跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高政浩
研究生(外文):Cheng-Hao Kao
論文名稱:應用於尿路結石體外震波碎石手術成功機率預估之EResStage-UNet3+自動尿路結石分割方法及其成大醫院資料集的測試實作
論文名稱(外文):EResStage-UNet3+ Automatic Ureteral Stone Segmentation for Stone-Free Rate Assessment of Extracorporeal Shock Wave Lithotripsy of Ureteral Stones and Its Testing Implementation on NCKU Hospital's Dataset
指導教授:何前程
指導教授(外文):HO, CIAN-CHENG
口試委員:郭鐘榮石勝文陳國益許永和何前程
口試委員(外文):GUO,JHONG-RONGSHIH,SHENG-WUNCHEN,GUO-YIHSU,YUNG-HEHO, CIAN-CHENG
口試日期:2022-07-14
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:62
中文關鍵詞:自動尿路結石分割ResStageUNet3+Classification-Guided Module (CGM)
外文關鍵詞:automatic ureteral stone segmentationResStageUNet3+Classification-Guided Module (CGM)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
ABSTRACT ii
目錄 iv
表目錄 vi
圖目錄 vii
第一章緒論 1
1.1研究背景與動機 1
1.2研究方向 3
1.3本論文架構 6
第二章 傳統的自動尿路結石分割技術架構 7
2.1 傳統的CNN深度模型 7
2.2 傳統的ResBlock-UNet深度模型 10
2.3 傳統的UNet++深度模型 18
2.4 傳統的UNet3+深度模型 19
第三章 應用於尿路結石體外震波碎石手術成功機率預估之EResStage-UNet3+自動尿路結石分割方法 22
3.1 ResStage架構 23
3.2 Filter Response Normalization (FRN) 25
3.3Thresholded Linear Unit (TLU) 27
3.4 Classification-Guided Module (CGM) 29
3.5 EResStage-UNet3+架構 31
第四章 實驗分析 32
4.1實驗平台 32
4.2實驗架構 33
4.3實驗數據 34
4.4 實驗結果分析 41
第五章 自動尿路結石體外震波碎石手術成功機率預估技術及其成大醫院資料集的測試實作 42
5.1 實作背景 42
5.2 實作方向 42
5.3實作架構與模組流程圖 45
5.4 實作數據 46
5.5實作結果分析 49
第六章 結論與未來展望 50
參考文獻 51


[1]Orson W. Moe, “ Kidney stones: pathophysiology and medical management,” The lancet 367.9507 (2006): 333-344.
[2]Tilahun Alelign and Beyene Petros. “Kidney stone disease: an update on current concepts,” Advances in urology 2018 (2018).
[3]Kevin R. Anderson, et al., “Optimal therapy for the distal ureteral stone: extracorporeal shock wave lithotripsy versus ureteroscopy,” The Journal of urology 152.1 (1994): 62-65.
[4]Yahong Xu, et al., “A meta-analysis of the efficacy of ureteroscopic lithotripsy and extracorporeal shock wave lithotripsy on ureteral calculi,” Acta cirurgica brasileira 29 (2014): 346-352.
[5]Omar M. Aboumarzouk, et al., “Extracorporeal shock wave lithotripsy (ESWL) versus ureteroscopic management for ureteric calculi,” Cochrane Database of Systematic Reviews 12 (2011).
[6]Markus J.,Baderet al., “Contemporary management of ureteral stones,” European Urology 61.4 (2012): 764-772.
[7]Klas,Lindqvist et al., “Extracorporeal shock-wave lithotripsy or ureteroscopy as primary treatment for ureteric stones: a retrospective study comparing two different treatment strategies,” Scandinavian journal of urology and nephrology 40.2 (2006): 113-118.
[8]Antonio Corrêa, Lopes Neto et al., “Prospective randomized study of treatment of large proximal ureteral stones: extracorporeal shock wave lithotripsy versus ureterolithotripsy versus laparoscopy,” The Journal of urology 187.1 (2012): 164-168.
[9]Alfredo Odón, Rodriguez et al., “Computed tomography of kidney stones for extracorporeal shock wave lithotripsy,” 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006.
[10]Rikiya, Yamashita et al., “Convolutional neural networks: an overview and application in radiology,” Insights into imaging 9.4 (2018): 611-629.
[11]Martin, Längkvist et al., “Computer aided detection of ureteral stones in thin slice computed tomography volumes using Convolutional Neural Networks,” Computers in biology and medicine 97 (2018): 153-160.
[12]Anushri, Parakh et al., “Urinary stone detection on CT images using deep convolutional neural networks: evaluation of model performance and generalization,” Radiology. Artificial intelligence 1.4 (2019).
[13]Olaf, Ronneberger Philipp Fischer, and Thomas Brox., “U-net: Convolutional networks for biomedical image segmentation,” International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.
[14]Wongsakorn, Preedanan et al., “Urinary Stones Segmentation in Abdominal X-Ray Images Based on U-Net Deep Learning Model and Data Augmentation Techniques,” 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP). IEEE, 2020.
[15]Soumya, Gupta et al., “Multi-class motion-based semantic segmentation for ureteroscopy and laser lithotripsy,” arXiv preprint arXiv:2104.01268 (2021).
[16]Soumya, Gupta et al., “Mi-unet: Improved segmentation in ureteroscopy,” 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE, 2020.
[17]Sergey, Ioffe and Christian Szegedy., “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” International conference on machine learning. PMLR, 2015.
[18]Md Zahangir, Alom et al., “Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation,” arXiv preprint arXiv:1802.06955 (2018) .
[19]https://github.com/Yonsei-TAIL/Urinary-Stone-Challenge
[20]Yingying, Xu et al., “PA‐ResSeg: A phase attention residual network for liver tumor segmentation from multiphase CT images,” Medical Physics 48.7 (2021): 3752-3766.
[21]Kaiming, He et al., “Deep residual learning for image recognition,” Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
[22]Ozan, Oktay et al. , “Attention u-net: Learning where to look for the pancreas,” arXiv preprint arXiv:1804.03999 (2018).
[23]Edwin, Thomas et al., “Multi-res-attention UNet: a CNN model for the segmentation of focal cortical dysplasia lesions from magnetic resonance images,” IEEE Journal of Biomedical and Health Informatics 25.5 (2020): 1724-1734.
[24]Changlu, Guo et al., “Sa-unet: Spatial attention u-net for retinal vessel segmentation,” 2020 25th international conference on pattern recognition (ICPR). IEEE, 2021.
[25]Zongwei, Zhou et al., “Unet++: A nested u-net architecture for medical image segmentation,” Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Cham, 2018. 3-11.
[26]Ruchika, Arora Indu Saini, and Neetu Sood., “Modified UNet++ Model: A Deep Model for Automatic Segmentation of Lungs from Chest X-ray Images,” 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC). IEEE, 2021.
[27]Chen, Li et al., “Attention unet++: A nested attention-aware u-net for liver ct image segmentation,” 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.
[28]Huimin, Huang et al., “Unet 3+: A full-scale connected unet for medical image segmentation,” ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020.
[29]Ionut Cosmin, Duta et al., “Improved residual networks for image and video recognition,” 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021.
[30]Saurabh, Singh and Shankar Krishnan., “Filter response normalization layer: Eliminating batch dependence in the training of deep neural networks,” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

電子全文 電子全文(網際網路公開日期:20270726)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊