跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 03:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃靖媛
研究生(外文):HUANG, CHING-YUAN
論文名稱:應用情感分析於電子商務網站買家評價之研究-以蝦皮網站為例
論文名稱(外文):A Study on Applying Sentiment Analysis to the Purchaser Evaluation of E-Commerce Website - Taking the Shopee Website as an Example
指導教授:黃錦法黃錦法引用關係
指導教授(外文):HUANG, CHING-FA
口試委員:黃錦法莊煥銘孫培然
口試委員(外文):HUANG, CHING-FACHUANG, HUAN-MINGSUN, PEI-RAN
口試日期:2022-06-28
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:資訊管理系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:56
中文關鍵詞:情感分析買家評價資料分類機器學習深度學習
外文關鍵詞:Sentiment AnalysisPurchaser EvaluationData ClassificationMachine LearningDeep Learning
相關次數:
  • 被引用被引用:2
  • 點閱點閱:403
  • 評分評分:
  • 下載下載:108
  • 收藏至我的研究室書目清單書目收藏:0
在COVID-19疫情的影響下,讓電子商務網站的銷售量大幅增加。許多買家會透過文字評價和星級評價來分享對商品的看法,這些分享對潛在消費者的購買決定帶來了很大的影響,因此賣家對於買家評價更加的重視,並引起許多賣家利用獎勵的方式吸引買家去評價。過去有研究指出,星級可能無法完全捕捉評價中的極性訊息,因此本研究應用情感分析於蝦皮網站的買家評價,並利用評價內容將評價資料進行情感指數分析,希望能找出星級評價和評價內容不對等的買家評價,並且探討不對等買家評價對情感極性分類是否有影響。
本研究首先爬取蝦皮網站的買家評價作為實驗資料,並且將爬取的資料做前處理,接著進行星級情感極性分類評估及情感指數極性分類評估,最後再進行情感指數極性分類結果比較。本研究的情感極性分類評估有Word2Vec與Doc2Vec兩種向量轉換方法,並使用SVM、MLP、CNN、LSTM及Bi-LSTM,總共5種分類方法來進行情感極性分類。實驗結果顯示,在星級情感極性分類為分三類和分兩類下,向量轉換不管為w2v或d2v的分類結果差距皆不大;在向量轉換為w2v和d2v的情況下,星級情感極性分類為分兩類皆比分三類好;接著在情感指數極性分析中確實找出了星級評價與情感指數評價分類不對等的評價資料,而在情感指數極性分類評估下,向量轉換w2v與d2v的結果也差距不大;最後星級情感與情感指數極性分類結果比較,不管在向量轉換為w2v或d2v的情況下,情感指數極性分類(不含不對等評價資料)皆比星級情感極性分類(含不對等評價資料)好,因此不對等買家評價對情感極性分類是有影響的。
The impact of the COVID-19 outbreak has led to a significant increase in sales on e-commerce websites. Many purchasers share their evaluations about products through text and starred reviews, and these shares can have a significant impact on a potential consumer's purchasing decision. As a result, sellers are paying more attention to purchaser’s reviews, and many sellers are using incentives to attract purchasers to review. In the past research, the star rating may not fully capture the polarity of the evaluations, so this study applied sentiment analysis to the purchaser’s evaluation of the Shopee website, and used the evaluation content to analyze the data for sentiment index, hoping to identify the purchaser’s evaluation with unequal star ratings and evaluation content, and to explore whether unequal purchaser’s evaluation has an effect on the classification .
In this study, we first crawled the purchaser reviews from the Shopee website as experimental data, and pre-processed the crawled data, then evaluated the star level sentiment polarity classification and sentiment index polarity classification, and finally compared the sentiment index polarity classification results. Emotional polarity classification is evaluated by two vector conversion methods, Word2Vec and Doc2Vec, and a total of five classification methods, SVM, MLP, CNN, LSTM, and Bi-LSTM. The experimental results showed that the difference between the classification of starred affective polarity into three categories and two categories was not significant for either w2v or d2v, and the classification of starred affective polarity into two categories was better than three categories for both w2v and d2v. Then, in the sentiment index polarity analysis, the data of the star rating and the sentiment index evaluation classification were indeed found to be unequal, and the results of the vector transformation w2v and d2v under the sentiment index polarity classification evaluation were not very different. Finally, when comparing the results of the star sentiment and sentiment index polarity classification, the sentiment index polarity classification (without unequal evaluation data) is better than the star sentiment (with unequal evaluation data) regardless of whether the vector is transformed to w2v or d2v, so unequal purchaser evaluation has an effect on the sentiment polarity classification.

摘要 i
ABSTRACT ii
目錄 iii
表目錄 v
圖目錄 vi
一、緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 論文架構 4
二、文獻探討 5
2.1 網路口碑 5
2.2 情感分析 5
2.3 機器學習 6
2.4 深度學習 7
2.4.1 多層感知器 8
2.4.2 卷積神經網路 8
2.4.3 長短期記憶網路 9
2.4.4 雙向長短期記憶網路 11
2.5 評估指標 11
2.6 相關研究 13
三、研究方法 14
3.1 系統架構 14
3.2 資料蒐集 16
3.3 資料前處理 17
3.4 星級情感極性分類評估 19
3.5 情感指數極性分類評估 20
3.6 星級情感與情感指數極性分類結果比較 23
四、系統實驗 24
4.1 實驗環境 24
4.2 實驗對象 24
4.3 實驗結果 25
4.3.1 資料蒐集 25
4.3.2 資料前處理 28
4.3.3 星級情感極性分類評估 30
4.3.4 情感指數極性分類評估 36
4.3.5 星級情感與情感指數極性分類結果比較 38
五、結論 42
參考文獻 44
中文部分:
Ken. (2021). 2021 電商行銷與消費者行為趨勢. 2021/04/01 擷取自 awoo阿物科技: https://awoo.ai/zh-hant/blog/2021-ec-trend/
Marketing Research Camp. (2018). SNS廣告對產品購買有影響嗎?Instagram?LINE?電子郵件通訊最有效?. 2018/03/19 擷取自 Marketing Research Camp: https://marketing-rc.com/article/20180319.html#03
MurphyRosie. (2020). Local Consumer Review Survey 2020. 2020/12/09 擷取自 brightlocal: https://www.brightlocal.com/research/local-consumer-review-survey/
OpView. (2019). 「大數據開講Bar」 解析網路口碑與社群聆聽 – 會後整理. 2019/06/13 擷取自 OpView社群口碑資料庫: https://www.opview.com.tw/activity-highlights/20190613/16517
TC Sharing. (2019). 【電商開店必備】如何提高好評率與口碑行銷,一張圖教你生意越做越大的秘訣!. 2019/05/10 擷取自 TC Sharing: https://sharing.tcincubator.com/%E3%80%90%E9%9B%BB%E5%95%86%E9%96%8B%E5%BA%97%E5%BF%85%E5%82%99%E3%80%91%E5%A6%82%E4%BD%95%E6%8F%90%E9%AB%98%E5%A5%BD%E8%A9%95%E7%8E%87%E8%88%87%E5%8F%A3%E7%A2%91%E8%A1%8C%E9%8A%B7%EF%BC%8C%E8%AE%93/
Tobey. (2021). Google發現:5成以上消費者購物前搜尋更頻繁!品牌可以怎麼應對?. 2021/08/26 擷取自 商業周刊: https://www.businessweekly.com.tw/management/blog/3007618
李啟誠 李羽喬. (2010). 網路口碑對消費者購買決策之影響-以產品涉入及品牌形象為干擾變項. (2010/02, 編者) 中華管理評論國際學報.
曾郁閎. (2015). 利用搜尋引擎與網路百科全書輔助中文關鍵字自動擷取之研究.
經濟部統計處. (2020). 「宅經濟」發酵,帶動網路銷售額成長. 2020/08/05 擷取自 經濟部統計處: https://www.moea.gov.tw/Mns/dos/bulletin/Bulletin.aspx?kind=9&html=1&menu_id=18808&bull_id=7590
資策會. (2019). 【網購調查系列一】網購消費占比達16.5% 愛用電商平台大排名. 2019/06/03 擷取自 MIC產業情報研究所: https://mic.iii.org.tw/news.aspx?id=516

英文部分
Britzolakis, A., Kondylakis, H., & Papadakis, N. J. I. J. o. S. C. (2020). A Review on Lexicon-Based and Machine Learning Political Sentiment Analysis Using Tweets. 14(04), 517-563.
Cabezudo, R. S. J., Izquierdo, C. C., & Pinto, J. R. (2013). The Persuasion Context and Results in Online Opinion Seeking: Effects of Message and Source—The Moderating Role of Network Managers. Cyberpsychology, Behavior, and Social Networking, 16(11), 828-835. doi:10.1089/cyber.2011.0647
Cai, G., & Xia, B. (2015). Convolutional Neural Networks for Multimedia Sentiment Analysis. Paper presented at the Natural Language Processing and Chinese Computing, Cham.
Chen, Z., Tu, X., Hu, Y., & Li, F. (2019). Real-Time Bearing Remaining Useful Life Estimation Based on the Frozen Convolutional and Activated Memory Neural Network. IEEE Access, 7, 96583-96593. doi:10.1109/ACCESS.2019.2929271
Cheung, C. M. K., & Thadani, D. R. (2012). The impact of electronic word-of-mouth communication: A literature analysis and integrative model. Decision Support Systems, 54(1), 461-470. doi:https://doi.org/10.1016/j.dss.2012.06.008
Cosma, G., & Acampora, G. (2016). A computational intelligence approach to efficiently predicting review ratings in e-commerce. Applied Soft Computing, 44, 153-162. doi:https://doi.org/10.1016/j.asoc.2016.02.024
Dang, N. C., Moreno-García, M. N., & De la Prieta, F. (2020). Sentiment Analysis Based on Deep Learning: A Comparative Study. Electronics, 9(3). doi:10.3390/electronics9030483
Deng, J., Cheng, L., & Wang, Z. (2021). Attention-based BiLSTM fused CNN with gating mechanism model for Chinese long text classification. Computer Speech & Language, 68, 101182. doi:https://doi.org/10.1016/j.csl.2020.101182
Erkan, I., & Evans, C. (2016). The influence of eWOM in social media on consumers’ purchase intentions: An extended approach to information adoption. Computers in Human Behavior, 61, 47-55. doi:https://doi.org/10.1016/j.chb.2016.03.003
Gao, K., Mei, G., Piccialli, F., Cuomo, S., Tu, J., & Huo, Z. (2020). Julia language in machine learning: Algorithms, applications, and open issues. Computer Science Review, 37, 100254. doi:https://doi.org/10.1016/j.cosrev.2020.100254
Gelb, B., & Sundaram, S. (2002). Adapting to “word of mouse”. Business Horizons, 45, 21–25. doi:10.1016/S0007-6813(02)00222-7
Ghose, A., & Ipeirotis, P. G. (2011). Estimating the Helpfulness and Economic Impact of Product Reviews: Mining Text and Reviewer Characteristics. IEEE Transactions on Knowledge and Data Engineering, 23(10), 1498-1512. doi:10.1109/TKDE.2010.188
Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2009). A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5), 855-868. doi:10.1109/TPAMI.2008.137
Haque, T. U., Saber, N. N., & Shah, F. M. (2018, 11-12 May 2018). Sentiment analysis on large scale Amazon product reviews. Paper presented at the 2018 IEEE International Conference on Innovative Research and Development (ICIRD).
Heidari, M., & Shamsi, H. (2019). Analog programmable neuron and case study on VLSI implementation of Multi-Layer Perceptron (MLP). Microelectronics Journal, 84, 36-47. doi:https://doi.org/10.1016/j.mejo.2018.12.007
Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the Internet? Journal of Interactive Marketing, 18(1), 38-52. doi:https://doi.org/10.1002/dir.10073
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735 %J Neural Computation
Holthoff, L. (2020). The Emoji Sentiment Lexicon: Analysing Consumer Emotions in Social Media Communication. Paper presented at the 49th European Marketing Academy (EMAC) Annual Conference.
Hong, J., & Fang, M. J. S. U. R. (2015). Sentiment analysis with deeply learned distributed representations of variable length texts. 1-9.
Hu, N., Koh, N. S., & Reddy, S. K. (2014). Ratings lead you to the product, reviews help you clinch it? The mediating role of online review sentiments on product sales. Decision Support Systems, 57, 42-53. doi:https://doi.org/10.1016/j.dss.2013.07.009
Johnson, R., & Zhang, T. J. a. p. a. (2014). Effective use of word order for text categorization with convolutional neural networks.
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260. doi:10.1126/science.aaa8415
Li, D., & Qian, J. (2016, 13-15 Oct. 2016). Text sentiment analysis based on long short-term memory. Paper presented at the 2016 First IEEE International Conference on Computer Communication and the Internet (ICCCI).
Liu, B. (2010). Keynote speaker. Paper presented at the Proceedings of the 2nd international workshop on Search and mining user-generated contents, Toronto, ON, Canada. https://doi.org/10.1145/1871985.1871987
Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093-1113. doi:https://doi.org/10.1016/j.asej.2014.04.011
Mäntylä, M. V., Graziotin, D., & Kuutila, M. (2018). The evolution of sentiment analysis—A review of research topics, venues, and top cited papers. Computer Science Review, 27, 16-32. doi:https://doi.org/10.1016/j.cosrev.2017.10.002
Nassif, A. B., Shahin, I., Attili, I., Azzeh, M., & Shaalan, K. (2019). Speech Recognition Using Deep Neural Networks: A Systematic Review. IEEE Access, 7, 19143-19165. doi:10.1109/ACCESS.2019.2896880
Osowski, S., Siwek, K., & Markiewicz, T. (2004). MLP and SVM networks-a comparative study. Paper presented at the Proceedings of the 6th Nordic Signal Processing Symposium, 2004. NORSIG 2004.
Rakhlin, A. J. G. (2016). Convolutional neural networks for sentence classification.
Rao, G., Huang, W., Feng, Z., & Cong, Q. (2018). LSTM with sentence representations for document-level sentiment classification. Neurocomputing, 308, 49-57. doi:https://doi.org/10.1016/j.neucom.2018.04.045
Ravi, K., & Ravi, V. (2015). A survey on opinion mining and sentiment analysis: Tasks, approaches and applications. Knowledge-Based Systems, 89, 14-46. doi:https://doi.org/10.1016/j.knosys.2015.06.015
Sebastiani, F. J. A. c. s. (2002). Machine learning in automated text categorization. 34(1), 1-47.
Serrano-Guerrero, J., Olivas, J. A., Romero, F. P., & Herrera-Viedma, E. (2015). Sentiment analysis: A review and comparative analysis of web services. Information Sciences, 311, 18-38. doi:https://doi.org/10.1016/j.ins.2015.03.040
Sharma, P., & Sharma, A. J. M. T. P. (2020). Experimental investigation of automated system for twitter sentiment analysis to predict the public emotions using machine learning algorithms.
Tripathi, P., Singh, S., Chhajer, P., Trivedi, M. C., & Singh, V. K. (2020). Analysis and prediction of extent of helpfulness of reviews on E-commerce websites. Materials Today: Proceedings, 33, 4520-4525. doi:https://doi.org/10.1016/j.matpr.2020.08.012
Wang, S.-M., & Ku, L.-W. (2016). ANTUSD: A Large Chinese Sentiment Dictionary. Paper presented at the LREC.
Westbrook, R. A. (1987). Product/Consumption-Based Affective Responses and Postpurchase Processes. Journal of Marketing Research, 24(3), 258-270. doi:10.2307/3151636
Yogesh, S., Bhatia, P., & Sangwan, O. (2007). A REVIEW OF STUDIES ON MACHINE LEARNING TECHNIQUES. International Journal of Computer Science and Security, 1.
Zanaty, E. A. (2012). Support Vector Machines (SVMs) versus Multilayer Perception (MLP) in data classification. Egyptian Informatics Journal, 13(3), 177-183. doi:https://doi.org/10.1016/j.eij.2012.08.002
Zhang, Y., Tiwari, P., Song, D., Mao, X., Wang, P., Li, X., & Pandey, H. M. (2021). Learning interaction dynamics with an interactive LSTM for conversational sentiment analysis. Neural Networks, 133, 40-56. doi:https://doi.org/10.1016/j.neunet.2020.10.001
Zhou, Y., Xu, R., & Gui, L. (2016, 10-13 July 2016). A sequence level latent topic modeling method for sentiment analysis via CNN based Diversified Restrict Boltzmann Machine. Paper presented at the 2016 International Conference on Machine Learning and Cybernetics (ICMLC).
Zhu, X., Sobihani, P., & Guo, H. (2015). Long short-term memory over recursive structures. Paper presented at the International Conference on Machine Learning.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊