跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 19:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王唯豪
研究生(外文):Wang, Wei-Hao
論文名稱:兒童期電腦斷層暴露後對25歲前白血病、腦瘤與淋巴瘤發生之關係
論文名稱(外文):The following risk of leukemia, intracranial tumor, and lymphoma in childhood and early adulthood after pediatric computed tomography exposure
指導教授:邵于宣邵于宣引用關係
指導教授(外文):Shao, Yu-Hsuan
口試委員:顏秀如劉彥麟邵于宣
口試委員(外文):Yen, Hsiu-JuLiu, Yen-LinShao, Yu-Hsuan
口試日期:2022-01-04
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學資訊研究所碩士在職專班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:72
中文關鍵詞:電腦斷層兒童癌症白血病腦瘤淋巴瘤
外文關鍵詞:computed tomographychildhood cancerleukemiabrain tumorlymphoma
ORCID或ResearchGate:orcid.org/0000-0003-4193-9025
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
在現代醫學的各個面向中,電腦斷層掃描皆有著廣泛的應用。電腦斷層使用放射線照射人體組織來產生影像資料,然而輻射帶來的潛在致癌風險也引發許多顧慮,尤其在兒童族群當中。我們進行一基於全國人口的重疊病例對照研究來評估孩童經過電腦斷層檢查後產生的後續腦瘤、白血病及淋巴瘤風險。在2000至2013年間,我們於臺灣健保研究資料庫中辨識出7826位診斷腦瘤、白血病或淋巴瘤的小於25歲兒童及青年人,每位利用發病密度抽樣法與不超過10位之健康對照組進行配對後,使用條件邏輯迴歸計算罹患勝算比。經過配對後,我們找出7826位癌症個案。相較於無暴露過電腦斷層的參加者,接受過四次以上斷層掃描者有較高罹患腦瘤(勝算比9.68;95%信賴區間,3.12-30.02)、白血病(勝算比4.79;95信賴區間,1.79-12.81)與非何金氏淋巴瘤的風險(勝算比6.65;95%信賴區間,1.88-23.56);何金氏淋巴瘤與兒童期電腦斷層無顯著關聯。而在六歲前累積受過三次以上斷層掃描者,日後罹癌風險最高(勝算比11.73;95%信賴區間,4.44-30.99)。接著分別是介於六到十二歲(勝算比3.89;95%信賴區間,1.39-10.91)與十二到十八歲者勝算比2.40;95%信賴區間,1.11-5.19)。本研究顯示多次的斷層掃描的會增加後續癌症的風險,且年齡越小風險越高(Cochran-Armitage趨勢檢驗p<0.001)。本研究顯示兒童期電腦斷層輻射暴露會增加25歲前的癌症風險,且越年幼的孩童影響越大。我們應在施作電腦斷層時對受檢查者,尤其是年齡前兒童,執行輻射的減量與防護。
To evaluate the subsequent risks of intracranial tumor, leukemia, non-Hodgkin lymphoma, and Hodgkin lymphoma diagnosed at ≤25 years of age after exposure to radiation from CT scans in childhood, we conducted a population-based, nested case-control study using the National Health Insurance Research Database in Taiwan. Cases were those aged less than 25 and were newly diagnosed with interested cancers during 2000 to 2013. Controls were randomly selected from the non-malignant individuals at the same age with their matched cases. People with cancer-predisposing conditions were excluded from both groups. Up to 10 controls were allocated to each case with matched sex, birthday, date of cohort entry, and exposure period. The childhood CT scans occurred beyond the lag period (3 years before cancer diagnosis) were extracted from the database. The adjusted odds ratio (aOR) was calculated using conditional logistic regression to estimate the cancer risk associated with CT-related radiation. After matching, 7826 cancer cases were identified. Compared to participants without exposure, the risk significantly elevated for intracranial tumor (aOR:9.68; 95% CI, 3.12-30.02), leukemia (aOR:4.79; 95% CI, 1.79-12.81), and non-Hodgkin lymphoma (aOR:6.65; 95% CI, 1.88-23.56) in patients received ≥4 CT scans. CT radiation exposure was not associated with Hodgkin lymphoma risk. Children who cumulatively received ≥3 CT scans before the age of 6 had the highest subsequent cancer risk (aOR: 11.73; 95% CI, 4.44-30.99), followed by those between 6 and12 years (aOR: 3.89; 95% CI, 1.39-10.91) and those between 12 and 18 years (aOR: 2.40; 95% CI, 1.11-5.19). The negative correlation was statistically significant. (p for trend <0.001). Our results demonstrate exposure to the childhood CT scans associated with an increased risk of intracranial tumor, leukemia, and non-Hodgkin lymphoma into early adulthood. Young children showed a pronounced effect. Adopting advanced radiation-protective techniques during CT-scan is imperative, especially in younger children.
Graduate Thesis Certification i
Table of Contents ii
List of Tables iv
List of Figures v
Chinese Abstract vi
Abstract viii
Chapter 1 Introduction
1.1 Background 1
1.2 Hypothesis 3
Chapter 2 Literature review
2.1 Basic principles and indications of CT 4
2.2 CT radiation dose estimation 4
2.3 The following risk of malignant diseases after CT scans in children 6
Chapter 3 Method and material
3.1 Data source 12
3.2 Study design and matching of participants 12
3.3 Definition of CT exposure and radiation dose estimation 13
3.4 Statistical analysis 14
Chapter 4 Results
4.1 Basic characteristics 16
4.2 Cancer risk and the total number of CT scans and cumulative organ-absorbed radiation dose 16
4.3 Cancer risk and the cumulative number of CT scans at different ages 17
4.4 Sensitivity analyses 17
Chapter 5 Discussion 19
Chapter 6 Conclusion 24
Reference 43
Supplementary: The ICD-9 code used for excluding patients with previous malignant diseases or cancer-predisposing conditions. 47

List of Tables
Table 1. Reference of organ-absorbed radiation dose from different computed tomographic scan types, modified from Gao et al., 2018. 25
Table 2. Reference of organ-absorbed radiation dose from different computed tomographic scan types, modified from Kim et al., 2012. 27
Table 3. Demographic data of patients in the case group and the matched controls 32
Table 4. The adjusted odds ratio for intracranial tumor, leukemia and lymphomas relating to the number of total CT scans (lag period: 3-year) 34
Table 5. The adjusted odds ratio for intracranial tumor, leukemia and lymphomas relating to the organ-specific cumulative dose from CT scans (estimated using data by Gao et al., 2018) 35
Table 6. The adjusted odds ratio for intracranial tumors, leukemias and lymphomas relating to the number of CT scans using different lag periods 36
Table 7. The adjusted odds ratio for intracranial tumor, leukemia and lymphomas relating to the organ-specific cumulative dose from CT scans (estimated using data by Kim et al., 2018) 38
Table 8. Exposure status of other radiology and nuclear medicine procedures in our cohort 39

List of Figures
Figure 1: NCICT software interface 40
Figure 2: Flow chart of the case and control group selection and the matching procedure 41
Figure 3: Forest plots for adjusted odds ratios of intracranial tumor, leukemia, or lymphoma by cumulative number of computed tomography radiation exposure in different age children 42


Alloo, J., Gerstle, T., Shilyansky, J., & Ein, S. H. (2004). Appendicitis in children less than 3 years of age: a 28-year review. Pediatr Surg Int, 19(12), 777-779. doi:10.1007/s00383-002-0775-6
Berrington de Gonzalez, A., Journy, N., Lee, C., Morton, L. M., Harbron, R. W., Stewart, D. R., . . . Pearce, M. S. (2017). No Association between Radiation Dose from Pediatric CT Scans and Risk of Subsequent Hodgkin Lymphoma. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 26(5), 804-806. doi:10.1158/1055-9965.Epi-16-1011
Berrington de Gonzalez, A., Salotti, J. A., McHugh, K., Little, M. P., Harbron, R. W., Lee, C., . . . Pearce, M. S. (2016). Relationship between paediatric CT scans and subsequent risk of leukaemia and brain tumours: assessment of the impact of underlying conditions. Br J Cancer, 114(4), 388-394. doi:10.1038/bjc.2015.415
Boissel, N., & Baruchel, A. (2018). Acute lymphoblastic leukemia in adolescent and young adults: treat as adults or as children? Blood, 132(4), 351-361. doi:10.1182/blood-2018-02-778530
Bratton, S. L., Haberkern, C. M., & Waldhausen, J. H. (2000). Acute appendicitis risks of complications: age and Medicaid insurance. Pediatrics, 106(1 Pt 1), 75-78. doi:10.1542/peds.106.1.75
Brenner, A. V., Sugiyama, H., Preston, D. L., Sakata, R., French, B., Sadakane, A., . . . Ozasa, K. (2020). Radiation risk of central nervous system tumors in the Life Span Study of atomic bomb survivors, 1958-2009. Eur J Epidemiol, 35(6), 591-600. doi:10.1007/s10654-019-00599-y
Bull, M. J. (2020). Down Syndrome. N Engl J Med, 382(24), 2344-2352. doi:10.1056/NEJMra1706537
Burstein, B., Upton, J. E. M., Terra, H. F., & Neuman, M. I. (2018). Use of CT for Head Trauma: 2007-2015. Pediatrics, 142(4). doi:10.1542/peds.2018-0814
Caldemeyer, K. S., & Buckwalter, K. A. (1999). The basic principles of computed tomography and magnetic resonance imaging. J Am Acad Dermatol, 41(5 Pt 1), 768-771. doi:10.1016/s0190-9622(99)70015-0
Crombie, J. L., & LaCasce, A. S. (2019). Current considerations in AYA Hodgkin lymphoma. Br J Haematol, 184(1), 72-81. doi:10.1111/bjh.15640
Esan, A. (2016). Hematological differences in newborn and aging: a review study. Hematol Transfus Int J, 3(3), 178-190.
Fitzmaurice, C., Dicker, D., Pain, A., Hamavid, H., Moradi-Lakeh, M., MacIntyre, M. F., . . . Naghavi, M. (2015). The Global Burden of Cancer 2013. JAMA Oncol, 1(4), 505-527. doi:10.1001/jamaoncol.2015.0735
Gao, Y., Quinn, B., Pandit-Taskar, N., Behr, G., Mahmood, U., Long, D., . . . Dauer, L. T. (2018). Patient-specific organ and effective dose estimates in pediatric oncology computed tomography. Phys Med, 45, 146-155. doi:10.1016/j.ejmp.2017.12.013
Gofshteyn, J. S., & Stephenson, D. J. (2016). Diagnosis and Management of Childhood Headache. Curr Probl Pediatr Adolesc Health Care, 46(2), 36-51. doi:10.1016/j.cppeds.2015.11.003
Hall, E. J. (2002). Lessons we have learned from our children: cancer risks from diagnostic radiology. Pediatr Radiol, 32(10), 700-706. doi:10.1007/s00247-002-0774-8
Hsu, W. L., Preston, D. L., Soda, M., Sugiyama, H., Funamoto, S., Kodama, K., . . . Mabuchi, K. (2013). The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950-2001. Radiat Res, 179(3), 361-382. doi:10.1667/rr2892.1
Hsueh, Y. W., Lin, Y. C., Lin, C. H., Chen, H. C., Huang, Z. Y., Chai, J. W., & Chen, C. C. (2019). Trends in computed tomography scan uses in Taiwan from 2000 to 2013. J Chin Med Assoc, 82(12), 948-956. doi:10.1097/jcma.0000000000000199
Huang, W. Y., Muo, C. H., Lin, C. Y., Jen, Y. M., Yang, M. H., Lin, J. C., . . . Kao, C. H. (2014). Paediatric head CT scan and subsequent risk of malignancy and benign brain tumour: a nation-wide population-based cohort study. Br J Cancer, 110(9), 2354-2360. doi:10.1038/bjc.2014.103
Kim, K. P., Berrington de González, A., Pearce, M. S., Salotti, J. A., Parker, L., McHugh, K., . . . Lee, C. (2012). Development of a database of organ doses for paediatric and young adult CT scans in the United Kingdom. Radiat Prot Dosimetry, 150(4), 415-426. doi:10.1093/rpd/ncr429
Krille, L., Dreger, S., Schindel, R., Albrecht, T., Asmussen, M., Barkhausen, J., . . . Blettner, M. (2015). Risk of cancer incidence before the age of 15 years after exposure to ionising radiation from computed tomography: results from a German cohort study. Radiat Environ Biophys, 54(1), 1-12. doi:10.1007/s00411-014-0580-3
Lee, C., Kim, K. P., Bolch, W. E., Moroz, B. E., & Folio, L. (2015). NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans. J Radiol Prot, 35(4), 891-909. doi:10.1088/0952-4746/35/4/891
Lee, K. H., Lee, S., Park, J. H., Lee, S. S., Kim, H. Y., Lee, W. J., . . . Lee, K. H. (2021). Risk of Hematologic Malignant Neoplasms From Abdominopelvic Computed Tomographic Radiation in Patients Who Underwent Appendectomy. JAMA Surg, 156(4), 343-351. doi:10.1001/jamasurg.2020.6357
Li, I. G., Yang, Y.-H., Li, Y.-T., & Tsai, Y.-H. (2020). Paediatric computed tomography and subsequent risk of leukaemia, intracranial malignancy and lymphoma: a nationwide population-based cohort study. Scientific Reports, 10(1), 7759. doi:10.1038/s41598-020-64805-8
Locatelli, F., & Strahm, B. (2018). How I treat myelodysplastic syndromes of childhood. Blood, 131(13), 1406-1414. doi:10.1182/blood-2017-09-765214
Louissaint, A., Jr., Ackerman, A. M., Dias-Santagata, D., Ferry, J. A., Hochberg, E. P., Huang, M. S., . . . Hasserjian, R. P. (2012). Pediatric-type nodal follicular lymphoma: an indolent clonal proliferation in children and adults with high proliferation index and no BCL2 rearrangement. Blood, 120(12), 2395-2404. doi:10.1182/blood-2012-05-429514
Mathews, J. D., Forsythe, A. V., Brady, Z., Butler, M. W., Goergen, S. K., Byrnes, G. B., . . . Darby, S. C. (2013). Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ : British Medical Journal, 346, f2360. doi:10.1136/bmj.f2360
Meulepas, J. M., Ronckers, C. M., Smets, A., Nievelstein, R. A. J., Gradowska, P., Lee, C., . . . Hauptmann, M. (2019). Radiation Exposure From Pediatric CT Scans and Subsequent Cancer Risk in the Netherlands. J Natl Cancer Inst, 111(3), 256-263. doi:10.1093/jnci/djy104
Miglioretti, D. L., Johnson, E., Williams, A., Greenlee, R. T., Weinmann, S., Solberg, L. I., . . . Smith-Bindman, R. (2013). The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr, 167(8), 700-707. doi:10.1001/jamapediatrics.2013.311
Miller, K. D., Fidler‐Benaoudia, M., Keegan, T. H., Hipp, H. S., Jemal, A., & Siegel, R. L. (2020). Cancer statistics for adolescents and young adults, 2020. CA: a cancer journal for clinicians, 70(6), 443-459.
Miller, R. W. (1995). Special susceptibility of the child to certain radiation-induced cancers. Environ Health Perspect, 103 Suppl 6(Suppl 6), 41-44. doi:10.1289/ehp.95103s641
Nikkilä, A., Raitanen, J., Lohi, O., & Auvinen, A. (2018). Radiation exposure from computerized tomography and risk of childhood leukemia: Finnish register-based case-control study of childhood leukemia (FRECCLE). Haematologica, 103(11), 1873-1880. doi:10.3324/haematol.2018.187716
Noshchenko, A. G., Moysich, K. B., Bondar, A., Zamostyan, P. V., Drosdova, V. D., & Michalek, A. M. (2001). Patterns of acute leukaemia occurrence among children in the Chernobyl region. Int J Epidemiol, 30(1), 125-129. doi:10.1093/ije/30.1.125
Nye, B. L., & Ward, T. N. (2015). Clinic and Emergency Room Evaluation and Testing of Headache. Headache, 55(9), 1301-1308. doi:10.1111/head.12648
Pearce, M. S., Salotti, J. A., Little, M. P., McHugh, K., Lee, C., Kim, K. P., . . . de González, A. B. (2012). CT scans in childhood and risk of leukaemia and brain tumours – Authors' reply. The Lancet, 380(9855), 1736-1737. doi:10.1016/S0140-6736(12)61984-9
Pearce, M. S., Salotti, J. A., Little, M. P., McHugh, K., Lee, C., Kim, K. P., . . . Berrington de González, A. (2012). Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet, 380(9840), 499-505. doi:10.1016/s0140-6736(12)60815-0
Pearce, M. S., Salotti, J. A., McHugh, K., Metcalf, W., Kim, K. P., Craft, A. W., . . . Ron, E. (2011). CT scans in young people in Northern England: trends and patterns 1993-2002. Pediatr Radiol, 41(7), 832-838. doi:10.1007/s00247-011-2110-7
Robert Kliegman, B. S., Joseph W St Geme III, Nina Felice Schor, Richard E Behrman,. (2017). Nelson textbook of pediatrics (20 ed.). Philadelphia, PA: Elsevier Inc.
Salö, M., Friman, G., Stenström, P., Ohlsson, B., & Arnbjörnsson, E. (2014). Appendicitis in children: evaluation of the pediatric appendicitis score in younger and older children. Surg Res Pract, 2014, 438076. doi:10.1155/2014/438076
Samuel, M. (2002). Pediatric appendicitis score. J Pediatr Surg, 37(6), 877-881. doi:10.1053/jpsu.2002.32893
Shanmugavadivel, D., Liu, J. F., Murphy, L., Wilne, S., & Walker, D. (2020). Accelerating diagnosis for childhood brain tumours: an analysis of the HeadSmart UK population data. Arch Dis Child, 105(4), 355-362. doi:10.1136/archdischild-2018-315962
Suissa, S., Dell'aniello, S., Vahey, S., & Renoux, C. (2011). Time-window bias in case-control studies: statins and lung cancer. Epidemiology, 22(2), 228-231. doi:10.1097/EDE.0b013e3182093a0f
Ward, E., DeSantis, C., Robbins, A., Kohler, B., & Jemal, A. (2014). Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin, 64(2), 83-103. doi:10.3322/caac.21219

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊