosire, K. O., Lee, E.-S., Lee, Y. S., Kim, J.-A. (2005). Asiatic acid induces apoptosis in SK-MEL-2 human melanoma cells. Cancer Letters, 218(1), 81–90
Pricl S, Fermeglia M, Ferrone M, Tamborini E. (2005 ). T315I-mutated Bcr-Abl in chronic myeloid leukemia and imatinib: insights from a computational study. Molecular Cancer Therapeutics , 4(8):1167-74
Roskoski, R. (2003). STI-571: an anticancer protein-tyrosine kinase inhibitor. Biochemical and Biophysical Research Communications, 309(4), 709–7175
Schofield, C., Ratcliffe, P. (2004). Oxygen sensing by HIF hydroxylases. Nature Reviews Molecular Cell Biology, 5, 343–354
Seagroves, T. N., Ryan, H. E., Lu, H., Wouters, B. G., Knapp, M., Thibault, P., … Johnson, R. S. (2001). Transcription Factor HIF-1 Is a Necessary Mediator of the Pasteur Effect in Mammalian Cells. Molecular and Cellular Biology, 21(10), 3436–3444
Semenza, G. L. (2004). Hydroxylation of HIF-1: Oxygen Sensing at the Molecular Level. Physiology, 19(4), 176–182
Sloma, I., Jiang, X., Eaves, A. C., Eaves, C. J. (2010). Insights into the stem cells of chronic myeloid leukemia. Leukemia, 24(11), 1823–1833
Soverini, S., Iacobucci, I., Baccarani, M., Martinelli, G. (2007). Targeted therapy and the T315I mutation in Philadelphia-positive leukemias. Haematologica, 92(4), 437–439
Tan, V. P., Miyamoto, S. (2015). HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection. Autophagy, 11(6), 963–964
Tefferi A, Dewald GW, Litzow ML, Cortes J, Mauro MJ, Talpaz M, Kantarjian HM. (2005). Chronic myeloid leukemia: current application of cytogenetics and molecular testing for diagnosis and treatment. Mayo Clinic Proceedings, 80(3), 390-402
Thorens, B., Mueckler, M. (2010). Glucose transporters in the 21st Century. American Journal of Physiology-Endocrinology and Metabolism, 298(2), 141–145
Tomiyama, A., Serizawa, S., Tachibana, K., Sakurada, K., Samejima, H., Kuchino, Y., Kitanaka, C. (2006). Critical Role for Mitochondrial Oxidative Phosphorylation in the Activation of Tumor Suppressors Bax and Bak. Journal of the National Cancer Institute, 98(20), 1462–1473
Tong, L., Xu, N., Zhou, X., Huang, J., Wu, W.,Chen, C., Liang, L.,Liu, Q., Liu, X.(2018). PKM2 Mediates Chronic Myeloid Leukemia Imatinib Resistance By Regulating Glycolysis Energy Metabolism. blood, 132(1), 1724
Vander Heiden, M. G., Cantley, L. C., Thompson, C. B. (2009). Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science, 324(5930), 1029–1033
Wang, J.-J., Wang, Y., Hou, L., Xin, F., Fan, B., Lu, C., … Li, S. (2019). Immunomodulatory Protein from Nectria haematococca Induces Apoptosis in Lung Cancer Cells via the P53 Pathway. International Journal of Molecular Sciences, 20(21), 5348
Wu, T., Geng, J., Guo, W., Gao, J., Zhu, X. (2017). Asiatic acid inhibits lung cancer cell growth in vitro and in vivo by destroying mitochondria. Acta Pharmaceutica Sinica B, 7(1), 65–72
Wu, K., Guo, C., Li, y., Yang, J., Zhou, Q., Cheng, S., Li, Y., Nie, B And Zeng, Y. (2021). MicroRNA18a5p regulates the Warburg effect by targeting hypoxiainducible factor 1α in the K562/ADM cell line. Experimental And Therapeutic Medicine, 22(4), 1069
Xu, L., Li, Y., Zhou, L., Dorfman, R., Liu, L., Cai, R., Jiang, C., Tang, D., Wang, Y., Zou, X., Wang, L., Zhang, M. (2019). Cancer Medicine, 2019;8:2380–2391
Yu, H., Yin, Y., Yi, Y., Cheng, Z., Kuang, W., Li, R., … Zhang, G. (2020). Targeting lactate dehydrogenase A ( LDHA ) exerts antileukemic effects on T‐cell acute lymphoblastic leukemia. Cancer Communications, 40, 501-517
Zabkiewicz, J., Pearn, L., Hills, R. K., Morgan, R. G., Tonks, A., Burnett, A. K., & Darley, R. L. (2013). The PDK1 master kinase is over-expressed in acute myeloid leukemia and promotes PKC-mediated survival of leukemic blasts. Haematologica, 99(5), 858–864
|