跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 00:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉科宏
研究生(外文):LIU, KE-HUNG
論文名稱:高功率半導體陶瓷基板與鋁合金接合研究
論文名稱(外文):Research on Bonding of High Power Semiconductor Ceramic Substrate with Aluminum Alloy
指導教授:張世穎張世穎引用關係
指導教授(外文):CHANG, SHIH-YING
口試委員:魏茂國林克默
口試委員(外文):WEI, MAO-KUOLIN, KE-MO
口試日期:2022-07-14
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:105
中文關鍵詞:陶瓷基板Sn基合金Zn基合金超音波接合陶瓷紋理化
外文關鍵詞:ceramic substratesSn-based alloysZn-based alloysultrasonic bondingceramic texturing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:70
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
電子產品小型化、多功能的發展趨勢,使得電子封裝可靠性要求越來越高,如高溫、潮濕和腐蝕的環境。傳統封裝使用的塑料基板由於塑料基板化學和熱穩定較差在高功率電子元件應用上出現了限制。陶瓷材料具有比塑膠材料較佳的氣密性,以及非常好的熱傳導性,這些優點使得陶瓷在高功率與可靠度要求很高的構裝市場上受到重視。
研究使用兩種活性銲料合金,其一為Sn基銲料合金與另一Zn基銲料合金,對Al2O3陶瓷/鋁合金和低溫燒結陶瓷/鋁合金於大氣環境下進行接合,並對陶瓷表面雷射加工用以提高接合強度,所有接合試驗均進行剪力強度試驗與破斷面分析。
Sn基銲料合金熔點約227℃,接合時銲料與鋁合金反應形成Ag2Al介金屬。在有紋理化陶瓷的接合界面,因超音波輔助使鋁溶進銲道,且滲入陶瓷溝槽中,在溝槽內分析到Ag2Al的成分。在超音波輔助接合作用下,於Al2O3陶瓷表面雷射紋理化可使平均剪力強度從11.73提升到18.74MPa,接合剪力強度提升約59.76%。
Zn基銲料合金熔點約394℃,接合加熱過程銲料與鋁合金於界面形成擴散反應層,於Al2O3陶瓷表面雷射紋理化可使平均剪力強度從7.37提升到9.18MPa,在超音波輔助接合下銲料合金滲入陶瓷溝槽,且銀元素聚集於陶瓷界面,因錨固作用可提升接合強度約24.56%。
The development trend of miniaturization and multi-function of electronic products makes the reliability of electronic packaging more and more demanding, such as high temperature, humidity and corrosive environment. The plastic substrates used in traditional packaging are limited in high-power electronic component applications due to the poor chemical and thermal stability of plastic substrates. Ceramic materials have better air tightness than plastic materials and very good thermal conductivity. These advantages make ceramics highly valued in the construction market where high power and reliability are required.
The study used two active filler alloys, one is Sn-based filler alloy and the other Zn-based filler alloy. Bonding of Al2O3 ceramic/aluminum alloy and low temperature sintered ceramic/aluminum alloy, and laser processing the ceramic surface to improve the bonding strength. All joint tests are subjected to shear strength test and fracture surface analysis.
The melting point of Sn-based filler alloy is about 227℃, and the filler reacts with aluminum alloy to form Ag2Al intermetallic during bonding. At the joint interface of textured ceramics, aluminum was dissolved into the weld bead due to ultrasonic assistance, and penetrated into the ceramic groove, and the composition of Ag2Al was analyzed in the groove. Under the action of ultrasonic-assisted bonding, laser texturing on the surface of Al2O3 ceramics can increase the average shear strength from 11.73 to 18.74MPa, and the bonding shear strength is increased by about 59.76%.
The melting point of the Zn-based filler alloy is about 394℃. During the bonding heating process, the filler and the aluminum alloy form a diffusion reaction layer at the interface. Laser texturing on the surface of the Al2O3 ceramic can increase the average shear strength from 7.37 to 9.18MPa. Under ultrasonic-assisted bonding, the filler alloy penetrates into the ceramic groove, and the silver element accumulates at the ceramic interface, which can improve the bonding strength by about 24.56% due to the anchoring effect.
摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1研究背景 1
1.2研究動機與目的 2
第二章 理論與文獻回顧 3
2.1電子構裝 3
2.1.1印刷電路板 3
2.1.2陶瓷基板 4
2.1.3陶瓷材料 6
2.1.4鋁合金 7
2.2陶瓷接合 8
2.3銲料合金 11
2.3.1無鉛銲料 11
2.3.2高溫銲料 12
2.3.3活性銲料 13
2.3.4含稀土元素之錫基活性銲料 13
2.3.5稀土元素 16
2.4超音波輔助軟銲接合 17
2.4.1超音波接合機制 17
2.4.2超音波空化效應 18
2.5陶瓷雷射紋理化 20
第三章 實驗步驟與方法 23
3.1實驗材料 23
3.1.1 6061鋁合金 23
3.1.2陶瓷 23
3.1.3銲料合金 23
3.2熱分析試驗 24
3.3 XRD分析試驗 25
3.4雷射陶瓷表面微結構加工 25
3.5軟銲接合 27
3.6超音波輔助軟銲接合 28
3.7超音波設備 29
3.8剪力試驗 30
3.9金相製備 31
3.10接合界面與破斷面分析 32
第四章 結果與討論 33
4.1 Sn基銲料 33
4.1.1銲料合金DSC熱分析 33
4.1.2銲料合金金相顯微組織 34
4.1.3銲料合金XRD分析 35
4.2 Zn基銲料 37
4.2.1銲料合金DSC熱分析 37
4.2.2銲料合金金相顯微組織 38
4.2.3銲料合金XRD分析 39
4.3 Al2O3陶瓷/鋁合金接合結果 40
4.3.1 Al2O3陶瓷/Sn基銲料合金/鋁合金界面 40
4.3.2雷射紋理化Al2O3陶瓷/Sn基銲料合金/鋁合金接合界面 46
4.3.3 Al2O3陶瓷/Sn基銲料合金/鋁合金接合剪力強度 51
4.3.4 Al2O3陶瓷/Sn基銲料合金/鋁合金接合剪力試驗破斷面 53
4.3.5 Al2O3陶瓷/Zn基銲料合金/鋁合金接合界面 55
4.3.6雷射紋理化Al2O3陶瓷/Zn基銲料合金/鋁合金接合界面 60
4.3.7 Al2O3陶瓷/Zn基銲料合金/鋁合金接合剪力強度 65
4.3.8 Al2O3陶瓷/Zn基銲料合金/鋁合金接合剪力試驗破斷面 67
4.4低溫燒結陶瓷/鋁合金接合結果 69
4.4.1低溫燒結陶瓷/Sn基銲料合金/鋁合金接合界面 69
4.4.2雷射紋理化低溫燒結陶瓷/Sn基銲料合金/鋁合金接合界面 72
4.4.3低溫燒結陶瓷/Sn基銲料合金/鋁合金接合剪力強度 75
4.4.4低溫燒結陶瓷/Sn基銲料合金/鋁合金接合剪力試驗破斷面 76
4.4.5低溫燒結陶瓷/Zn基銲料合金/鋁合金接合界面 77
4.4.6雷射紋理化低溫燒結陶瓷/Zn基銲料合金/鋁合金接合界面 80
4.4.7低溫燒結陶瓷/Zn基銲料合金/鋁合金接合剪力強度 83
4.4.8低溫燒結陶瓷/Zn基銲料合金/鋁合金接合剪力試驗破斷面 84
第五章 結論 85
參考文獻 87
[1]L. Tang, K. Cao, Design and investigation on the reliability of a ceramic power package, e-Prime - Advances in Electrical Engineering, Electronics and Energy, Vol. 2 (2022), 100029.
[2]R. M. D. Nascimento, A. E. Martinelli, A. J. A. Buschinelli, Review Article: Recent Advances in Metal-Ceramic Brazing, Cerâmics, Vol. 49 (2003), pp. 178-198.
[3]F. Moret, N. Eustathopoulos, Ceramic to metal direct brazing, Journal de Physique IV Proceedings, Vol. 3 (1993), pp. 1043-1052.
[4]Y. H. Chai, W. P. Weng, T. H. Chuang, Relationship Between Wettability and Interfacial Reaction for Sn-10Ag-4Ti on Al2O3 and SiC Substrates, Ceramics International, Vol. 24 (1998), pp. 273-279.
[5]S. Y. Chang, Y. H. Huang, L. C. Tsao, Active Solders and Active Soldering, IntechOpen, 2019, DOI:10.5772/intechopen.82382.
[6]S. Y. Chang, L. C. Tsao, M. J. Chiang, C. N. Tung, G. H. Pan, T. H. Chuang, Active Soldering of Indium Tin Oxide (ITO) with Cu in Air Using an Sn-3.5Ag-4Ti(Ce,Ga) Filler, Journal of Materials Engineering and Performance, Vol. 2 (2003), pp. 383-389.
[7]S. Y. Chang, T. H. Chuang, C. L. Yang, Low Temperature Bonding of Alumina / Alumina and Alumina / Copper in Air Using Sn-3.5Ag-4Ti(Ce,Ga) Filler, Journal of Electronic Materials, Vol. 36 (2007), pp. 1193-1198.
[8]S. Y. Chang, T. H. Chuang, L. C. Tsao, C. L. Yang, Z. S. Yang, Active soldering of ZnS–SiO2 sputtering targets to copper backing plates using an Sn-3.5Ag-4Ti(Ce, Ga) filler metal, Journal of Materials Processing Technology, Vol. 202 (2008), pp. 22-26.
[9]J. Guosheng, E. Kuang, D. Zhu, High Performance Microelectronics Packaging Heat Sink Materials, RF and Microwave Microelectronics Packaging, 2010, pp. 233-265.
[10]P. Zhang, S. Xue, J. Wang, New challenges of miniaturization of electronic devices: Electromigration and thermomigration in lead-free solder joints, Materials and Design, Vol. 192 (2020), 108726.
[11]陳信文,陳立軒,林永森,陳志銘,電子構裝技術與材料,高立圖書有限公司,2004年,頁105-113。
[12]林定皓,電子構裝技術與應用,全華圖書股份有限公司,2018年,頁9-1-9-5。
[13]W. H. Tuan, S. K. Lee, Eutectic bonding of copper to ceramics for thermal dissipation applications – A review, ScienceDirect, Vol. 34 (2014), pp. 4117-4130.
[14]J. X. Wang, Kai Hsiang Chuang, Yu Chuan Wu, Ming Hsiang Ku, Shu Wei Ku, Ming Wei Wu, Mechanical performances of AlN/Al metallized ceramic substrates fabricated by transient liquid phase bonding and pre-oxidation treatment, Ceramics International, Vol. 48 (2022), pp. 16619-16629.
[15]H. Knoll, W. Weidenauer, P. Ingram, S. Bennemann, S. Brand, M. Petzold, Ceramic substrates with aluminum metallization for power application, 3rd Electronics System Integration Technology Conference, 2010, pp. 782-786.
[16]于啓湛,陶瓷材料的焊接,機械工業出版社,2018年,頁36-60。
[17]D. Varshney, K. Kumar, Application and use of different aluminium alloys with respect to workability, strength and welding parameter optimization, Ain Shams Engineering Journal, Vol. 12 (2021), pp. 1143-1152.
[18]M. Aamir, K. Giasin, M. T. Rad, A. Vafadar, A review: drilling performance and hole quality of aluminium alloys for aerospace applications, Journal of Materials Research and Technology, Vol. 9 (2020), pp. 12484-12500.
[19]賴耿陽,陶瓷與金屬接合工學,復漢出版社,1991年,頁42-66。
[20]高隴橋,陶瓷-金屬材料實用封裝技術,化學工業出版社,2005年,頁1-8。
[21]S. Hausner,B. Wielage, 12-Brazing of metal and ceramic joint, Woodhead Publishing Series in Welding and Other Joining Technologies, 2013, pp. 361-393.
[22]C. M. L. Wu, D. Q. Yu, C. M. T. Law, L. Wang, Properties of lead-free solder alloys with rare earth element additions, Materials Science and Engineering, Vol. 44 (2004), pp. 1-44.
[23]V. Chidambaram, J. Hattel, J. Hald, High-temperature lead-free solder alternatives, Microelectronic Engineering, Vol. 88 (2011), pp. 981-989.
[24]R. Kolenˇák, P. Šebo, M. Provazník, M. Kolenˇáková, K. Ulrich, Shear strength and wettability of active Sn-3.5Ag-4Ti(Ce,Ga) solder on Al2O3 ceramics, Materials and Design, Vol. 32 (2011), pp. 3997-4003.
[25]Y. Xu, X. Ma, H. Tang, J. Yan, Mechanism of the interfacial reaction between sapphire and Sn-3.5Ag-4Ti solder at a low temperature in air by ultrasound, Ceramics International, Vol. 46 (2020), pp. 4435-4443.
[26]王珺之,中國稀土保衛戰,中國經濟出版社,2011年,頁2-5。
[27]Z. Xu, J. Yan, G. Wu, X. Kong, S. Yang, Interface structure and strength of ultrasonic vibration liquid phase bonded joints of Al2O3p/6061Al composites, Scripta Materialia, Vol. 53 (2005), pp. 835-839.
[28]Z. Li, Z. Xu, L. Ma, S. Wang, X. Liu, J. Yan, Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering. Part I: Cavitation characteristics, Ultrasonics-Sonochemistry, Vol. 49 (2018), pp. 249-259.
[29]Z. Li, Z. Xu, L. Ma, S. Wang, X. Liu, J. Yan, Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering. Part II: Cavitation erosion effect, Ultrasonics-Sonochemistry, Vol. 50 (2019), pp. 278-288.
[30]Z. Xu, J. Yan, B. Zhang, X. Kong, S. Yang, Behaviors of oxide film at the ultrasonic aided interaction interface of Zn-Al alloy and Al2O3p/6061Al composites in air, Materials Science and Engineering, Vol. 415 (2006), pp. 80-86.
[31]S. Chen, Z. Xu, Z. Li, Z. Ma, M. Zhang, Y. Lu, J. Yan, Ultrasonic-assisted wetting and soldering of AlN ceramic by using a nonactive solder (Sn-9Zn) in air, Ceramics International, Vol. 48 (2022), pp. 1898-1907.
[32]谷腰欣司,圖解雷射應用與原理,世茂出版社,2001年,頁42-54。
[33]A. N. Samant, N. B. Dahotre, Laser machining of structural ceramics—A review, Journal of the European Ceramic Society, Vol. 29 (2009), pp. 969-993.
[34]W. M. Steen, Light industry:an introduction to laser processing and its industrial applications, Advances in Laser Materials Processing, 2010, pp. 3-19.
[35]賴耿陽,雷射技術原理實務,復漢出版社有限公司,2001年,頁189-209。
[36]翁俊仁,許巍耀,施至柔,黃升龍,綜觀高功率光纖雷射及其相關技術,科儀新知,2007年,頁13-23。
[37]A. D. Zanet, V. Casalegno, M. Salvo, Laser surface texturing of ceramics and ceramic composite materials – A review, Ceramics International, Vol. 47 (2021), pp. 7307-7320.
[38]H. Okamoto, Mark E. Schlesinger, Erik M. Mueller, ASM Handbook Alloy Phase Diagrams, Vol. 3 (2016), pp. 228-1436.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top