|
Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In Proceedings of the 20th international conference on very largedatabases (pp. 487–499). Al-Maolegi M. & Arkok B. (2013). An improved apriori algorithm for association rules of mining. Int J Nat Lang Comput 2014;3:21–9. Asadi, S., SeyedEhsan, Roshan & Michael W.Kattan(2021).Random forest swarm optimization-based for heart diseases diagnosis. Journal of Biomedical Informatics, 115. doi: 10.1016/j.jbi.2021.103690. Alshayeji, M.H., Ellethy, H., Abed, S. & Gupta, R.(2021).Computer-aided detection of breast cancer on the Wisconsin dataset: An artificial neural networks approach. Biomedical Signal Processing and Control, 71, Part A. doi: 10.1016/j.bspc.2021.103141. Alwohaibi, M., Alzaqebah, M., M.Alotaibi, N., Abeer M., Alzahrani & Zouch, M.(2021).A hybrid multi-stage learning technique based on brain storming optimization algorithm for breast cancer recurrence prediction. Journal of King Saud University - Computer and Information Sciences. doi: 10.1016/j.jksuci.2021.05.004. Bellman, R.(1957). Dynamic Programming.Princeton University Press. Blum, A.L. & Langley, P.(1997).Selection of relevant features and examples in machine learning. Artif Artificial Intelligence, 97 (1–2), pp. 245-271. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.(2002). SMOTE: Synthetic Minority Over-sampling Technique, Journal Of Artificial Intelligence Research, Volume 16, pages 321-357, 2002. Cheng, T., Junkai, J., Yajiao, T., Shangce, G., Zheng, T. & Yuki, T.(2020).A novel machine learning technique for computer-aided diagnosis. Engineering Applications of Artificial Intelligence. 92. doi:10.1016/j.engappai.2020.103627. Hawkins, D. (1980). Identification of Outliers, Chapman and Hall, London. Hollis KF(2016). To share or not to share: ethical acquisition and use of medical data. AMIA Jt Summits Transl Sci Proc 2016;2016:420–7. Hartono, P.(2018). A transparent cancer classifier, Health Informatics J. 2020 Mar;26(1):190-204, doi: 10.1177/1460458218817800 Huang, C., Huang, X., Fang, Y., Xu, J., Qu, Y. , Zhai, P., Fan, L., Yin, H., Xu, Y. & Li, J.(2020).Sample imbalance disease classification model based on association rule feature selection. Pattern Recognition Letters, 133, 280-286. doi: 10.1016/j.patrec.2020.03.016. Li, G. & Jason J.Jung(2021). Dynamic relationship identification for abnormality detection on financial time series. Pattern Recognition Letters, 145, 194-199. Mushtaq, Z., Yaqub, A., Sani, S. & Khalid, A.(2019).Effective K-nearest neighbor classifications for Wisconsin breast cancer data sets. Electrical Engineering, 43, 80-92. doi: 10.1080/02533839.2019.1676658. Newaz, A., Ahmed, N. & Shahriyar Haq, F.(2021).Survival prediction of heart failure patients using machine learning techniques. Informatics in Medicine Unlocked, 26. doi: 10.1016/j.imu.2021.100772. Pai, H.-T, Wu, F. & P.-Y. S. Hsueh(2014).A Relative Patterns Discovery for Enhancing Outlier Detection in Categorical Data. Decision Support Systems, 67. doi:10.1016/j.dss.2014.08.006. Pai, H.-T & Hsu, C.-C (2021). Explainable analytics: Understanding causes, correcting errors, and increasingly achieving perfect accuracy from nature of distinguishable patterns, Research Square, doi: 10.21203/rs.3.rs-1130288/v1. Pashley, G.L., Kahn, M.B., Williams, G., Mentiplay, B.F., Banky, M. & Clark R.A.(2021). Assessment of upper limb abnormalities using the Kinect: Reliability, validity and detection accuracy in people living with acquired brain injury. Journal of Biomechanics, 129. doi: 10.1016/j.jbiomech.2021.110825. Richard, A., Mayag, B., Talbot, F., Tsoukias, A. & Meinard, Y(2020). Transparency of Classification Systems for Clinical Decision Support, Information Processing and Management of Uncertainty in Knowledge-Based Systems, 1239: 99–113, doi: 10.1007/978-3-030-50153-2_8 Sreejith, S., Khanna Nehemiah, H. & Kannan, A.(2020).Clinical data classification using an enhanced SMOTE and chaotic evolutionary feature selection. Computers in Biology and Medicine, 126. doi: 10.1016/j.compbiomed.2020.103991. Tawfik, D.S., Profit, J., Morgenthaler, T.I., Satele, D.V. , Sinsky, C.A., Dyrbye, L.N., Tutty, M.A., West, C.P., Shanafelt, T.D.(2018).Physician Burnout, Well-being, and Work Unit Safety Grades in Relationship to Reported Medical Errors. Mayo Clin Proc, 93(11), 1571-1580. doi: 10.1016/j.mayocp.2018.05.014 Wang, Y. C. & Cheng, C. H.(2021).A multiple combined method for rebalancing medical data with class imbalances. Computers in Biology and Medicine, 134. doi: 10.1016/j.compbiomed.2021.104527. Yadav, C, Wang, S., Kumar, M.(2013). Algorithm and approaches to handle large Data- A Survey. International Journal of computer science and network, 2(3). 中華民國統計資訊網(2020)。醫療與其他醫事機構執業醫事人員數及每萬人口執業醫事人員數-年。取自: https://statdb.dgbas.gov.tw/pxweb/Dialog/statfile9L.asp。最後瀏覽日期: 2021/12/13。 中華民國醫師公會全國聯合會(2021)。從住院醫師適用勞基法談醫師合理工時。臺灣醫界,64卷2期, P34 – 41。
|