跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/13 12:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅渝珮
研究生(外文):Yu-pei Luo
論文名稱:碳化鎢上奈米晶鑽石塗層的磨潤特性分析
論文名稱(外文):Tribological Characterizion of Nanocrystalline Diamond Coatings on Tungsten Carbide Substrates
指導教授:邱六合
指導教授(外文):Liu-ho Chiu
口試委員:邱六合
口試委員(外文):Liu-ho Chiu
口試日期:2022-06-28
學位類別:碩士
校院名稱:大同大學
系所名稱:機械與材料工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:97
中文關鍵詞:WC-6Co鑽石鍍膜附著力磨耗性質
外文關鍵詞:AdhesionTribologyNanocrystalline diamondWC-6Co
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本文使用WC-6Co經前處理後以熱燈絲化學氣相沉積法(HFCVD)鍍一層約2~3μm之奈米晶鑽石鍍膜,並以奈米晶鑽石鍍膜的前處理之腐蝕時間及方式不同以分析其附著力與磨耗性質。磨耗測驗的方式為Ball-on-disc,並使用對磨球及鍍鑽對磨球進行試驗。前處理方式分別為兩階段前處理及鍍一層純鈦作為中介層,兩階段式前處理腐蝕時間為Murakami與Caro兩種腐蝕液分別腐蝕 3分+10秒、5分+20秒、10分+20秒及20分+20秒,而附著力的部分以VDI 3198規範作比對。結果顯示,NCD/M3C/WC-6Co、NCD/M20C/WC-6Co及NCD/M3+Ti/WC-6Co之附著力等級皆為HF2。除此之外,NCD/M5C/WC-6Co為HF4,NCD/M10C/WC-6Co為HF3,NCD/M20C/WC-6Co為HF2。 NCD/M3+Ti/WC-6Co之摩擦係數在與對磨球(WC)對磨時為0.875,與鍍鑽對磨球(NCDWC)對磨時為-0.007。另外NCD/M10C/WC-6Co與對磨球之摩擦係數為0.549,以及鍍鑽對磨球為0.137,為腐蝕參數中最佳。當粗化腐蝕時間增加,則表面粗糙度增加,故在鍍膜時鑽石膜與基材表面附著力有所提升,但在腐蝕參數為NCD/M20C/WC-6Co時,其摩擦係數為0.335,與NCD/M5C/WC-6Co相近,不管使用的對磨球是否有鍍鑽石,所獲得的平均摩擦係數由大到小依序為NCD/M3C/WC-6Co > NCD/M20C/WC-6Co > NCD/M5C/WC-6Co > NCD/M10C/WC-6Co,且發現當以鍍鑽對磨球進行試驗,所測得每一組參數的摩擦係數都會降低。另外以Cu、SiO2兩種PCB之材料與對磨球及鍍鑽對磨球進行應用的磨耗模擬測試,結果顯示,與鍍鑽對磨球對磨時,Cu的摩擦係數為0.912,比對磨球對磨時的0.374提高了約0.5,而SiO2與鍍鑽對磨球對磨時的摩擦係數為0.843,比對磨球對磨時的0.419,提高了約0.4。綜合所有實驗結果,以NCD/M3+Ti/WC-6Co為條件的奈米晶鑽石鍍膜為最佳參數,而兩階段式前處理的結果中,則以Murakami腐蝕時間10分鐘(NCD/M10C/WC-6Co)為佳。
In this paper, WC-6Co is used to coat a nanocrystalline diamond coating with a thickness of about 2~3 μm by hot filament chemical vapor deposition (HFCVD) after pretreatment, and analysis of its adhesion and wear properties. The method of abrasion test is Ball-on-disc, and the test is carried out on the grinding ball and the plated drill ball. The pre-treatment methods are two-stage pre-treatment and plating a layer of pure titanium as an intermediary layer. The two-step pre-treatment corrosion time is 3 minutes + 10 seconds, 5 minutes + 20 seconds, and 10 minutes + for Murakami and Caro respectively. 20 seconds and 20 minutes + 20 seconds, and the adhesion part are compared with the VDI 3198 specification. The results show that the adhesion grades of NCD/M3C/WC-6Co, NCD/M20C/WC-6Co and NCD/M3+Ti/WC-6Co are all HF2. In addition, NCD/M5C/WC-6Co is HF4, NCD/M10C/WC-6Co is HF3, and NCD/M20C/WC-6Co is HF2. The friction coefficient of NCD/M3+Ti/WC-6Co is 0.875 when it is counter-grinded with the counter-grinding ball (WC) and -0.007 when it is counter-grinded with the plated drill counter-grinding ball (NCDWC). In addition, the friction coefficient between NCD/M10C/WC-6Co and the anti-grinding ball is 0.549, and the plated drill to the grinding ball is 0.137, which are the best corrosion parameters. When the corrosion time increases, the surface roughness increases, so the adhesion between the diamond film and the substrate surface is improved during coating, but when the corrosion parameter is NCD/M20C/WC-6Co, the friction coefficient is 0.335, which is comparable to NCD/M5C/WC-6Co is similar, regardless of whether the pair of grinding balls are diamond-coated or not, the average friction coefficient obtained in descending order is NCD/M3C/WC-6Co > NCD/M20C/WC-6Co > NCD/M5C /WC-6Co > NCD/M10C/WC-6Co, and it was found that when the grinding ball was tested with a plated drill, the friction coefficient of each set of parameters measured decreased. In addition, the wear simulation test of the two kinds of PCB materials of Cu and SiO2 and the application of the grinding ball and the plated drill to the grinding ball shows that the friction coefficient of Cu is 0.912 when compared with the plated drill to the grinding ball. The friction coefficient of 0.374 in ball-to-grinding was increased by about 0.5, while the friction coefficient of SiO2 and plated drill was 0.843, which was increased by about 0.4 compared with 0.419 in ball-to-grind. Based on all the experimental results, the nanocrystalline diamond coating under the condition of NCD/M3+Ti/WC-6Co is the best parameter, and in the results of the two-stage pretreatment, the Murakami etching time is 10 minutes (NCD/M10C/ WC-6Co) is preferred.
誌謝 1
摘要 I
ABSTRACT III
目次 V
表次 IX
圖次 XI
第壹章 前言 1
第貳章 文獻回顧 3
2.1碳化鎢硬質材料(TUNGSTEN CARBIDE) 3
2.2前處理 7
2.3中介層 10
2.4播種 (SEEDING) 13
2.5化學氣相沉積法(CVD) 15
2.6表面粗糙度 17
2.7薄膜之附著力測試 19
2.7.1壓痕試驗法(INDENTATION TEST)[17] 19
2.7.2查比V刻痕試驗 (CHARPY IMPACT TEST) 20
2.7.3刮痕試驗法(SCRATCH TEST) 20
2.8薄膜磨耗行為 21
2.9磨耗機制 25
2.9.1黏著磨耗(ADHESIVE WEAR) 25
2.9.2磨料磨耗(ABRASIVE WEAR) 27
2.9.3表面疲勞磨耗(SURFACE FATIGUE WEAR) 28
2.9.4腐蝕磨耗(CORROSIVE WEAR) 28
2.10 影響耐磨性的因素 30
第參章 實驗步驟與方法 33
3.1實驗流程與參數 33
3.2試片製備 36
3.3前處理 37
3.4奈米晶鑽石鍍膜 39
3.5微觀組織之觀察與性質量測 40
3.5.1表面粗糙度分析 40
3.5.2硬度分析 41
3.5.3 X光繞射分析 42
3.5.4附著力檢測 43
3.5.5場發射掃描式電子顯微鏡FE-SEM 44
3.5.6磨耗試驗 45
第肆章 結果與討論 46
4.1表面粗糙度 46
4.2 SEM-EDS成分分析 48
4.3硬度 50
4.4 X光繞射分析 52
4.5附著力 54
4.6 SEM 表面形貌 59
4.7磨耗試驗 68
第伍章 結論 93
參考文獻 95
[1]C.L. Geng, W.Z. Tang, L.F. Hei, S.T. Liu, F.X. Lu, ‘’Fracture strength of two-step pretreated and diamond coated cemented carbide microdrills’’, International Journal of Refractory Metals and Hard Materials, Vol. 25, Issue 2, Mar. 2007, pp. 159-165
[2]Q. H. Fan, J. Grácio, E. Pereira, N. Ali And W. Ahmed, ”Study of diamond adhesion behavior on chromium and titanium for obtaining adherent diamond coatings on steel”, Journal of Materials Research , Vol. 15 , Issue 11 , Nov. 2000 , pp. 2330 – 2335
[3]盧鴻華、廖文祥,“碳化鎢陶瓷材料之微結構與機械性質之研究”,中華民國陶業研究學會年會論文,2007
[4]黃慎模, “碳化鎢植焊披覆延長刀具、工具、模具及零件之壽命至1000%”,機械材料,Vol. 192,2001,pp.132-140
[5]桂業煒、胡國平,“碳化鎢硬面材料”,粉末冶金會刊,Vol. 24, pp. 257-262,1999
[6]J.A. Fernie, A.J. Sturgeon, “Bonding & Joining Ceramic Materials”, USA, 1992
[7]M. He, J. Wang, R. He, H. Yang, and J. Ruan, “Effect of cobalt content on the microstructure and mechanical properties of coarse grained WC-Co cemented carbides fabricated from chemically coated composite powder”, Journal of Alloys and Compounds, Vol. 766, Oct. 2018, pp. 556-563
[8]F. Deuerler, H. van den Berg, R. Tabersky, A. Freundlie, M. Pies, and V. Buck, “Pretreatment of substrate surface for improved adhesion of diamond films on hard metal cutting tools”, Diamond and Related Materials, Vol. 5, Issue 12, Dec. 1996, pp. 1478-1489
[9]J. Miao, J. Song, Y. Xue, Y. Tong, W. Tang, and F. Lu, “Effect of a two-step pretreatment method on adhesion of CVD diamond coatings on cemented carbide substrates”, Surface and Coatings Technology, Vol. 187, Issue 1, 1 October 2004, pp. 33-36
[10]R. Haubner, W. Kalss, “Diamond deposition on hardmetal substrates – Comparison of substrate pre-treatments and industrial applications”, Journal of Refractory Metals & Hard Materials, Vol. 28, 2010, pp. 475–483
[11]S.K. Sarangi, A. Chattopadhyay, A.K. Chattopadhyay, “Effect of pretreatment, seeding and interlayer on nucleation and growth of HFCVD diamond films on cemented carbide tools”, International Journal of Refractory Metals and Hard Materials, Vol. 26, Issue 3, May 2008, pp. 220-231
[12]S. Fan, T. Kuang, W. Xu, Y. Zhang, Y. Su, S. Lin, D. Wang, H. Yang, K. Zhou, M. Dai, and L. Wang, “Effect of pretreatment strategy on the microstructure, mechanical properties and cutting performance of diamond coated hardmetal tools using HFCVD method”, International Journal of Refractory Metals and Hard Materials, Vol. 101, Dec. 2021
[13]C.D. Torres, P.J. Heaney, A.V. Sumant, M.A. Hamilton, R.W. Carpick, F.E. Pfefferkorn, ”Analyzing the performance of diamond-coated micro end mills”, International Journal of Machine Tools & Manufacture, Vol. 49, 2009, pp. 599–612
[14]M. Behera, A. Jena, S.K. Pattnaik, S. Padhi, and S.K. Sarangi, “The effect of transition-metal seeding powder on deposition and growth of diamond synthesized by hot filament chemical vapor deposition processes on cemented carbide substrates and its characterization”, Materials Chemistry and Physics, Vol. 256, Dec. 2020
[15]熊禮威,王傳新,熱絲法合成金鋼石膜,2017,化學工業出版社
[16]R.K. Leach, 2 nd, William Andrew, “Fundamental Principles of Engineering Nanometrology”, 2014. pp.246-261
[17]N. Vidakis, A. Antoniadis, N. Bilalis, ”The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds, Journal of Materials Processing Technology, Vol. 143–144, 2003, pp. 481–485
[18]Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing https://www.astm.org/c1624-22.html
[19]K. Holmberg, A. Matthews, ”Coating Tribology: Properties, Mechanisms, Techniques and Applications in surface Engineering, Elseviers Science, pp. 41-75, 185-235, 2009
[20]久祐實業網站https://www.jy-idea.com/tw/html/page/page.php?cid=21&cid2=112
[21]H. Zhang, I. Etsion, “Evolution of adhesive wear and friction in elastic-plastic spherical contact”, Wear, Vol. 478–479, Aug. 2021
[22]Entendendo os Mecanismos de Desgaste: https://kalenborn.com.br/entendendo-os-mecanismos-de-desgaste/
[23]A.T. Alpas, S. Bhattacharya, I.M. Hutchings, “4.5 Wear of Particulate Metal Matrix Composites”, Comprehensive Composite Materials II, Vol. 4, 2018, pp. 137-172
[24]N. Elzayady, R. Elsoeudy, “Microstructure and wear mechanisms investigation on the brake pad”, Journal of Materials Research and Technology, Vol. 11, Mar.–Apr. 2021, pp. 2314-2335
[25]Microsoft PowerPoint - 6 磨耗試驗http://www.ve.uch.edu.tw/uploads/asset/data/5b2cc070a4310f6efc000199/6_%E7%A3%A8%E8%80%97%E8%A9%A6%E9%A9%97.pdf
[26]K. H. Zum Gahr, “Tribologie: Reibung - Verschleiß – Schmierung” Naturwissenschaften, Vol. 72, 1985, pp.260–267
[27]I.V. Frishberg, “Chapter 5 - Gas-Phase Method of Metal Powder Production”,
Handbook of Non-Ferrous Metal Powders (Second Edition), Technologies and Applications, 2019, pp. 187-200
[28]H.O. Pierson, “9 - The CVD of Ceramic Materials: Carbides”, Handbook of Chemical Vapor Deposition (CVD) (Second Edition) Principles, Technology, and Applications, 1999, pp. 231-264
[29]H.O. Pierson, “Titanium carbonitrides obtained by chemical vapor deposition”, Thin Solid Films, Vol. 40, Jan. 1977, pp. 41-47
[30]S. Chowdhury, E.de Barra, M.T. Laugier, “Hardness measurement of CVD diamond coatings on SiC substrates”, Surface and Coatings Technology, Vol. 193, Issues 1–3, Apr. 2005, pp. 200-205 75
[31]國立台灣科技大學貴重儀器中心 https://sppic.ntust.edu.tw/p/406-1058-81296,r1589.php?Lang=zh-tw
[32]D. Berman, S.A. Deshmukh, S.K.R.S. Sankaranarayanan, A. Erdemir, A.V. Sumant, “Macroscale superlubricity enabled by graphene nanoscroll formation”, Science, May 2015, pp. 1-7
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top