|
中文部分: Ken. (2021). 2021 電商行銷與消費者行為趨勢. 2021/04/01 擷取自 awoo阿物科技: https://awoo.ai/zh-hant/blog/2021-ec-trend/ Marketing Research Camp. (2018). SNS廣告對產品購買有影響嗎?Instagram?LINE?電子郵件通訊最有效?. 2018/03/19 擷取自 Marketing Research Camp: https://marketing-rc.com/article/20180319.html#03 MurphyRosie. (2020). Local Consumer Review Survey 2020. 2020/12/09 擷取自 brightlocal: https://www.brightlocal.com/research/local-consumer-review-survey/ OpView. (2019). 「大數據開講Bar」 解析網路口碑與社群聆聽 – 會後整理. 2019/06/13 擷取自 OpView社群口碑資料庫: https://www.opview.com.tw/activity-highlights/20190613/16517 TC Sharing. (2019). 【電商開店必備】如何提高好評率與口碑行銷,一張圖教你生意越做越大的秘訣!. 2019/05/10 擷取自 TC Sharing: https://sharing.tcincubator.com/%E3%80%90%E9%9B%BB%E5%95%86%E9%96%8B%E5%BA%97%E5%BF%85%E5%82%99%E3%80%91%E5%A6%82%E4%BD%95%E6%8F%90%E9%AB%98%E5%A5%BD%E8%A9%95%E7%8E%87%E8%88%87%E5%8F%A3%E7%A2%91%E8%A1%8C%E9%8A%B7%EF%BC%8C%E8%AE%93/ Tobey. (2021). Google發現:5成以上消費者購物前搜尋更頻繁!品牌可以怎麼應對?. 2021/08/26 擷取自 商業周刊: https://www.businessweekly.com.tw/management/blog/3007618 李啟誠 李羽喬. (2010). 網路口碑對消費者購買決策之影響-以產品涉入及品牌形象為干擾變項. (2010/02, 編者) 中華管理評論國際學報. 曾郁閎. (2015). 利用搜尋引擎與網路百科全書輔助中文關鍵字自動擷取之研究. 經濟部統計處. (2020). 「宅經濟」發酵,帶動網路銷售額成長. 2020/08/05 擷取自 經濟部統計處: https://www.moea.gov.tw/Mns/dos/bulletin/Bulletin.aspx?kind=9&html=1&menu_id=18808&bull_id=7590 資策會. (2019). 【網購調查系列一】網購消費占比達16.5% 愛用電商平台大排名. 2019/06/03 擷取自 MIC產業情報研究所: https://mic.iii.org.tw/news.aspx?id=516
英文部分 Britzolakis, A., Kondylakis, H., & Papadakis, N. J. I. J. o. S. C. (2020). A Review on Lexicon-Based and Machine Learning Political Sentiment Analysis Using Tweets. 14(04), 517-563. Cabezudo, R. S. J., Izquierdo, C. C., & Pinto, J. R. (2013). The Persuasion Context and Results in Online Opinion Seeking: Effects of Message and Source—The Moderating Role of Network Managers. Cyberpsychology, Behavior, and Social Networking, 16(11), 828-835. doi:10.1089/cyber.2011.0647 Cai, G., & Xia, B. (2015). Convolutional Neural Networks for Multimedia Sentiment Analysis. Paper presented at the Natural Language Processing and Chinese Computing, Cham. Chen, Z., Tu, X., Hu, Y., & Li, F. (2019). Real-Time Bearing Remaining Useful Life Estimation Based on the Frozen Convolutional and Activated Memory Neural Network. IEEE Access, 7, 96583-96593. doi:10.1109/ACCESS.2019.2929271 Cheung, C. M. K., & Thadani, D. R. (2012). The impact of electronic word-of-mouth communication: A literature analysis and integrative model. Decision Support Systems, 54(1), 461-470. doi:https://doi.org/10.1016/j.dss.2012.06.008 Cosma, G., & Acampora, G. (2016). A computational intelligence approach to efficiently predicting review ratings in e-commerce. Applied Soft Computing, 44, 153-162. doi:https://doi.org/10.1016/j.asoc.2016.02.024 Dang, N. C., Moreno-García, M. N., & De la Prieta, F. (2020). Sentiment Analysis Based on Deep Learning: A Comparative Study. Electronics, 9(3). doi:10.3390/electronics9030483 Deng, J., Cheng, L., & Wang, Z. (2021). Attention-based BiLSTM fused CNN with gating mechanism model for Chinese long text classification. Computer Speech & Language, 68, 101182. doi:https://doi.org/10.1016/j.csl.2020.101182 Erkan, I., & Evans, C. (2016). The influence of eWOM in social media on consumers’ purchase intentions: An extended approach to information adoption. Computers in Human Behavior, 61, 47-55. doi:https://doi.org/10.1016/j.chb.2016.03.003 Gao, K., Mei, G., Piccialli, F., Cuomo, S., Tu, J., & Huo, Z. (2020). Julia language in machine learning: Algorithms, applications, and open issues. Computer Science Review, 37, 100254. doi:https://doi.org/10.1016/j.cosrev.2020.100254 Gelb, B., & Sundaram, S. (2002). Adapting to “word of mouse”. Business Horizons, 45, 21–25. doi:10.1016/S0007-6813(02)00222-7 Ghose, A., & Ipeirotis, P. G. (2011). Estimating the Helpfulness and Economic Impact of Product Reviews: Mining Text and Reviewer Characteristics. IEEE Transactions on Knowledge and Data Engineering, 23(10), 1498-1512. doi:10.1109/TKDE.2010.188 Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2009). A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5), 855-868. doi:10.1109/TPAMI.2008.137 Haque, T. U., Saber, N. N., & Shah, F. M. (2018, 11-12 May 2018). Sentiment analysis on large scale Amazon product reviews. Paper presented at the 2018 IEEE International Conference on Innovative Research and Development (ICIRD). Heidari, M., & Shamsi, H. (2019). Analog programmable neuron and case study on VLSI implementation of Multi-Layer Perceptron (MLP). Microelectronics Journal, 84, 36-47. doi:https://doi.org/10.1016/j.mejo.2018.12.007 Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the Internet? Journal of Interactive Marketing, 18(1), 38-52. doi:https://doi.org/10.1002/dir.10073 Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735 %J Neural Computation Holthoff, L. (2020). The Emoji Sentiment Lexicon: Analysing Consumer Emotions in Social Media Communication. Paper presented at the 49th European Marketing Academy (EMAC) Annual Conference. Hong, J., & Fang, M. J. S. U. R. (2015). Sentiment analysis with deeply learned distributed representations of variable length texts. 1-9. Hu, N., Koh, N. S., & Reddy, S. K. (2014). Ratings lead you to the product, reviews help you clinch it? The mediating role of online review sentiments on product sales. Decision Support Systems, 57, 42-53. doi:https://doi.org/10.1016/j.dss.2013.07.009 Johnson, R., & Zhang, T. J. a. p. a. (2014). Effective use of word order for text categorization with convolutional neural networks. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260. doi:10.1126/science.aaa8415 Li, D., & Qian, J. (2016, 13-15 Oct. 2016). Text sentiment analysis based on long short-term memory. Paper presented at the 2016 First IEEE International Conference on Computer Communication and the Internet (ICCCI). Liu, B. (2010). Keynote speaker. Paper presented at the Proceedings of the 2nd international workshop on Search and mining user-generated contents, Toronto, ON, Canada. https://doi.org/10.1145/1871985.1871987 Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093-1113. doi:https://doi.org/10.1016/j.asej.2014.04.011 Mäntylä, M. V., Graziotin, D., & Kuutila, M. (2018). The evolution of sentiment analysis—A review of research topics, venues, and top cited papers. Computer Science Review, 27, 16-32. doi:https://doi.org/10.1016/j.cosrev.2017.10.002 Nassif, A. B., Shahin, I., Attili, I., Azzeh, M., & Shaalan, K. (2019). Speech Recognition Using Deep Neural Networks: A Systematic Review. IEEE Access, 7, 19143-19165. doi:10.1109/ACCESS.2019.2896880 Osowski, S., Siwek, K., & Markiewicz, T. (2004). MLP and SVM networks-a comparative study. Paper presented at the Proceedings of the 6th Nordic Signal Processing Symposium, 2004. NORSIG 2004. Rakhlin, A. J. G. (2016). Convolutional neural networks for sentence classification. Rao, G., Huang, W., Feng, Z., & Cong, Q. (2018). LSTM with sentence representations for document-level sentiment classification. Neurocomputing, 308, 49-57. doi:https://doi.org/10.1016/j.neucom.2018.04.045 Ravi, K., & Ravi, V. (2015). A survey on opinion mining and sentiment analysis: Tasks, approaches and applications. Knowledge-Based Systems, 89, 14-46. doi:https://doi.org/10.1016/j.knosys.2015.06.015 Sebastiani, F. J. A. c. s. (2002). Machine learning in automated text categorization. 34(1), 1-47. Serrano-Guerrero, J., Olivas, J. A., Romero, F. P., & Herrera-Viedma, E. (2015). Sentiment analysis: A review and comparative analysis of web services. Information Sciences, 311, 18-38. doi:https://doi.org/10.1016/j.ins.2015.03.040 Sharma, P., & Sharma, A. J. M. T. P. (2020). Experimental investigation of automated system for twitter sentiment analysis to predict the public emotions using machine learning algorithms. Tripathi, P., Singh, S., Chhajer, P., Trivedi, M. C., & Singh, V. K. (2020). Analysis and prediction of extent of helpfulness of reviews on E-commerce websites. Materials Today: Proceedings, 33, 4520-4525. doi:https://doi.org/10.1016/j.matpr.2020.08.012 Wang, S.-M., & Ku, L.-W. (2016). ANTUSD: A Large Chinese Sentiment Dictionary. Paper presented at the LREC. Westbrook, R. A. (1987). Product/Consumption-Based Affective Responses and Postpurchase Processes. Journal of Marketing Research, 24(3), 258-270. doi:10.2307/3151636 Yogesh, S., Bhatia, P., & Sangwan, O. (2007). A REVIEW OF STUDIES ON MACHINE LEARNING TECHNIQUES. International Journal of Computer Science and Security, 1. Zanaty, E. A. (2012). Support Vector Machines (SVMs) versus Multilayer Perception (MLP) in data classification. Egyptian Informatics Journal, 13(3), 177-183. doi:https://doi.org/10.1016/j.eij.2012.08.002 Zhang, Y., Tiwari, P., Song, D., Mao, X., Wang, P., Li, X., & Pandey, H. M. (2021). Learning interaction dynamics with an interactive LSTM for conversational sentiment analysis. Neural Networks, 133, 40-56. doi:https://doi.org/10.1016/j.neunet.2020.10.001 Zhou, Y., Xu, R., & Gui, L. (2016, 10-13 July 2016). A sequence level latent topic modeling method for sentiment analysis via CNN based Diversified Restrict Boltzmann Machine. Paper presented at the 2016 International Conference on Machine Learning and Cybernetics (ICMLC). Zhu, X., Sobihani, P., & Guo, H. (2015). Long short-term memory over recursive structures. Paper presented at the International Conference on Machine Learning.
|