跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/23 10:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卓新翔
研究生(外文):Zhuo,Xin-Xiang
論文名稱:結合液滴微透鏡陣列進行雷射微奈米加工之研究
論文名稱(外文):Laser Micro-Nano Processing with Droplet Microlens Array
指導教授:張元震
指導教授(外文):CHANG,YUAN-JEN
口試委員:林派臣陳錫釗
口試委員(外文):LIN,PAI-CHENCHEN,HSI-CHAO
口試日期:2022-07-21
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:152
中文關鍵詞:微透鏡陣列Breath Figure雷射加工液體透鏡奈米結構Dip-Coating
外文關鍵詞:Microlens ArraysBreath FigureLaser processingLiquid lensNano StructureDip-Coating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
  微奈米結構的加工在現今的工業中有許多的應用,例如改善表面的摩擦阻力、光學特性、熱傳導特性等等,為了達成微奈米的結構且降低相關製程費用,透過雷射加工是最好的選擇,故本研究裡將運用Breath Figure技術結合Dip-Coating的塗佈法在石英玻璃上製作液滴陣列微透鏡,透過奈秒雷射直寫加工技術在矽基板上製作出表面微奈米結構,主要研究目標針對使用不同高分子比例調和成溶液後,將其塗佈在石英玻璃上形成的多孔排列的高分子膜進行孔徑及膜後的分析,最後使用奈秒雷射進行不同功率、不同發數、不同加工次數及調整液滴透鏡與待加工基板之間的距離進行加工,將其加工結果進行結構分析。

  本論文Breath Figure所使用的溶質為Polystyrene及Polymethylthacrylate,甲苯作為溶劑,使用不同比例調成高分子溶液在石英玻璃基板上形成多孔排列的高分子膜,以兩種拉升速度製作分別為900 mm/min和400 mm/min,製造結果拉升速度900 mm/min孔徑分布情形為1 µm至1.8 µm,在拉升速度400 mm/min孔徑分布1 µm至2.4 µm,整體來說拉升速度900 mm/min孔徑分布較為平均,且孔徑1.2 µm至1.6 µm占了整體將近70%。

  雷射加工部分使用購買的石英玻璃微透鏡陣列驗證想法,接著使用Breath Figure加工結果浸潤甘油於孔洞中形成液滴微透鏡陣列。實驗結果得知液滴透鏡的焦點為5.4 µm,雷射設定功率45%能量密度0.1142 J/cm²時為最佳的加工參數,結構為中間下凹旁邊為火山口的結構,透過量測結構深度在41 nm~266nm之間。

Processing of micro-nano structures is widely applied in industry nowadays, it improves the frictional resistance, optical properties and the heat conductivity of objects surfaces. Laser processing is the best method to obtain micro-nano structures and to reduce related manufacturing cost. Therefore, in this study, Breath Figure technique is used and integrated with Dip-coating for forming a microlens with liquid droplets array on a fused silica glass, then micro-nano structures on the surface of the silicon substrate are formed using nanosecond laser direct writing technique. The objective of this study is to analyze the pore size and the film thickness of the porous arrangement of polymer films formed by coating polymer solutions with different proportions of solutes on fused silica glass. Finally, different power, different emission, different processing times are set for nanosecond lasers, and the distance between the droplet lens and the substrate is adjusted to complete the processing. The processing results are then subjected to structural analysis.
Polystyrene and Polymethylthacrylate are used as solutes whereas Toluene is used as a solvent for Breath Figure in this study. Different solutions are made with different proportion of polymers, they form porous arrangement polymer films on fused silica glass substrates. Dip-coatings are processed at 900mm/min and 400mm/min. The results show that pore diameters are between 1 µm and 1.8 µm when the draw speed is 900mm/min, and pore diameters range between 1 µm and 2.4 µm when the draw speed is 400mm/min. As a whole, when the draw speed is at 900mm/min, the pore distribution is more even, and pores with diameters between 1.2 µm and 1.6 µm account for 70% of the ensemble.
Fused silica microlens arrays are used to verify the possibility of this study for laser processing, then liquid microlens arrays are formed by percolating the pores with glycerin using Breath Figure. The experimental results revealed that the focal length of the liquid lens is 5.4 µm, and a 45% of laser power and a laser energy density of 0.1142 J/cm² are the best parameters for laser processing. The final structure is concave in the middle and has craters, and the structure depth is between 41nm and 266nm.

摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 文獻回顧 3
1.3.1 微透鏡陣列技術 5
1.3.2 Talbot效應應用介紹 13
1.4 實驗之研究方法 19
1.5 論文整體架構 20
第二章 實驗原理與加工製程 21
2.1 雷射與材料的相互作用 21
2.1.1 固態雷射介紹 21
2.1.2 材料受雷射熔融原理 22
2.2 雷射計算 23
2.2.1 雷射光斑直徑 23
2.2.2 雷射的瞬間功率/能量密度/功率密度 24
2.2.3 雷射光束品質(M^2) 25
2.3 Breath Figure原理 25
2.3.1 Breath Figure形成原理 25
2.3.2 Dip Coating原理 27
第三章 實驗儀器設備及材料 29
3.1 實驗耗材 29
3.1.1 矽基板 29
3.1.2 熔融石英玻璃 30
3.1.3 丙酮(Acetone) 32
3.1.4 乙醇(Alcohol) 33
3.1.5 蒸餾水(Distilled Water) 34
3.1.6 甲苯(Toluene) 35
3.1.7 聚甲基丙烯酸甲酯(PMMA) 36
3.1.8 聚苯乙烯(Polystyrene) 37
3.1.9 丙三醇(Glycerin) 38
3.2 實驗設備 39
3.2.1 抽風櫃 39
3.2.2 電磁加熱攪拌器 40
3.2.3 溫溼度感測器 41
3.2.4 整合型步進馬達 42
3.2.5 真空泵浦/乾燥真空器 43
3.2.6 抽氣泵浦 44
3.2.7 進氣泵浦 45
3.2.8 鍍金機(HITACHIE-1010離子濺射儀) 46
3.2.9 高速旋轉塗佈機 47
3.2.10 固體奈秒雷射(Wedge 1064 XB) 48
3.2.11 奈米平台 49
3.2.12 掃描振鏡(SS-10-DA-G) 50
3.2.13 超音波清洗機 51
3.2.14 熱風循環烘箱 52
3.3 量測儀器 53
3.3.1 雷射位移計 53
3.3.2 精密電子天平 54
3.3.3 場發射掃描式電子顯微鏡(FE-SEM) 55
3.3.4 白光干涉儀 56
3.3.5 工具顯微鏡 57
3.3.6 NOVA II Power meter 58
3.3.7 雷射檢測卡 59
3.3.8 光束輪廓儀 60
第四章 光路調整及液滴透鏡製作 61
4.1 光路調整 62
4.1.1 雷射準直光束架設 62
4.1.2 雷射加工平台架設 64
4.1.3 聚焦焦點確認 65
4.2 液滴透鏡製作 66
4.2.1 製備試片 66
4.2.2 製程腔體介紹 66
4.2.3 實驗機器介紹 68
4.2.4 Breath Figure實驗參數 71
4.2.5 液滴透鏡製程結果 72
4.3 透鏡模擬 80
4.3.1 石英玻璃微透鏡陣列模擬參數設置 81
4.3.2 石英玻璃透鏡焦點模擬結果 82
4.3.3 石英玻璃透鏡Talbot效應模擬結果 83
4.3.4 液滴透鏡模擬參數設置 85
4.3.5 液滴透鏡焦點模擬結果 86
4.3.6 液滴透鏡Talbot效應模擬結果 87
4.4 小結 88
第五章 結合透鏡陣列之雷射微結構加工 89
5.1 甘油液滴透鏡製程 89
5.2 雷射參數計算 91
5.2.1 雷射光斑計算與量測 91
5.2.2 雷射單發能量計算 92
5.3 雷射加工實驗方式 96
5.4 微透鏡加工之結果與分析 97
5.4.1 石英玻璃透鏡結果 97
5.4.1.1 不同離焦量加工 99
5.4.1.2 不同功率加工 102
5.4.1.3 基板不同距離加工 107
5.4.1.4 石英玻璃透鏡加工尺寸結果 111
5.4.1.5 石英玻璃透鏡大面積加工 112
5.4.2 液滴透鏡陣列加工結果 115
5.4.2.1 基板不同距離加工 115
5.4.2.2 不同功率加工 118
5.4.2.3 雕刻次數不同 119
5.4.2.4 加工發數不同 120
5.4.2.5 液滴透鏡大面積加工 129
第六章 結論與未來展望 133
6.1 微米液滴陣列結論 133
6.2 液滴透鏡之雷射微結構加工結論 134
6.3 未來展望 134
參考文獻 135

[1]程冠霖, 結合Dip-Coating與Breath Figure之微液滴透鏡輔助雷射微米直寫技術開發,機械工程系. 2021, 國立雲林科技大學: 雲林縣. p. 169.
[2]黃彬勝, 結合Breath Figure週期性液滴透鏡之奈米雷射直寫加工技術,機械工程系. 2021, 國立雲林科技大學: 雲林縣. p. 173.
[3]Wu, H., T.W. Odom, and G.M. Whitesides (2002). Reduction photolithography using microlens arrays: applications in gray scale photolithography. Anal Chem. 74(14): p. 3267-73.
[4]Lim, C.S., M.H. Hong, Y. Lin, G.X. Chen, A. Senthil Kumar, M. Rahman...G.C. Lim (2007). Sub-micron surface patterning by laser irradiation through microlens arrays. Journal of Materials Processing Technology. 192-193: p. 328-333.
[5]Yong, J., F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang...X. Hou (2013). Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser. ACS Applied Materials & Interfaces. 5(19): p. 9382-9385.
[6]Wang, S., Z. Zhou, B. Li, C. Wang, and Q. Liu (2021). Progresses on new generation laser direct writing technique. Materials Today Nano. 16: p. 100142.
[7]Behera, S. and J. Joseph (2020). Demonstration of multi-imaging and multifocusing through planar motheye kind of gradient microlens multi-array. Optics Communications. 459: p. 125061.
[8]Li, J., W. Wang, X. Mei, A. Pan, B. Liu, and J. Cui (2020). Rapid fabrication of microlens arrays on PMMA substrate using a microlens array by rear-side picosecond laser swelling. Optics and Lasers in Engineering. 126: p. 105872.
[9]Xu, M., Y. Liu, P. Xu, C. Chen, and H. Lu (2021). Evaluation of poly (vinyl chloride) gels-based microlens array fabricated by different patterned electrode. Journal of Molecular Liquids. 342: p. 117443.
[10]Liang, Y., T. Zhu, M. Xi, H.N. Abbasi, J. Fu, R. Su...K. Wang (2021). Fabrication of a diamond concave microlens array for laser beam homogenization. Optics & Laser Technology. 136: p. 106738.
[11]Zheng, J., C. Zhou, E. Dai, B. Wang, and W. Jia (2008). Talbot effect of a high-density grating under femtosecond laser illumination. Optics Communications. 281(12): p. 3230-3236.
[12]Xingfang, J., H. Zhengyi, and W. Chinhua. Simulation of the Intensity Distribution for Talbot Effect of Grating. in 2010 International Conference on Artificial Intelligence and Computational Intelligence. 2010.
[13]Nieto, D. (2015). Laser-based surface multistructuring using optical elements and the Talbot effect. Optics Express. 23: p. 24396.
[14]Solak, H.H., C. Dais, F. Clube, and L. Wang (2015). Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs. Microelectronic Engineering. 143: p. 74-80.
[15]Zhang, H., F. Yang, J. Dong, L. Du, C. Wang, J. Zhang...Q. Liu (2016). Kaleidoscopic imaging patterns of complex structures fabricated by laser-induced deformation. Nature Communications. 7(1): p. 13743.
[16]Konwer, A., A. Bhowmick, S. Chakraborty, S. Sarkar, S. Ghosh, and R. Chakraborty. Talbot Self-imaging effect with Bessel beams. in 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). 2016.
[17]Aymerich, M., D. Nieto, E. Álvarez, and M.T. Flores-Arias. Laser surface multistructuring of biocompatible materials using a microlens array and the Talbot effect. in 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). 2017.
[18]Desgarceaux, R., F. Pedaci, and B. Charlot. Talbot displacement lithography with soft elastomeric conformal phase masks. in 2018 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP). 2018.
[19]Šulc, J. and H. Jelínková, 5 - Solid-state lasers for medical applications, in Lasers for Medical Applications, H. Jelínková, Editor. 2013, Woodhead Publishing. p. 127-176.
[20]Dubey, A.K. and V. Yadava (2008). Laser beam machining—A review. International Journal of Machine Tools and Manufacture. 48(6): p. 609-628.
[21]Liang, L., J. Yuan, X. Li, F. Yang, and L. Jiang (2018). Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing. International Journal of Refractory Metals and Hard Materials. 72: p. 211-222.
[22] Available from: https://wavelength-oe.com/optical-calculators/focus-spot-size/ -Calculate Focus Spot Size.
[23]邱泳倫 and 陳永富, 雷射光束品質量測系統之開發與研究. 2013.
[24]莊智翔, 利用 Q 開關產生圓柱向量偏振的渦流脈衝 Nd: GdVO4 雷射. 2020.
[25]林俊明 (2014). 影像處理應用於壓克力雷射加工特性之研究.
[26]Cassagneau, T. and F. Caruso (2002). Conjugated polymer inverse opals for potentiometric biosensing. Advanced Materials. 14(24): p. 1837-1841.
[27]Hong, J.C., J.H. Park, C. Chun, and D.Y. Kim (2007). Photoinduced tuning of optical stop bands in azopolymer based inverse opal photonic crystals. Advanced Functional Materials. 17(14): p. 2462-2469.
[28]Xue, M., W. Xiao, and Z. Zhang (2008). Porous films from transformation of polymeric sphere arrays. Advanced Materials. 20(3): p. 439-442.
[29]Santos, L., P. Martin, J. Ghilane, P.-C. Lacaze, H. Randriamahazaka, L.M. Abrantes, and J.-C. Lacroix (2010). Electrosynthesis of well-organized nanoporous poly (3, 4-ethylenedioxythiophene) by nanosphere lithography. Electrochemistry communications. 12(7): p. 872-875.
[30]Pietsch, T., N. Gindy, and A. Fahmi (2009). Nano-and micro-sized honeycomb patterns through hierarchical self-assembly of metal-loaded diblock copolymer vesicles. Soft Matter. 5(11): p. 2188-2197.
[31]Muñoz-Bonilla, A., M. Fernández-García, and J. Rodríguez-Hernández (2014). Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Progress in Polymer Science. 39(3): p. 510-554.
[32]Brinker, C.J. and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. 2013: Academic press.
[33]Green, M.A. and M.J. Keevers (1995). Optical properties of intrinsic silicon at 300 K. Progress in Photovoltaics: Research and applications. 3(3): p. 189-192.
[34]Chen, L.-W.A., J.C. Chow, J.G. Watson, H. Moosmüller, and W.P. Arnott (2004). Modeling reflectance and transmittance of quartz-fiber filter samples containing elemental carbon particles: Implications for thermal/optical analysis. Journal of Aerosol Science. 35(6): p. 765-780.
[35]Unmounted MLA Series Microlens Arrays. 2019; Available from: https://www.thorlabs.com/drawings/e82b1b747add9e4e-4103CEBE-0910-9BFD-C553A6709437BCA8/MLA150-5C-SpecSheet.pdf.
[36]Ren, H., S. Xu, Y. Liu, and S.-T. Wu (2012). Liquid-based infrared optical switch. Applied Physics Letters. 101(4): p. 041104.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top