|
1.Berlin, R.; Oldfelt, C. O.; Vikrot, O., Acute myocardial infarction and plasma phospholipid levels. Acta Medica Scandinavica 1969, 185, (1‐6), 439-442. 2.Ward-Caviness, C. K.; Xu, T.; Aspelund, T.; Thorand, B.; Montrone, C.; Meisinger, C.; Dunger-Kaltenbach, I.; Zierer, A.; Yu, Z.; Helgadottir, I. R., Improvement of myocardial infarction risk prediction via inflammation-associated metabolite biomarkers. Heart 2017, 103, (16), 1278-1285. 3.Li, Z.; Cheng, S.; Lin, Q.; Cao, W.; Yang, J.; Zhang, M.; Shen, A.; Zhang, W.; Xia, Y.; Ma, X.; Ouyang, Z., Single-cell lipidomics with high structural specificity by mass spectrometry. Nature communications 2021, 12, (1), 1-10. 4.Hesaka, A.; Tsukamoto, Y.; Nada, S.; Kawamura, M.; Ichimaru, N.; Sakai, S.; Nakane, M.; Mita, M.; Okuzaki, D.; Okada, M., D-Serine mediates cellular proliferation for kidney remodeling. Kidney360 2021, 2, (10), 1611-1624. 5.Cui, L.; Lu, H.-T.; Lee, Y.-H., Challenges and emergent solutions for LC‐MS/MS based untargeted metabolomics in diseases. Mass spectrometry reviews 2018, 37, (6), 772-792. 6.Zhang, L.; Vertes, A., Single‐cell mass spectrometry approaches to explore cellular heterogeneity. Angewandte Chemie International Edition 2018, 57, (17), 4466-4477. 7.Dudzik, D.; Barbas-Bernardos, C.; García, A.; Barbas, C., Quality assurance procedures for mass spectrometry untargeted metabolomics. a review. Journal of pharmaceutical and biomedical analysis 2018, 147, 149-173. 8.Wishart, D. S., Current progress in computational metabolomics. Briefings in bioinformatics 2007, 8, (5), 279-293. 9.Bruce, S. J.; Tavazzi, I.; Parisod, V.; Rezzi, S.; Kochhar, S.; Guy, P. A., Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Analytical chemistry 2009, 81, (9), 3285-3296. 10.Cajka, T.; Fiehn, O., Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Analytical chemistry 2016, 88, (1), 524-545. 11.Hsiao, S.-W.; Wu, Y.-C.; Mei, H.-C.; Chen, Y.-H.; Hsiao, G.; Lee, C.-K., Constituents of Aquilaria sinensis leaves upregulate the expression of matrix metalloproteases 2 and 9. Molecules 2021, 26, (9), 2537. 12.Yuan, H.-W.; Zhao, J.-P.; Liu, Y.-B.; Qiu, Y.-X.; Xie, Q.-L.; Li, M.-J.; Wang, W., Advance in studies on chemical constituents, pharmacology and quality control of Aquilaria sinensis. Digital Chinese Medicine 2018, 1, (4), 316-330. 13.Zhou, M.-h.; Wang, H.-g.; Kou, J.-p.; Yu, B.-y., Antinociceptive and anti-inflammatory activities of Aquilaria sinensis (Lour.) Gilg. leaves extract. Journal of Ethnopharmacology 2008, 117, (2), 345-350. 14.Qi, J.; Lu, J.-J.; Liu, J.-H.; Yu, B.-Y., Flavonoid and a rare benzophenone glycoside from the leaves of Aquilaria sinensis. Chemical and Pharmaceutical Bulletin 2009, 57, (2), 134-137. 15.Hara, H.; Ise, Y.; Morimoto, N.; Shimazawa, M.; Ichihashi, K.; Ohyama, M.; Iinuma, M., Laxative effect of agarwood leaves and its mechanism. Bioscience, biotechnology, and biochemistry 2008, 72, (2), 335-345. 16.Yang, X.-B.; Feng, J.; Yang, X.-W.; Zhao, B.; Liu, J.-X., Aquisiflavoside, a new nitric oxide production inhibitor from the leaves of Aquilaria sinensis. Journal of Asian natural products research 2012, 14, (9), 867-872. 17.Cheng, J.-T.; Han, Y.-Q.; He, J.; De Wu, X.; Dong, L.-B.; Peng, L.-Y.; Li, Y.; Zhao, Q.-S., Two new tirucallane triterpenoids from the leaves of Aquilaria sinensis. Archives of pharmacal research 2013, 36, (9), 1084-1089. 18.Yang, M.-X.; Liang, Y.-G.; Chen, H.-R.; Huang, Y.-F.; Gong, H.-G.; Zhang, T.-Y.; Ito, Y., Isolation of flavonoids from wild Aquilaria sinensis leaves by an improved preparative high-speed counter-current chromatography apparatus. Journal of chromatographic science 2018, 56, (1), 18-24. 19.Jiang, S.; Jiang, Y.; Guan, Y.-F.; Tu, P.-F.; Wang, K.-Y.; Chen, J.-M., Effects of 95% ethanol extract of Aquilaria sinensis leaves on hyperglycemia in diabetic db/db mice. Journal of Chinese Pharmaceutical Sciences 2011, 20, (6), 609. 20.Vincenti, M. P., The matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) genes. In Matrix Metalloproteinase Protocols, Humana Press: 2001; Vol. 151, pp 121-148. 21.Zhang, X.; Wang, X.; Zhong, W.; Ren, X.; Sha, X.; Fang, X., Matrix metalloproteinases-2/9-sensitive peptide-conjugated polymer micelles for site-specific release of drugs and enhancing tumor accumulation: preparation and in vitro and in vivo evaluation. International journal of nanomedicine 2016, 11, 1643. 22.Albright, C. F.; Graciani, N.; Han, W.; Yue, E.; Stein, R.; Lai, Z.; Diamond, M.; Dowling, R.; Grimminger, L.; Zhang, S.-Y., Matrix metalloproteinase–activated doxorubicin prodrugs inhibit HT1080 xenograft growth better than doxorubicin with less toxicity. Molecular cancer therapeutics 2005, 4, (5), 751-760. 23.Ra, H.-J.; Parks, W. C., Control of matrix metalloproteinase catalytic activity. Matrix Biology 2007, 26, (8), 587-596. 24.Lee, T. H.; Lu, C. K.; Kuo, Y. H.; Lo, J. M.; Lee, C. K., Unexpected novel pheophytin peroxides from the leaves of Biden pilosa. Helvetica Chimica Acta 2008, 91, (1), 79-84. 25.Kessenbrock, K.; Plaks, V.; Werb, Z., Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010, 141, (1), 52-67. 26.Sawicki, G.; Marcoux, Y.; Sarkhosh, K.; Tredget, E. E.; Ghahary, A., Interaction of keratinocytes and fibroblasts modulates the expression of matrix metalloproteinases-2 and-9 and their inhibitors. Molecular and cellular biochemistry 2005, 269, (1), 209-216. 27.Soo, C.; Shaw, W. W.; Zhang, X.; Longaker, M. T.; Howard, E. W.; Ting, K., Differential expression of matrix metalloproteinases and their tissue-derived inhibitors in cutaneous wound repair. Plastic and reconstructive surgery 2000, 105, (2), 638-647. 28.Manuel, J. A.; Gawronska-Kozak, B., Matrix metalloproteinase 9 (MMP-9) is upregulated during scarless wound healing in athymic nude mice. Matrix Biology 2006, 25, (8), 505-514. 29.Saide, A.; Lauritano, C.; Ianora, A., Pheophorbide a: state of the art. Marine Drugs 2020, 18, (5), 257. 30.Dolmans, D. E.; Fukumura, D.; Jain, R. K., Photodynamic therapy for cancer. Nature reviews cancer 2003, 3, (5), 380-387. 31.Lee, H.; Park, H.-Y.; Jeong, T.-S., Pheophorbide a derivatives exert antiwrinkle effects on UVB-induced skin aging in human fibroblasts. Life 2021, 11, (2), 147. 32.Hsiao, S.-W.; Kuo, I.; Su, C.-W.; Wang, Y.-H.; Mei, H.-C.; Lee, C.-K., Metabolite characterisation and profiling of Hermetia illucens L. larvae at various growth stages using Sesamum indicum residues as nutrient source. Journal of Insects as Food and Feed 2021, 1-14. 33.Newton, L.; Sheppard, C.; Watson, D. W.; Burtle, G.; Dove, R., Using the black soldier fly, Hermetia illucens, as a value-added tool for the management of swine manure. Animal and Poultry Waste Management Center, North Carolina State University, Raleigh, NC 2005, 17. 34.Wang, Y.-S.; Shelomi, M., Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods 2017, 6, (10), 91. 35.Jiang, C. L.; Jin, W. Z.; Tao, X. H.; Zhang, Q.; Zhu, J.; Feng, S. Y.; Xu, X. H.; Li, H. Y.; Wang, Z. H.; Zhang, Z. J., Black soldier fly larvae (Hermetia illucens) strengthen the metabolic function of food waste biodegradation by gut microbiome. Microbial biotechnology 2019, 12, (3), 528-543. 36.Miraj, S.; Kiani, S., Bioactivity of Sesamum indicum: a review study. Der Pharmacia Lettre 2016, 8, (6), 328-334. 37.Akihisa, T.; Yasukawa, K.; Yamaura, M.; Ukiya, M.; Kimura, Y.; Shimizu, N.; Arai, K., Triterpene alcohol and sterol ferulates from rice bran and their anti-inflammatory effects. Journal of Agricultural and Food Chemistry 2000, 48, (6), 2313-2319. 38.Zhang, X.; Yang, M.; Song, F.; Zhang, H.; Feng, F., Antimicrobial activity of selected fatty acids and their derivatives. Journal of Zhejiang University. Journal of Zhejiang University (Agriculture and Life Sciences) 2013, 39, (2), 155-160. 39.Martin-Arjol, I.; Bassas-Galia, M.; Bermudo, E.; Garcia, F.; Manresa, A., Identification of oxylipins with antifungal activity by LC–MS/MS from the supernatant of Pseudomonas 42A2. Chemistry and physics of lipids 2010, 163, (4-5), 341-346. 40.El-Hack, A.; Mohamed, E.; Shafi, M. E.; Alghamdi, W. Y.; Abdelnour, S. A.; Shehata, A. M.; Noreldin, A. E.; Ashour, E. A.; Swelum, A. A.; Al-Sagan, A. A., Black soldier fly (Hermetia illucens) meal as a promising feed ingredient for poultry: a comprehensive review. Agriculture 2020, 10, (8), 339. 41.Almeida, C.; Rijo, P.; Rosado, C., Bioactive compounds from Hermetia Illucens larvae as natural ingredients for cosmetic application. Biomolecules 2020, 10, (7), 976. 42.Lalander, C.; Diener, S.; Magri, M. E.; Zurbrügg, C.; Lindström, A.; Vinnerås, B., Faecal sludge management with the larvae of the black soldier fly (Hermetia illucens)—from a hygiene aspect. Science of the Total Environment 2013, 458, 312-318. 43.Vogel, H.; Müller, A.; Heckel, D. G.; Gutzeit, H.; Vilcinskas, A., Nutritional immunology: diversification and diet-dependent expression of antimicrobial peptides in the black soldier fly Hermetia illucens. Developmental & Comparative Immunology 2018, 78, 141-148. 44.Fitwi, M.; Tadesse, G., Effect of sesame cake supplementation on feed intake, body weight gain, feed conversion efficiency and carcass parameters in the ration of sheep fed on wheat bran and teff (Eragrostis teff) straw. Momona Ethiopian Journal of Science 2013, 5, (1), 89-106. 45.Omar, J. A., Effects of feeding different levels of sesame oil cake on performance and digestibility of Awassi lambs. Small Ruminant Research 2002, 46, (2-3), 187-190. 46.Mazid, M.; Zaher, M.; Begum, N.; Ali, M.; Nahar, F., Formulation of cost-effective feeds from locally available ingredients for carp polyculture system for increased production. Aquaculture 1997, 151, (1-4), 71-78. 47.徐文俊; 张崟; 姬懿珊; 杨婷; 杨萃; 甘长江, 芝麻粕利用的研究现状及进展. 农产品加工 2014, 6, (11), 64-67. 48.Kim, C.-H.; Ryu, J.; Lee, J.; Ko, K.; Lee, J.-y.; Park, K. Y.; Chung, H., Use of Black soldier fly larvae for food waste treatment and energy production in asian countries: a review. Processes 2021, 9, (1), 161. 49.Tran, G.; Gnaedinger, C.; Mélin, C. Black soldier fly larvae (Hermetia illucens). https://www.feedipedia.org/node/16388 50.Tomberlin, J. K. Biological, behavioral, and toxicological studies on the black soldier fly (Diptera: Stratiomyidae). Ph.D. dissertation, University of Georgia, Athens, 2003. 51.Esmaeilzadeh Kenari, R.; Mohsenzadeh, F.; Amiri, Z. R., Antioxidant activity and total phenolic compounds of Dezful sesame cake extracts obtained by classical and ultrasound‐assisted extraction methods. Food science & nutrition 2014, 2, (4), 426-435. 52.Holtof, M.; Lenaerts, C.; Cullen, D.; Broeck, J. V., Extracellular nutrient digestion and absorption in the insect gut. Cell and tissue research 2019, 377, (3), 397-414. 53.Leong, S. Y.; Kutty, S., Characteristic of Hermetia illucens fatty acid and that of the fatty acid methyl ester synthesize based on upcycling of perishable waste. Waste and Biomass Valorization 2020, 1-8. 54.Lalander, C.; Diener, S.; Zurbrügg, C.; Vinnerås, B., Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). Journal of Cleaner Production 2019, 208, 211-219. 55.Osanai, M.; Yonezawa, Y., Age-related changes in amino acid pool sizes in the adult silkmoth, Bombyx mori, reared at low and high temperature; a biochemical examination of the rate-of-living theory and urea accumulation when reared at high temperature. Experimental gerontology 1984, 19, (1), 37-51. 56.Grandison, R. C.; Piper, M. D.; Partridge, L., Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 2009, 462, (7276), 1061-1064. 57.Yang, K.; Xu, T.-R.; Fu, Y.-H.; Cai, M.; Xia, Q.-L.; Guan, R.-F.; Zou, X.-G.; Sun, P.-L., Effects of ultrasonic pre-treatment on physicochemical properties of proteins extracted from cold-pressed sesame cake. Food Research International 2021, 139, 109907. 58.Brunet, P. C., The metabolism of the aromatic amino acids concerned in the cross-linking of insect cuticle. Insect Biochemistry 1980, 10, (5), 467-500. 59.Chen, P.; Li, L.; Wang, J.; Li, H.; Li, Y.; Lv, Y.; Lu, C., BmPAH catalyzes the initial melanin biosynthetic step in Bombyx mori. PloS one 2013, 8, (8), e71984. 60.Simonet, P.; Gaget, K.; Parisot, N.; Duport, G.; Rey, M.; Febvay, G.; Charles, H.; Callaerts, P.; Colella, S.; Calevro, F., Disruption of phenylalanine hydroxylase reduces adult lifespan and fecundity, and impairs embryonic development in parthenogenetic pea aphids. Scientific reports 2016, 6, (1), 1-12. 61.Reddy, S. R. R.; Campbell, J. W., Arginine metabolism in insects. Role of arginase in proline formation during silkmoth development. Biochemical Journal 1969, 115, (3), 495-503. 62.Michaud, M. R.; Denlinger, D. L., Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology 2006, 52, (10), 1073-1082. 63.Kim, H.; Gardner, H. W.; Hou, C. T., 10 (S)-hydroxy-8 (E)-octadecenoic acid, an intermediate in the conversion of oleic acid to 7, 10-dihydroxy-8 (E)-octadecenoic acid. Journal of the American Oil Chemists' Society 2000, 77, (1), 95-99. 64.Tanga, C. M.; Waweru, J. W.; Tola, Y. H.; Onyoni, A. A.; Khamis, F. M.; Ekesi, S.; Paredes, J. C., Organic waste substrates induce important shifts in gut microbiota of black soldier fly (Hermetia illucens L.): coexistence of conserved, variable, and potential pathogenic microbes. Frontiers in microbiology 2021, 12. 65.Hendrix, D. L.; Salvucci, M. E., Polyol metabolism in homopterans at high temperatures: accumulation of mannitol in aphids (Aphididae: Homoptera) and sorbitol in whiteflies (Aleyrodidae: Homoptera). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 1998, 120, (3), 487-494. 66.Colinet, H.; Renault, D.; Javal, M.; Berková, P.; Šimek, P.; Koštál, V., Uncovering the benefits of fluctuating thermal regimes on cold tolerance of drosophila flies by combined metabolomic and lipidomic approach. Biochimica et Biophysica Acta -Molecular and Cell Biology of Lipids 2016, 1861, (11), 1736-1745. 67.Jing, T.-Z.; Qi, F.-H.; Wang, Z.-Y., Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision? Microbiome 2020, 8, (1), 1-20. 68.Kim, E.; Park, J.; Lee, S.; Kim, Y., Identification and physiological characters of intestinal bacteria of the black soldier fly, Hermetia illucens. Korean journal of applied entomology 2014, 53, (1), 15-26. 69.Wikul, A.; Damsud, T.; Kataoka, K.; Phuwapraisirisan, P., (+)-Pinoresinol is a putative hypoglycemic agent in defatted sesame (Sesamum indicum) seeds though inhibiting α-glucosidase. Bioorganic & medicinal chemistry letters 2012, 22, (16), 5215-5217. 70.Dadd, R., Essential fatty acids for mosquitoes, other insects and vertebrates. In Current topics in insect endocrinology and nutrition, Springer: Boston, MA, 1981; pp 189-214. 71.Wu, G.; Bazer, F. W.; Davis, T. A.; Kim, S. W.; Li, P.; Rhoads, J. M.; Satterfield, M. C.; Smith, S. B.; Spencer, T. E.; Yin, Y., Arginine metabolism and nutrition in growth, health and disease. Amino acids 2009, 37, (1), 153-168. 72.Blondeau, N.; Lipsky, R. H.; Bourourou, M.; Duncan, M. W.; Gorelick, P. B.; Marini, A. M., Alpha-linolenic acid: an omega-3 fatty acid with neuroprotective properties—ready for use in the stroke clinic? BioMed research international 2015, 2015. 73.Hsiao, S.-W.; Ishii, C.; Furusho, A.; Hsieh, C.-L.; Shimizu, Y.; Akita, T.; Mita, M.; Okamura, T.; Konno, R.; Ide, T., Determination of phenylalanine enantiomers in the plasma and urine of mammals and ᴅ-amino acid oxidase deficient rodents using two-dimensional high-performance liquid chromatography. Biochimica et Biophysica Acta -Proteins and Proteomics 2021, 1869, (1), 140540. 74.Friedman, M.; Levin, C. E., Nutritional and medicinal aspects of D-amino acids. Amino acids 2012, 42, (5), 1553-1582. 75.Ishii, C.; Furusho, A.; Hsieh, C.-L.; Hamase, K., Multi-dimensional high-performance liquid chromatographic determination of chiral amino acids and related compounds in real world samples. Chromatography 2020, 41, (1), 1-17. 76.Miyoshi, Y.; Koga, R.; Oyama, T.; Han, H.; Ueno, K.; Masuyama, K.; Itoh, Y.; Hamase, K., HPLC analysis of naturally occurring free D-amino acids in mammals. Journal of pharmaceutical and biomedical analysis 2012, 69, 42-49. 77.Hashimoto, A.; Oka, T.; Nishikawa, T., Anatomical distribution and postnatal changes in endogenous free D‐aspartate and D‐serine in rat brain and periphery. European Journal of Neuroscience 1995, 7, (8), 1657-1663. 78.Nishikawa, T., Analysis of free D-serine in mammals and its biological relevance. Journal of Chromatography B 2011, 879, (29), 3169-3183. 79.Labrie, V.; Wong, A. H.; Roder, J. C., Contributions of the D-serine pathway to schizophrenia. Neuropharmacology 2012, 62, (3), 1484-1503. 80.Katane, M.; Homma, H., D-Aspartate—an important bioactive substance in mammals: a review from an analytical and biological point of view. Journal of Chromatography B 2011, 879, (29), 3108-3121. 81.Miyoshi, Y.; Oyama, T.; Itoh, Y.; Hamase, K., Enantioselective two-dimensional high-performance liquid chromatographic determination of amino acids; analysis and physiological significance of D-amino acids in mammals. Chromatography 2014, 35, (1), 49-57. 82.Fisher, G. H.; D'Aniello, A.; Vetere, A.; Padula, L.; Cusano, G. P.; Man, E. H., Free D-aspartate and D-alanine in normal and Alzheimer brain. Brain research bulletin 1991, 26, (6), 983-985. 83.Fisher, G.; Lorenzo, N.; Abe, H.; Fujita, E.; Frey, W.; Emory, C.; Di Fiore, M.; D'Aniello, A., Free D-and L-amino acids in ventricular cerebrospinal fluid from Alzheimer and normal subjects. Amino acids 1998, 15, (3), 263-269. 84.Kimura, T.; Hamase, K.; Miyoshi, Y.; Yamamoto, R.; Yasuda, K.; Mita, M.; Rakugi, H.; Hayashi, T.; Isaka, Y., Chiral amino acid metabolomics for novel biomarker screening in the prognosis of chronic kidney disease. Scientific reports 2016, 6, (1), 1-7. 85.Furusho, A.; Koga, R.; Akita, T.; Mita, M.; Kimura, T.; Hamase, K., Three-dimensional high-performance liquid chromatographic determination of Asn, Ser, Ala, and Pro enantiomers in the plasma of patients with chronic kidney disease. Analytical chemistry 2019, 91, (18), 11569-11575. 86.Bhagavan, N. V.; Ha, C.-E., Essentials of medical biochemistry (Second Edition). Academic Press: Cambridge, 2015; p 227-268. 87.Young, S. N., Behavioral effects of dietary neurotransmitter precursors: basic and clinical aspects. Neuroscience & Biobehavioral Reviews 1996, 20, (2), 313-323. 88.Irukayama-Tomobe, Y.; Tanaka, H.; Yokomizo, T.; Hashidate-Yoshida, T.; Yanagisawa, M.; Sakurai, T., Aromatic D-amino acids act as chemoattractant factors for human leukocytes through a G protein-coupled receptor, GPR109B. Proceedings of the National Academy of Sciences 2009, 106, (10), 3930-3934. 89.Jukić, T.; Rojc, B.; Boben-Bardutzky, D.; Hafner, M.; Ihan, A., The use of a food supplementation with D-Phenylalanine, L-Glutamine and L-5-Hydroxytriptophan in the alleviation of alcohol withdrawal symptoms. Collegium antropologicum 2011, 35, (4), 1225-1230. 90.Singh, V.; Rai, R. K.; Arora, A.; Sinha, N.; Thakur, A. K., Therapeutic implication of L-phenylalanine aggregation mechanism and its modulation by D-phenylalanine in phenylketonuria. Scientific reports 2014, 4, (1), 1-8. 91.Brückner, H.; Schieber, A., Determination of free D‐amino acids in mammalia by chiral gas chromatography–mass spectrometry. Journal of High Resolution Chromatography 2000, 23, (10), 576-582. 92.Brückner, H.; Schieber, A., Determination of amino acid enantiomers in human urine and blood serum by gas chromatography–mass spectrometry. Biomedical Chromatography 2001, 15, (3), 166-172. 93.Brückner, H.; Schieber, A., Ascertainment of D‐amino acids in germ‐free, gnotobiotic and normal laboratory rats. Biomedical Chromatography 2001, 15, (4), 257-262. 94.Visser, W. F.; Verhoeven-Duif, N. M.; Ophoff, R.; Bakker, S.; Klomp, L. W.; Berger, R.; De Koning, T. J., A sensitive and simple ultra-high-performance-liquid chromatography–tandem mass spectrometry based method for the quantification of D-amino acids in body fluids. Journal of Chromatography A 2011, 1218, (40), 7130-7136. 95.Armstrong, D. W.; Gasper, M.; Lee, S. H.; Zukowski, J.; Ercal, N., D‐Amino acid levels in human physiological fluids. Chirality 1993, 5, (5), 375-378. 96.Lorenzo, M. P.; Dudzik, D.; Varas, E.; Gibellini, M.; Skotnicki, M.; Zorawski, M.; Zarzycki, W.; Pellati, F.; García, A., Optimization and validation of a chiral GC–MS method for the determination of free D-amino acids ratio in human urine: application to a Gestational Diabetes Mellitus study. Journal of pharmaceutical and biomedical analysis 2015, 107, 480-487. 97.Xing, Y.-P.; Li, X.-Y.; Guo, X.-J.; Cui, Y., Simultaneous determination of 18 D-amino acids in rat plasma by an ultrahigh-performance liquid chromatography-tandem mass spectrometry method: application to explore the potential relationship between Alzheimer’s disease and D-amino acid level alterations. Analytical and bioanalytical chemistry 2016, 408, (1), 141-150. 98.Krebs, H. A., Metabolism of amino-acids: deamination of amino-acids. Biochemical Journal 1935, 29, (7), 1620. 99.Pollegioni, L.; Piubelli, L.; Sacchi, S.; Pilone, M.; Molla, G., Physiological functions of D-amino acid oxidases: from yeast to humans. Cellular and molecular life sciences 2007, 64, (11), 1373-1394. 100.Konno, R.; Hamase, K.; Maruyama, R.; Zaitsu, K., Mutant mice and rats lacking D‐amino acid oxidase. Chemistry & biodiversity 2010, 7, (6), 1450-1458. 101.Ohide, H.; Miyoshi, Y.; Maruyama, R.; Hamase, K.; Konno, R., D‐Amino acid metabolism in mammals: biosynthesis, degradation and analytical aspects of the metabolic study. Journal of Chromatography B 2011, 879, (29), 3162-3168. 102.Yamanaka, M.; Miyoshi, Y.; Ohide, H.; Hamase, K.; Konno, R., D‐Amino acids in the brain and mutant rodents lacking D-amino-acid oxidase activity. Amino acids 2012, 43, (5), 1811-1821. 103.Mitchell, J.; Paul, P.; Chen, H.-J.; Morris, A.; Payling, M.; Falchi, M.; Habgood, J.; Panoutsou, S.; Winkler, S.; Tisato, V., Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase. Proceedings of the National Academy of Sciences 2010, 107, (16), 7556-7561. 104.Sasabe, J.; Miyoshi, Y.; Suzuki, M.; Mita, M.; Konno, R.; Matsuoka, M.; Hamase, K.; Aiso, S., D‐Amino acid oxidase controls motoneuron degeneration through D-serine. Proceedings of the National Academy of Sciences 2012, 109, (2), 627-632. 105.Chumakov, I.; Blumenfeld, M.; Guerassimenko, O.; Cavarec, L.; Palicio, M.; Abderrahim, H.; Bougueleret, L.; Barry, C.; Tanaka, H.; La Rosa, P., Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proceedings of the National Academy of Sciences 2002, 99, (21), 13675-13680. 106.Koga, R.; Miyoshi, Y.; Sakaue, H.; Hamase, K.; Konno, R., Mouse D-amino-acid oxidase: distribution and physiological substrates. Frontiers in molecular biosciences 2017, 4, 82. 107.Shimizu, Y.; Ishii, C.; Yanobu-Takanashi, R.; Nakano, K.; Imaike, A.; Mita, M.; Hamase, K.; Okamura, T., D‐Amino acid oxidase deficiency is caused by a large deletion in the Dao gene in LEA rats. Biochimica et Biophysica Acta -Proteins and Proteomics 2020, 1868, (9), 140463. 108.Szökő, É.; Vincze, I.; Tábi, T., Chiral separations for D-amino acid analysis in biological samples. Journal of pharmaceutical and biomedical analysis 2016, 130, 100-109. 109.Kirschner, D. L.; Green, T. K., Separation and sensitive detection of D‐amino acids in biological matrices. Journal of separation science 2009, 32, (13), 2305-2318. 110.Hamase, K.; Morikawa, A.; Zaitsu, K., D‐Amino acids in mammals and their diagnostic value. Journal of Chromatography B 2002, 781, (1-2), 73-91. 111.Pätzold, R.; Schieber, A.; Brückner, H., Gas chromatographic quantification of free D‐amino acids in higher vertebrates. Biomedical Chromatography 2005, 19, (6), 466-473. 112.Schurig, V., Gas chromatographic enantioseparation of derivatized α-amino acids on chiral stationary phases—past and present. Journal of Chromatography B 2011, 879, (29), 3122-3140. 113.Brückner, H.; Haasmann, S.; Friedrich, A., Quantification of D-amino acids in human urine using GC-MS and HPLC. Amino acids 1994, 6, (2), 205-211. 114.Nimura, N.; Kinoshita, T., o-Phthalaldehyde—N-acetyl-L-cysteine as a chiral derivatization reagent for liquid chromatographic optical resolution of amino acid ernantiomers and its application to conventional amino acid analysis. Journal of Chromatography A 1986, 352, 169-177. 115.Weatherly, C. A.; Du, S.; Parpia, C.; Santos, P. T.; Hartman, A. L.; Armstrong, D. W., D‐Amino acid levels in perfused mouse brain tissue and blood: a comparative study. ACS chemical neuroscience 2017, 8, (6), 1251-1261. 116.Koga, R.; Miyoshi, Y.; Sato, Y.; Mita, M.; Konno, R.; Lindner, W.; Hamase, K., Enantioselective determination of phenylalanine, tyrosine and 3, 4-dihydroxyphenylalanine in the urine of D-amino acid oxidase deficient mice using two-dimensional high-performance liquid chromatography. Chromatography 2016, 37, (1), 15-22. 117.Han, M.-L.; Xie, M.-Y.; Han, J.; Yuan, D.-Y.; Yang, T.; Xie, Y., Development and validation of a rapid, selective, and sensitive LC–MS/MS method for simultaneous determination of D-and L-amino acids in human serum: application to the study of hepatocellular carcinoma. Analytical and bioanalytical chemistry 2018, 410, (10), 2517-2531. 118.Hamase, K.; IKEDA, T.; ISHII, C.; ISHIGO, S.; MASUYAMA, K.; AKITA, T.; FURUSHO, A.; TAKAHASHI, M.; IDE, T.; MITA, M., Determination of trace amounts of chiral amino acids in complicated biological samples using two-dimensional high-performance liquid chromatography with an innovative “Shape-Fitting” peak identification/quantification method. Chromatography 2018, 39, (3), 147-152. 119.Ishii, C.; Akita, T.; Nagano, M.; Mita, M.; Hamase, K., Determination of chiral amino acids in various fermented products using a two-dimensional HPLC-MS/MS system. Chromatography 2019, 40, (2), 83-87. 120.Song, Y.-T.; Funatsu, T.; Tsunoda, M., Amino acids analysis using a monolithic silica column after derivatization with 4-fluoro-7-nitro-2, 1, 3-benzoxadiazole (NBD-F). Journal of Chromatography B 2011, 879, (5-6), 335-340. 121.Aoyama, C.; Santa, T.; Tsunoda, M.; Fukushima, T.; Kitada, C.; Imai, K., A fully automated amino acid analyzer using NBD‐F as a fluorescent derivatization reagent. Biomedical Chromatography 2004, 18, (9), 630-636. 122.Imai, K.; Fukushima, T.; Uzu, S., Sensitive determination of enantiomers of amino acids derivatized with the fluorogenic reagent, 4‐fluoro‐7‐nitro‐2, 1, 3‐benzoxadiazole, separated on a pirkle‐type column, sumichiral OA 2500 (S). Biomedical Chromatography 1993, 7, (3), 177-178. 123.Fukushima, T.; Kato, M.; Santa, T.; Imai, K., Enantiomeric separation and sensitive determination of D, L‐amino acids derivatized with fluorogenic benzofurazan reagents on pirkle type stationary phases. Biomedical Chromatography 1995, 9, (1), 10-17. 124.Armstrong, D.; Gasper, M.; Lee, S.; Ercal, N.; Zukowski, J., Factors controlling the level and determination of D-amino acids in the urine and plasma of laboratory rodents. Amino acids 1993, 5, (2), 299-315. 125.Miyoshi, Y.; Hamase, K.; Okamura, T.; Konno, R.; Kasai, N.; Tojo, Y.; Zaitsu, K., Simultaneous two-dimensional HPLC determination of free D-serine and D-alanine in the brain and periphery of mutant rats lacking D-amino-acid oxidase. Journal of Chromatography B 2011, 879, (29), 3184-3189. 126.Hamase, K.; Takagi, S.; Morikawa, A.; Konno, R.; Niwa, A.; Zaitsu, K., Presence and origin of large amounts of D-proline in the urine of mutant mice lacking D-amino acid oxidase activity. Analytical and bioanalytical chemistry 2006, 386, (3), 705-711. 127.Miyoshi, Y.; Hamase, K.; Tojo, Y.; Mita, M.; Konno, R.; Zaitsu, K., Determination of D-serine and D-alanine in the tissues and physiological fluids of mice with various D-amino-acid oxidase activities using two-dimensional high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B 2009, 877, (24), 2506-2512. 128.Hamase, K.; Inoue, T.; Morikawa, A.; Konno, R.; Zaitsu, K., Determination of free D-proline and D-leucine in the brains of mutant mice lacking D-amino acid oxidase activity. Analytical biochemistry 2001, 298, (2), 253-258. 129.Crane, F. L., Biochemical functions of coenzyme Q10. Journal of the American College of Nutrition 2001, 20, (6), 591-598. 130.Weber, C.; Bysted, A.; Hłlmer, G., The coenzyme Q10 content of the average Danish diet. Journal International de Vitaminologie et de Nutrition 1997, 67, (2), 123-129. 131.Mantle, D.; Dybring, A., Bioavailability of coenzyme Q10: an overview of the absorption process and subsequent metabolism. Antioxidants 2020, 9, (5), 386. 132.Hargreaves, I.; Heaton, R. A.; Mantle, D., Disorders of human coenzyme Q10 metabolism: an overview. International Journal of Molecular Sciences 2020, 21, (18), 6695. 133.Greenberg, S.; Frishman, W. H., Co‐enzyme Q10: a new drug for cardiovascular disease. The journal of clinical pharmacology 1990, 30, (7), 596-608. 134.Bonakdar, R. A.; Guarneri, E., Coenzyme Q10. American family physician 2005, 72, (6), 1065-1070. 135.Tran, M. T.; Mitchell, T. M.; Kennedy, D. T.; Giles, J. T., Role of coenzyme Q10 in chronic heart failure, angina, and hypertension. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 2001, 21, (7), 797-806. 136.Al Saadi, T.; Assaf, Y.; Farwati, M.; Turkmani, K.; Al-Mouakeh, A.; Shebli, B.; Khoja, M.; Essali, A.; Madmani, M. E., Coenzyme Q10 for heart failure. Cochrane Database of Systematic Reviews 2021, (1). 137.Kaufmann, P.; Thompson, J. L.; Levy, G.; Buchsbaum, R.; Shefner, J.; Krivickas, L. S.; Katz, J.; Rollins, Y.; Barohn, R. J.; Jackson, C. E., Phase II trial of CoQ10 for ALS finds insufficient evidence to justify phase III. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 2009, 66, (2), 235-244. 138.BP31510 (ubidecarenone,USP) nanosuspension for intravenous injection to patients with solid tumors. https://ClinicalTrials.gov/show/NCT01957735 139.Coenzyme Q10 supplementation in children with idiopathic dilated cardiomyopathy. https://ClinicalTrials.gov/show/NCT02115581 140.Study in PRE-manifest Huntington's disease of coenzyme Q10 (ubiquinonE) leading to preventive trials (PREQUEL). https://ClinicalTrials.gov/show/NCT00920699 141.Efficacy of ubiquinone and combined antioxidant therapy in non-proliferative diabetic retinopathy. https://ClinicalTrials.gov/show/NCT02062034 142.Coenzyme Q10 as treatment for long term COVID-19. https://ClinicalTrials.gov/show/NCT04960215 143.Garrido-Maraver, J.; Cordero, M. D.; Oropesa-Ávila, M.; Vega, A. F.; De La Mata, M.; Pavón, A. D.; De Miguel, M.; Calero, C. P.; Paz, M. V.; Cotán, D., Coenzyme Q10 therapy. Molecular Syndromology 2014, 5, (3-4), 187-197. 144.Flowers, N.; Hartley, L.; Todkill, D.; Stranges, S.; Rees, K., Co‐enzyme Q10 supplementation for the primary prevention of cardiovascular disease. Cochrane Database of Systematic Reviews 2014, (12). 145.Hernández-Camacho, J. D.; Bernier, M.; López-Lluch, G.; Navas, P., Coenzyme Q10 supplementation in aging and disease. Frontiers in physiology 2018, 9, 44. 146.Mizuno, K.; Tanaka, M.; Nozaki, S.; Mizuma, H.; Ataka, S.; Tahara, T.; Sugino, T.; Shirai, T.; Kajimoto, Y.; Kuratsune, H., Antifatigue effects of coenzyme Q10 during physical fatigue. Nutrition 2008, 24, (4), 293-299. 147.Zhang, S.-Y.; Yang, K.-L.; Zeng, L.-T.; Wu, X.-H.; Huang, H.-Y., Effectiveness of coenzyme Q10 supplementation for type 2 diabetes mellitus: a systematic review and meta-analysis. International journal of endocrinology 2018, 2018. 148.Zeng, Z.; Li, Y.; Lu, S.; Huang, W.; Di, W., Efficacy of CoQ10 as supplementation for migraine: a meta‐analysis. Acta Neurologica Scandinavica 2019, 139, (3), 284-293. 149.Wang, Y.; Hekimi, S., Understanding ubiquinone. Trends in cell biology 2016, 26, (5), 367-378. 150.Jia, W.; Li, H.-K.; Zhao, L.-P.; Nicholson, J. K., Gut microbiota: a potential new territory for drug targeting. Nature reviews Drug discovery 2008, 7, (2), 123-129. 151.Nicholson, J. K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S., Host-gut microbiota metabolic interactions. Science 2012, 336, (6086), 1262-1267. 152.Maier, L.; Pruteanu, M.; Kuhn, M.; Zeller, G.; Telzerow, A.; Anderson, E. E.; Brochado, A. R.; Fernandez, K. C.; Dose, H.; Mori, H., Extensive impact of non-antibiotic drugs on human gut bacteria. Nature reviews Drug discovery 2018, 555, (7698), 623-628. 153.Furrie, E.; Macfarlane, S.; Kennedy, A.; Cummings, J.; Walsh, S.; O’neil, D.; Macfarlane, G., Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut 2005, 54, (2), 242-249. 154.Kang, M.-J.; Kim, H.-G.; Kim, J.-S.; Oh, D.-G.; Um, Y.-J.; Seo, C.-S.; Han, J.-W.; Cho, H.-J.; Kim, G.-H.; Jeong, T.-C., The effect of gut microbiota on drug metabolism. Expert opinion on drug metabolism & toxicology 2013, 9, (10), 1295-1308. 155.Bhatraju, N. K.; Agrawal, A., Mitochondrial dysfunction linking obesity and asthma. Annals of the American Thoracic Society 2017, 14, (Supplement 5), S368-S373. 156.Goïta, Y.; de la Barca, J. M. C.; Keïta, A.; Diarra, M. B.; Dembélé, K. C.; Chabrun, F.; Dramé, B. S. I.; Kassogué, Y.; Diakite, M.; Mirebeau-Prunier, D., Sexual dimorphism of metabolomic profile in arterial hypertension. Scientific reports 2020, 10, (1), 1-12. 157.Nishimura, A.; Yanagawa, H.; Fujikawa, N.; Kiriyama, A.; Shibata, N., Pharmacokinetic profiles of coenzyme Q10: absorption of three different oral formulations in rats. Journal of Health Science 2009, 55, (4), 540-548. 158.Ochiai, A.; Itagaki, S.; Kurokawa, T.; Kobayashi, M.; Hirano, T.; Iseki, K., Improvement in intestinal coenzyme Q10 absorption by food intake. Yakugaku Zasshi 2007, 127, (8), 1251-1254. 159.Xicoy, H.; Wieringa, B.; Martens, G. J., The role of lipids in Parkinson’s disease. Cells 2019, 8, (1), 27. 160.Xu, F.; Tavintharan, S.; Sum, C.-F.; Woon, K.; Lim, S.-C.; Ong, C. N., Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics. The Journal of Clinical Endocrinology & Metabolism 2013, 98, (6), E1060-E1065. 161.Meikle, P. J.; Wong, G.; Tsorotes, D.; Barlow, C. K.; Weir, J. M.; Christopher, M. J.; MacIntosh, G. L.; Goudey, B.; Stern, L.; Kowalczyk, A., Plasma lipidomic analysis of stable and unstable coronary artery disease. Arteriosclerosis, thrombosis, and vascular biology 2011, 31, (11), 2723-2732. 162.Bannehr, M.; Löhr, L.; Gelep, J.; Haverkamp, W.; Schunck, W.-H.; Gollasch, M.; Wutzler, A., Linoleic acid metabolite DiHOME decreases post-ischemic cardiac recovery in murine hearts. Cardiovascular toxicology 2019, 19, (4), 365-371. 163.Hildreth, K.; Kodani, S. D.; Hammock, B. D.; Zhao, L., Cytochrome P450-derived linoleic acid metabolites EpOMEs and DiHOMEs: a review of recent studies. The Journal of Nutritional Biochemistry 2020, 108484. 164.Hansen, H. S.; Kleberg, K.; Hassing, H. A., Non-endocannabinoid N-acylethanolamines and monoacylglycerols: old molecules new targets. In The Endocannabinoidome, Elsevier: 2015; pp 1-13. 165.Samimi, M.; Zarezade Mehrizi, M.; Foroozanfard, F.; Akbari, H.; Jamilian, M.; Ahmadi, S.; Asemi, Z., The effects of coenzyme Q10 supplementation on glucose metabolism and lipid profiles in women with polycystic ovary syndrome: a randomized, double‐blind, placebo‐controlled trial. Clinical endocrinology 2017, 86, (4), 560-566. 166.Krauss, R. M., Lipoprotein subfractions and cardiovascular disease risk. Current opinion in lipidology 2010, 21, (4), 305-311. 167.Dludla, P. V.; Nyambuya, T. M.; Orlando, P.; Silvestri, S.; Mxinwa, V.; Mokgalaboni, K.; Nkambule, B. B.; Louw, J.; Muller, C. J.; Tiano, L., The impact of coenzyme Q10 on metabolic and cardiovascular disease profiles in diabetic patients: a systematic review and meta‐analysis of randomized controlled trials. Endocrinology, Diabetes & Metabolism 2020, 3, (2), e00118. 168.Suksomboon, N.; Poolsup, N.; Juanak, N., Effects of coenzyme Q10 supplementation on metabolic profile in diabetes: a systematic review and meta‐analysis. Journal of Clinical Pharmacy and Therapeutics 2015, 40, (4), 413-418. 169.Mohseni, M.; Vafa, M. R.; Hajimiresmail, S. J.; Zarrati, M.; Forushani, A. R.; Bitarafan, V.; Shidfar, F., Effects of coenzyme Q10 supplementation on serum lipoproteins, plasma fibrinogen, and blood pressure in patients with hyperlipidemia and myocardial infarction. Iranian red crescent medical journal 2014, 16, (10). 170.Bhandarkar, N. S.; Mouatt, P.; Majzoub, M. E.; Thomas, T.; Brown, L.; Panchal, S. K., Coffee pulp, a by-product of coffee production, modulates gut microbiota and improves metabolic syndrome in high-carbohydrate, high-fat diet-fed rats. Pathogens 2021, 10, (11), 1369. 171.Gerhardt, S.; Mohajeri, M. H., Changes of colonic bacterial composition in Parkinson’s disease and other neurodegenerative diseases. Nutrients 2018, 10, (6), 708. 172.Rodrigues, R. R.; Gurung, M.; Li, Z.; García-Jaramillo, M.; Greer, R.; Gaulke, C.; Bauchinger, F.; You, H.; Pederson, J. W.; Vasquez-Perez, S., Transkingdom interactions between Lactobacilli and hepatic mitochondria attenuate western diet-induced diabetes. Nature communications 2021, 12, (1), 1-15. 173.Saviano, A.; Brigida, M.; Migneco, A.; Gunawardena, G.; Zanza, C.; Candelli, M.; Franceschi, F.; Ojetti, V., Lactobacillus Reuteri DSM 17938 (Limosilactobacillus reuteri) in diarrhea and constipation: two sides of the same coin? Medicina 2021, 57, (7), 643. 174.Liu, J.; Yue, S.; Yang, Z.; Feng, W.; Meng, X.; Wang, A.; Peng, C.; Wang, C.; Yan, D., Oral hydroxysafflor yellow A reduces obesity in mice by modulating the gut microbiota and serum metabolism. Pharmacological research 2018, 134, 40-50. 175.Chan, M. Z. A.; Liu, S.-Q., Coffee brews as food matrices for delivering probiotics: opportunities, challenges, and potential health benefits. Trends in Food Science & Technology 2022, 119, 227-242. 176.Zhu, S.; Rong, Y.; Kiang, T. K., Effects of p-cresol on oxidative stress, glutathione depletion, and necrosis in HepaRG cells: comparisons to other uremic toxins and the role of p-cresol glucuronide formation. Pharmaceutics 2021, 13, (6), 857.
|