跳到主要內容

臺灣博碩士論文加值系統

(44.220.249.141) 您好!臺灣時間:2023/12/11 20:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃子倫
研究生(外文):Tzu-Lun Huang
論文名稱:Pt/MoS2/Graphene複合材料光催化特性之研究
論文名稱(外文):Study of Pt/MoS2/Graphene Composites for Photocatalysis Property
指導教授:陳文照陳文照引用關係
指導教授(外文):Wen-Jauh Chen
口試委員:曾駿逸謝淑惠
口試委員(外文):Jiun-Yi TsengShu-Huei Hsieh
口試日期:2022-07-13
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:材料科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:57
中文關鍵詞:二硫化鉬石墨烯亞甲基藍蘇丹紅一號光催化
外文關鍵詞:PtMoS2graphenemethylene blueSudan Iphotocatalytic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
  本研究使用改良式Hummer’s method製備氧化石墨烯(GO),再者使用硫脲和鉬酸銨做化學反應形成MoS2,將MoS2與GO利用水熱和合成方法製備出MoS2/Graphene複合材料,最後使用回流法合成Pt/MoS2/Graphene複合材料。
  將所獲得的Pt/MoS2/Graphene複合材料進行X光繞射(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)以及能量散射光譜儀(EDS)進行分析,結果顯示可成功合成Pt/MoS2/Graphene複合材料。
  在Pt/MoS2/Graphene複合材料對亞甲基藍以及蘇丹紅一號之光催化降解性能方面。結果顯示Pt/MoS2/Graphene複合材料於光照下4小時後對亞甲基的降解率可達92%,對蘇丹紅一號染料降解率為93%。Pt/MoS2/Graphene複合材料對亞甲基藍以及蘇丹紅一號之降解性能隨循環次數之增加而降低。

  This study synthesized graphene oxide (GO) sheets using the methods of modified Hummers and Offerman. The GO was mixed with MoS2 prepared using ammonium molybdate and thiourea to form the MoS2/graphene nanocomposites. The MoS2/graphene deposited with Pt particles was put in ethylene glycol for reflux to create Pt/MoS2/Gr. The Pt/MoS2/Gr photocatalysts were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction analysis (XRD). Photocatalytic activity under visible-light irradiation was evaluated in a methylene blue (MB) dye degradation reaction in the aqueous phase. The results show that the Pt/MoS2/Gr nanocomposite prepared in this study could degrade 92% of the MB and 93% of the Sudan I dye in 4h. The degradation performance of Pt/MoS2/Graphene composites to methylene blue and Sudan I dye decreases with the number of cycles.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章緒論 - 1 -
1-1前言 - 1 -
1-2 研究動機與目的 - 2 -
第二章研究背景與文獻回顧 - 4 -
2.1、石墨烯 - 4 -
2.1.1石墨烯結構與特性 - 5 -
2.1.2石墨烯的製備方法 - 6 -
2.2二硫化鉬 - 8 -
2.2.1二硫化鉬的結構與特性 - 9 -
2.2.2二硫化鉬的製備方法 - 9 -
2.3 水熱法 - 10 -
2.4回流法 - 11 -
2.5光催化(Photocatalysis) - 12 -
2.5.1 光催化原理 - 12 -
2.6染料概論 - 14 -
2.6.1亞甲基藍簡介 - 15 -
2.6.2 蘇丹紅一號簡介 - 16 -
第三章實驗方法與步驟 - 17 -
3.1實驗藥品與儀器 - 17 -
3.1.1實驗藥品 - 17 -
3.1.2 實驗儀器 - 18 -
3.2實驗流程與方法 - 19 -
3.2.1製備氧化石墨烯 - 20 -
3.2.2製備MoS2奈米材料 - 20 -
3.2.3製備MoS2/Grephene複合材料 - 20 -
3.2.4合成Pt/MoS2/Grephene複合材料 - 20 -
3.3 冷凝管回流裝置 - 20 -
3.4光催化實驗 - 21 -
3.4.1 MB降解 - 21 -
3.4.2 Sudan I降解 - 21 -
3.5穿透式電子顯微鏡試片製作 - 22 -
第四章實驗結果與討論 - 23 -
4.1材料鑑定與分析 - 23 -
4.1.1 X光繞射(XRD)結構分析 - 23 -
4.1.2掃描式電子顯微鏡(SEM)分析鑑定 - 24 -
4.1.3穿透式電子顯微鏡(TEM)分析鑑定 - 25 -
4.1.4能量散射光譜儀(EDS)分析鑑定 - 26 -
4.2光催化染料之分析 - 28 -
4.2.1 光催化MB降解之分析 - 28 -
4.2.2 光催化Sudan I降解之分析 - 29 -
4.2.3反應動力學 - 30 -
4.3光催化穩定性 - 33 -
第五章結論 - 43 -
參考文獻 - 44 -
[1] Chuncheng Chen, Wanhong Ma, Jincai Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chem, Soc. Rev., 39 (2010) 4009
[2]Fenping Yang, Zhiyong Zhang, Yingnan Wang, ManzhangXu Wu, ZhaoJun Feng, YanCheng Chen, Facile synthesis of nano-MoS2 and its visible light photocatalytic property Materials Research Bulletin, Materials, 87 (2017) 119
[3]Hongmei Ju, Tingsen Fang, Yun Zhou, Xianbin Feng, Ting hui, SongFeng Lu, Wenchao Liu, CsPbBr3-MoS2-GO nanocomposites for boosting photocatalytic degradation performance, Applied Surface Science, 15 (2021) 149452
[4] Georgantzinos Stelios, Georgio Giannopoulos, Nick Anifantis, Numerical investigation of elastic mechanical properties of graphene structures, Materials & Design, 31(2010) 4646
[5] Gomathi Ramalingam, Nagapandiselvi Perumal, AK Priya, Saravanan Rajendran, A review of graphene-based semiconductors for photocatalytic degradation of pollutants in wastewater, Chemosphere, 300 (2022) 134391
[6] TonniAgustiono Kurniawan, Zhu Mengting, Dun Fu, SweeKeongYeap, MohdHafiz Dzarfan Othman, Ram Avtar, Tong Ouyang, Functionalizing TiO2 with graphene oxide for enhancing photocatalytic degradation of methylene blue (MB) in contaminated wastewater, Journal of Environmental Management, 270 (2020) 110871
[7] Dongman Hou, Weijia Zhou, Xiaojun Liu, Kai Zhou, Jian Xie, Guoqiang Li, Pt nanoparticles/MoS2nanosheets/carbon fibers as an efficient catalyst for the hydrogen evolution reaction, Electrochimica Acta, 166 (2015) 26
[8] Georgantzinos Stelios, Georgios Giannopoulos, Nick Anifantis, Numerical investigation of elastic mechanical properties of graphene structures, 31 (2010) 4646
[9] 劉開輝﹐石墨烯的結構與基本性質﹐華東理工大學出版社
[10] Diana Berman, Ali Erdemir, AnirudhaV Sumant, Graphene: a new emerging lubricant, Mater. Today, 17 (2014) 31
[11] LeeXiao Ding, WeijeffreyW, Kysar, James Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 321 (2008) 385
[12] Da Zhan, Jiaxu Yan, Linfei Lai, Zhenhua Ni, Lei Liu, Zexiang Shen, Engineering the Electronic Structure of Graphene, Special Issue: Materials Research at Nanyang Technological University, Singapore, 24 (2012) 4055
[13] 王天博﹐膠帶黏貼法製備石墨烯存在的問題與討論﹐甘肅科技
[14] Yanjie Cao, Ping Wang, Jiajie Fan, Huogen Yu, Covalently functionalized graphene by thiourea for enhancing H2-evolution performance of TiO2 photocatalyst, Ceramics International, 47 (2021) 654
[15] HuangJia Peng, Huang Jian, Yan Qi, WuYu Hang, Shen Qing, Progress of Green Reduction of Graphene Oxide, Guangzhou Chemistry,41 (2016) 58
[16] 陳威宏﹑秦浩庭﹑謝雅萍﹐石墨烯在化學氣相沉積法(CVD)製備上的挑戰與突破﹐物理雙月刊
[17] 劉偉仁﹐石墨烯技術﹐五南出版
[18] Mark A. Lukowski, Andrew S. Daniel, Fei Meng, AudreyForticaux, LinsenLi
, Song Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets J. Am. Chem. Soc., 135 (2013) 10274
[19] Yanguang Li, Hailiang Wang, Liming Xie, Yongye Liang, Guosong Hong, Hongjie Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction J. Am. Chem. Soc., 133 (2011) 7296
[20] LiuKai Long, PengDong Sheng, Effects of photoelectric properties of monolayer MoS2 under tensile strain, Acta Physica Sinica, 70 (2021) 217101
[21] Jie Wang, Qiuyue Chen, Yongping Zhang, Research Progress on MoS2 Prepared by Chemical Vapor Deposition, Advances in Material Chemistry, 5 (2017) 1
[22] Guogang Tang, Jing Zhang, Changchao Liu, Du Zhang, Yuqi Wang, Hua Tang, Changsheng Li, Synthesis and tribological properties of flower-like MoS2 microspheres, Ceram. Int., 40 (2014) 11575
[23] Jie Wang, Qiuyue Chen, Yongping Zhang, Research Progress on MoS2 Prepared by Chemical Vapor Deposition, Advances in Material Chemistry, 5 (2017) 1
[24] 馬興科﹑郭新江﹑張闊﹐奈米MOS2的製備與應用﹐河南工業大學
[25] 張立德﹑牟季美﹐奈米材料和奈米結構﹐滄海書局
[26] Sai Kiran Aditha, Aditya Dileep Kurdekar, Avinash Chunduri, Sandeep Patnaik, Venkataramaniah Kamisetti, Aqueous based reflux method for green synthesis of nanostructures: Application in CZTS synthesis, Methods X, 3 (2016) 35
[27] Mengist Minale, Zaoli Gu, Awoke Guadie, Daniel,Manaye Kabtamu, Yuan Li, Xuejiang Wang, Application of graphene-based materials for removal of tetracyclines using adsorption and photocatalytic-degradation: A review, Journal of Environmental Management, 276 (2020) 111310
[28] 高濂﹑鄭珊﹑張青紅﹐奈米光觸媒﹐五南出版
[29] PhilipsOlaleye Agboola, Imran Shakir, Facile fabrication of SnO2/MoS2/rGO ternary composite for solar light-mediated photocatalysis for water remediation, Journal of Materials Research and Technology, 18 (2022) 4303
[30] 施周﹑張文輝﹐環境奈米技術﹐五南出版
[31] Zhaoyan Luo, Yixin Ouyang, Hao Zhang, Meiling Xiao, Junjie Ge, Zheng Jiang,
Jinlan Wang, Daiming Tang, Xinzhong Cao, Changpeng Liu, Wei Xing, Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution, 9 (2018) 2120
[32] Clair N, Sawyer Perry L, McCarty, Gene F, Parkin﹐環境工程化學﹐滄海書局
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊