|
Alexander K.C. Leung, H. D. D. (2009). cervical lymphadenitis: etiology, diagnosis, and management. Current Infectious Disease Reports, 2009, 11: 183 - 189. doi:10.1007/s11908-009-0028-0 Brattain, L. J., Telfer, B. A., Dhyani, M., Grajo, J. R., & Samir, A. E. (2018). Machine learning for medical ultrasound: status, methods, and future opportunities. Abdom Radiol (NY), 43(4), 786-799. doi:10.1007/s00261-018-1517-0 Canziani, A. a. P., Adam and Culurciello, Eugenio. (2016). An analysis of deep neural network. arXiv:1605.07678. Cheng, P. M., & Malhi, H. S. (2017). Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images. J Digit Imaging, 30(2), 234-243. doi:10.1007/s10278-016-9929-2 Chi, J., Walia, E., Babyn, P., Wang, J., Groot, G., & Eramian, M. (2017). Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network. J Digit Imaging, 30(4), 477-486. doi:10.1007/s10278-017-9997-y Cho, J. K., Hyun, S. H., Choi, N., Kim, M. J., Padera, T. P., Choi, J. Y., & Jeong, H. S. (2015). Significance of lymph node metastasis in cancer dissemination of head and neck cancer. Transl Oncol, 8(2), 119-125. doi:10.1016/j.tranon.2015.03.001 Delbos, A. H. a. P. V. a. A. (2017). Deep learning with spatiotemporal consistency for nerve segmentation in ultrasound images. arXiv:1706.05870. G. Marchal, R. O., * J. Verschakelen,* J. Gelin,* A L. Baert,. (1985). sonographic appearance of normal lymph nodes. J Ultrasound Med, 4. Greenspan, H., San Jose Estepar, R., Niessen, W. J., Siegel, E., & Nielsen, M. (2020). Position paper on COVID-19 imaging and AI: From the clinical needs and technological challenges to initial AI solutions at the lab and national level towards a new era for AI in healthcare. Med Image Anal, 66, 101800. doi:10.1016/j.media.2020.101800 Krizhevsky, A., Sutskever, I., & Hinton, G. E. J. A. i. n. i. p. s. (2012). Imagenet classification with deep convolutional neural networks. 25. Lee, J. H., Baek, J. H., Kim, J. H., Shim, W. H., Chung, S. R., Choi, Y. J., & Lee, J. H. (2018). Deep Learning-Based Computer-Aided Diagnosis System for Localization and Diagnosis of Metastatic Lymph Nodes on Ultrasound: A Pilot Study. Thyroid, 28(10), 1332-1338. doi:10.1089/thy.2018.0082 Lee, J. H., Ha, E. J., & Kim, J. H. (2019). Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT. Eur Radiol, 29(10), 5452-5457. doi:10.1007/s00330-019-06098-8 Lin, C. M., Wang, C. P., Chen, C. N., Lin, C. Y., Li, T. Y., Chou, C. H., . . . Chen, T. C. (2017). The application of ultrasound in detecting lymph nodal recurrence in the treated neck of head and neck cancer patients. Sci Rep, 7(1), 3958. doi:10.1038/s41598-017-04039-3 Liu, S., Wang, Y., Yang, X., Lei, B., Liu, L., Li, S. X., . . . Wang, T. (2019). Deep Learning in Medical Ultrasound Analysis: A Review. Engineering, 5(2), 261-275. doi:10.1016/j.eng.2018.11.020 Ma, J., Wu, F., Jiang, T., Zhu, J., & Kong, D. (2017). Cascade convolutional neural networks for automatic detection of thyroid nodules in ultrasound images. Med Phys, 44(5), 1678-1691. doi:10.1002/mp.12134 Mikolajczyk, A., & Grochowski, M. (2018). Data augmentation for improving deep learning in image classification problem. 117-122. doi:10.1109/iiphdw.2018.8388338 Peng, Z., Wang, Y., Wang, Y., Jiang, S., Fan, R., Zhang, H., & Jiang, W. (2021). Application of radiomics and machine learning in head and neck cancers. Int J Biol Sci, 17(2), 475-486. doi:10.7150/ijbs.55716 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A. (2015). Going deeper with convolutions. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition. Tan, X. Q., Qian, L. X., Zhao, J. F., Sun, P. F., Li, Q. Q., & Feng, R. X. (2021). Diagnostic Model of Superficial Lymph Nodes Based on Clinical History and Ultrasound Findings: A Prospective Cohort Study. Front Oncol, 11, 756878. doi:10.3389/fonc.2021.756878 Ton Eryilmaz, O., Ucak, R., Ozagari, A. A., & Kabukcuoglu, F. (2021). Diagnostic value of lymph node fine-needle aspiration cytology. Cytojournal, 18, 8. doi:10.25259/Cytojournal_1_2020 Tran, W. T., Suraweera, H., Quaioit, K., Cardenas, D., Leong, K. X., Karam, I., . . . Czarnota, G. J. (2019). Predictive quantitative ultrasound radiomic markers associated with treatment response in head and neck cancer. Future Sci OA, 6(1), Fso433. doi:10.2144/fsoa-2019-0048
|