|
[1]Paolo Oliveri ; Cristina Malegori ; Monica Casale ; Edoardo Tartacca ; Gianni Salvatori. An innovative multivariate strategy for HSI-NIR images to automatically detect defects in green coffee. Journal Elsevier Talanta, July 2019, Vol:199, 270-276. [2]Nicola Caporaso ; Martin B. Whitworth ; Stephen Grebby ; Ian D. Fisk. Rapid prediction of single green coffee bean moisture and lipid content by hyperspectral imaging. Journal Elsevier Journal of Food Engineering, July 2018, ,Vol:227,18-29. [3]Chu Zhang ; Fei Liu ; Yong He. Identification of coffee bean varieties using hyperspectral imaging: influence of preprocessing methods and pixel-wise spectra analysis. SCIENTIFIC REPORTS, 01 Feb, 2018. [4]Mauricio García; John E. Candelo-Becerra ; Fredy E. Hoyos. Quality and Defect Inspection of Green Coffee Beans Using a Computer Vision System. MDPI applied sciences, 2019, 9(19),4195. [5]Edwin R. Arboleda; Arnel C. Fajardo; Ruji P. Medina.An image processing technique for coffee black beans identification. IEEE ICIRD, May 2018. [6]N. Okubo and Y. Kurata, "Nondestructive classification analysis of green coffee beans by using near-infrared spectroscopy," Foods, vol. 8, no. 2, p. 82, 2019. [7]B. Chu, K. Yu, Y. Zhao, and Y. He, "Development of noninvasive classification methods for different roasting degrees of coffee beans using hyperspectral imaging," Sensors, vol. 18, no. 4, p. 1259, 2018. [8]C. Nansen, K. Singh, A. Mian, B. J. Allison, and C. W. Simmons, "Using hyperspectral imaging to characterize consistency of coffee brands and their respective roasting classes," Journal of Food Engineering, vol. 190, pp. 34-39, 2016. [9]R. Calvini, A. Ulrici, and J. M. Amigo, "Practical comparison of sparse methods for classification of Arabica and Robusta coffee species using near infrared hyperspectral imaging," Chemometrics and Intelligent Laboratory Systems, vol. 146, pp. 503-511, 2015. [10]J.-S. Cho, H.-J. Bae, B.-K. Cho, and K.-D. Moon, "Qualitative properties of roasting defect beans and development of its classification methods by hyperspectral imaging technology," Food chemistry, vol. 220, pp. 505-509, 2017. [11]Wang, P., Tseng, H., Chen, T., & Hsia, C. (2021). Deep convolutional neural network for coffee bean inspection. Sensors and Materials, 33(7), 2299-2310. [12]S.-Y. Chen, C.-Y. Chang, C.-S. Ou, and C.-T. Lien, "Detection of insect damage in green coffee beans using VIS-NIR hyperspectral imaging," Remote Sensing, vol. 12, no. 15, p. 2348, 2020. [13]Chen, Shih-Yu, Ming-Feng Chiu, and Xue-Wei Zou. "Real-time defect inspection of green coffee beans using NIR snapshot hyperspectral imaging." Computers and Electronics in Agriculture 197 (2022): 106970. [14]G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning Algorithm for Deep Belief Nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, Jul. 2006, doi: 10.1162/neco.2006.18.7.1527. [15]D. H. Hubel, T. N. Wiesel, “Receptive Fields, Binocular Interaction and Functional Architecture in the Cat’s Visual Cortex”, Journal of Physiology, pp. 106-154, 1962. [16]Chollet, François. "Xception: Deep learning with depthwise separable convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. [17]M. Lin, Q. Chen, and S. Yan, “Network In Network,” arXiv:1312.4400 [cs], Mar. 2014, Accessed: May 09, 2021. [Online]. Available: http://arxiv.org/abs/1312.4400. [18]Xavier Glorot, Yoshua Bengio, “Understanding the difficulty of training deep feedforward neural networks”, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249-256, 2010. [19]K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” Proc. ICLR, 2015. [20]Ba J L, Kiros J R, Hinton G E. Layer normalization[J]. arXiv preprint arXiv:1607.06450, 2016. [21]Vedaldi V L D U A. Instance Normalization: The Missing Ingredient for Fast Stylization[J]. arXiv preprint arXiv:1607.08022, 2016. [22]Joackim Mutua, POST HARVEST HANDLING AND PROCESSING OF COFFEE IN AFRICAN COUNTRIES,2000 [23]Wu, Kesheng, Ekow Otoo, and Arie Shoshani. "Optimizing connected component labeling algorithms." Medical Imaging 2005: Image Processing. Vol. 5747. SPIE, 2005. [24]Fiorio, Christophe. "A topologically consistent representation for image analysis: the frontiers topological graph." International Conference on Discrete Geometry for Computer Imagery. Springer, Berlin, Heidelberg, 1996. [25]Yu, C., Li, F., Chang, C.-I., Cen, K., & Zhao, M. (2018). Deep 2D convolutional neural network with deconvolution layer for hyperspectral image classification. International Conference in Communications, Signal Processing, and Systems [26]Ahmad, M., Shabbir, S., Raza, R. A., Mazzara, M., Distefano, S., & Khan, A. M. (2021). Hyperspectral image classification: artifacts of dimension reduction on hybrid CNN. arXiv preprint arXiv:2101.10532. [27]Paul, A., Bhoumik, S., & Chaki, N. (2021). SSNET: An improved deep hybrid network for hyperspectral image classification. Neural Computing and Applications, 33(5), 1575-1585. [28]Chen, C., Zhang, J.-J., Zheng, C.-H., Yan, Q., & Xun, L.-N. (2018). Classification of hyperspectral data using a multi-channel convolutional neural network. International Conference on Intelligent Computing. [29]Rao, C., & Liu, Y. (2020). Three-dimensional convolutional neural network (3D-CNN) for heterogeneous material homogenization. Computational Materials Science, 184, 109850. [30]Mei, S., Yuan, X., Ji, J., Zhang, Y., Wan, S., & Du, Q. (2017). Hyperspectral image spatial super-resolution via 3D full convolutional neural network. Remote Sensing, 9(11), 1139. [31]Li, Y., Zhang, H., & Shen, Q. (2017). Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sensing, 9(1), 67. [32]Nagasubramanian, K., Jones, S., Singh, A. K., Sarkar, S., Singh, A., & Ganapathysubramanian, B. (2019). Plant disease identification using explainable 3D deep learning on hyperspectral images. Plant Methods, 15(1), 1-10. [33]Yang, J., Zhao, Y.-Q., Chan, J. C.-W., & Xiao, L. (2019). A multi-scale wavelet 3D-CNN for hyperspectral image super-resolution. Remote Sensing, 11(13), 1557. [34]Nagasubramanian, K., Jones, S., Singh, A. K., Singh, A., Ganapathysubramanian, B., & Sarkar, S. (2018). Explaining hyperspectral imaging based plant disease identification: 3D CNN and saliency maps. arXiv preprint arXiv:1804.08831. [35]Townsend, James T. "Theoretical analysis of an alphabetic confusion matrix." Perception & Psychophysics 9.1 (1971): 40-50. [36]McHugh, Mary L. "Interrater reliability: the kappa statistic." Biochemia medica 22.3 (2012): 276-282.
|