跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/07 13:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃文綺
研究生(外文):HUANG, WEN-CHI
論文名稱:以微氣象方法探討 NMHC 濃度特徵及稻梗露天燃燒之排放係數建立
論文名稱(外文):A study of NMHC concentration characteristic using micrometeorological approach and establishment of rice straw open burning emission factors
指導教授:謝祝欽謝祝欽引用關係
指導教授(外文):HSIEH, CHU-CHIN
口試委員:洪肇嘉望熙榮顏有利
口試委員(外文):HORNG, JAO-JIAWANG, SHI-ZOOMYAN, YOU-LI
口試日期:2021-12-10
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:108
中文關鍵詞:通量多泵渦旋累積法主成分分析懷卡托智能環境分析排放係數
外文關鍵詞:FluxMulti-Pump Vortex Accumulation methodPrincipal Component AnalysisWaikato Environment for Knowledge AnalysisEmission coefficient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用微氣象中通量方法針對雲林台西地區之可能貢獻來源,使用多泵渦旋累積法 (Multi Pumps Relaxed Eddy Accumulation, MPREA) 監測台西地區不同時期之非甲烷碳氫化合物 (Non-methane hydrocarbons, NMHC) 通量並推估其影響範圍,利用台西光化測站之揮發性有機物 (Volatile Organic Compounds, VOCs) 監測數據觀察特徵物種比值變化,推測可能貢獻來源,並透過不同統計工具如主成分分析 (Principal components analysis, PCA) 及懷卡托智能環境分析 (Waikato Environment for Knowledge Analysis, WEKA) 分析影響 NMHC 通量排放之可能因子。再者,本研究利用通量概念建立一半開放式隧道進行稻梗露天燃燒之實測,進而建置本研究之稻梗露天燃燒排放係數。
台西地區 NMHC 通量量測結果顯示春夏 (4 及 7 (月)) 兩季之 NMHC 通量較秋冬 (10 及 1 (月)) 兩季低,由影響範圍與台西光化測站 VOCs 數據比較結果推測台西地區於晚間之可能貢獻來源為工業區,而其餘時段可能貢獻來源為 61 快速道路之車流排放,並使用 PCA 及 WEKA 評估影響 NMHC 通量之可能因子結果顯示, NMHC 通量受熱對流影響較大。
本研究之稻梗露天燃燒實測結果顯示,一氧化碳 (Carbon-monoxide, CO)、氮氧化物 (Nitrogen oxides, NOX)、一氧化氮 (Nitric oxide, NO)、硫氧化物 (Sulfur oxide, SOX)、總碳氫化合物 (Total hydrocarbons, THC) 及 NMHC 平均排放係數分別為 53.5 ± 32.8、5.2 ± 0.5、3.0 ± 1.0、2.4 ± 1.4、8.5 ± 3.8 及 5.4 ± 2.7 (g kg-1)。高量採樣分析粒徑 ≤ 10 以及 ≤ 2.5 微米之懸浮微粒 (Particulate Matter with an aerodynamic diameter of ≤ 10 μm, PM10;Particulate Matter with an aerodynamic diameter of ≤ 2.5 μm, PM2.5) 排放係數分別為 28.6 ± 7.4 及 28.2 ± 7.3 (g kg-1)。

  In this study, we used the Multi Pumps Relaxed Eddy Accumulation (MPREA) method to monitor the fluxes of non-methane hydrocarbons (NMHCs) in the western part of Taiwan using the micro-meteorological flux method. The monitoring data of Volatile Organic Compounds (VOCs) at the Taishinghua station were used to observe the changes in the ratios of the characteristic species and to predict the possible sources of contribution. In this study, we used different statistical tools such as Principal Components Analysis (PCA) and Waikato Environment for Knowledge Analysis (WEKA) to analyze the possible factors affecting the fluxes of NMHC emissions. In addition, this study used the flux concept to establish half open tunnels for open burning of rice stalks to develop the emission coefficients for open burning of rice stalks in this study.
  The results of the NMHC flux measurements in the west of Taiwan showed that the NMHC fluxes in spring and summer (April and July) were lower than those in autumn and winter (October and January), which is presumed to be influenced by the stronger monsoon in autumn and winter, and the pollution sources are stable and have a wider impact. The results of the comparison between the impact area and the VOCs data from the Taisi Kuang-Hwa station suggest that the possible contributors in Taisi are industrial areas in the evening, while the possible contributors in the rest of the year are vehicular emissions from 61 expressways.
  The results of the open burning of rice stalks in this study showed that Carbon-monoxide (CO), Nitrogen oxides (NOX), Nitric oxide (NO), Sulfur oxide (SOX), Total hydrocarbons (THC), and other emissions were significantly influenced by heat convection. The average emission coefficients of 53.5 ± 32.8, 5.2 ± 0.5, 3.0 ± 1.0, 2.4 ± 1.4, 8.5 ± 3.8, and 5.4 ± 2.7 (g kg-1 ) for NOx, Nitric oxide (NO), Sulfur oxide (SOX), Total hydrocarbons (THC), and NMHC, respectively. Particulate Matter with an aerodynamic diameter of ≤ 10 and ≤ 2.5 μm (PM10; Particulate Matter with an aerodynamic diameter of ≤ 2.5 μm, PM2.5) were analyzed in high volume samples. , PM2.5) were 28.6 ± 7.4 and 28.2 ± 7.3 (g kg-1 ), respectively.

摘要 i
ABSTRACT ii
目錄 iii
表目錄 vi
圖目錄 viii
第一章、前言 1
1.1、研究動機 1
1.2、研究目的 2
第二章、文獻回顧 3
2.1、微氣象學 3
2.1.1、通量 4
2-2、通量量測方法 4
2.2.1、垂直梯度法 (Vertical Gradient, VG) 5
2.2.2、渦旋共變異法 (Eddy Covariance, EC) 5
2.2.3、渦旋累積法 (Eddy Accumulation, EA) 7
2.2.4、隨意渦旋累積法 (Relaxed Eddy Accumulation, REA) 9
2.2.5、多泵渦旋累積法 (Multi Pumps Relaxed Eddy Accumulation, MPREA) 10
2.2.6、經驗係數 ꞵ 值 12
2.3、大氣邊界層 15
2.3.1、大氣穩定度之判斷 16
2.4、影響範圍 (Effective fetch) 18
2.5、不同排放源之 VOCs 特徵物種比值 21
2.5.1、污染源之 VOCs 特徵物種比值 21
2.6、稻梗露天燃燒 23
2.6.1、露天燃燒之研究及排放係數推估方式 23
2.6.2、露天燃燒排放之污染及危害 24
2.6.3、生物質 (biomass) 燃燒排放之顆粒物特性 24
2.6.4、生物質燃燒排放之氣狀污染物特性 25
2.6.5、國內外稻梗排放係數 26
第三章、研究方法 29
3.1、研究流程 29
3.2、MPREA 通量量測 30
3.2.1、MPREA 通量量測之採樣規劃 30
3.2.2、MPREA 通量量測採樣地點 31
3.2.3、MPREA 通量量測之採樣設備 32
3.2.4、MPREA 通量使用公式及相關參數 34
3.3、露天燃燒排放推估之背景資料 38
3.3.1、露天燃燒排放推估之採樣規劃 39
3.3.2、露天燃燒之採樣設備 43
3.4、數據之統計及分析方式 45
3.4.1、常態分布之解析 (峰度及偏態) 45
3.4.2、主成分分析 (Principle component analysis, PCA) 47
3.4.3、懷卡托智能分析環境 (Waikato Environment for Knowledge Analysis, WEKA) 48
第四章、結果與討論 52
4.1、MPREA 系統測試結果 52
4.1.1、MPREA 系統之垂直風速測試 52
4.1.2、MPREA 系統測試之經驗係數 54
4.2、台西國中通量實測結果 54
4.2.1、不同季節之採樣點經驗係數 55
4.2.2、不同季節之採樣點 NMHC 通量變化 56
4.2.3、不同季節之採樣點動量通量實測結果 57
4.2.4、不同季節之採樣點可感熱通量實測結果 58
4.2.5、不同季節之採樣點影響範圍變化 59
4.2.6、不同季節之採樣點環境參數 66
4.2.7、採樣時段之特徵物種比值及其污染源之判定 69
4.2.8、PCA 解析 NMHC 通量結果 72
4.2.9、影響 NMHC 通量之參數線性迴歸結果解析 74
4.3、露天燃燒之稻梗排放係數 77
4.3.1、國內外稻梗排放係數比較 79
4.3.2、稻梗燃燒之空氣污染物濃度 80
4.3.3、稻梗露天燃燒之數據分群結果解析 85
第五章、結論 87
5.1、台西地區 MPREA 通量量測結果及其可能貢獻來源 87
5.1.1、不同季節採樣點之 NMHC 通量 87
5.1.2、以影響範圍及 VOCs 特徵物種比值解析可能污染來源 88
5.1.3、影響 NMHC 通量之因子解析 88
5.2、不同燃燒條件對稻梗露天燃燒排放之影響 89
5.2.1、稻梗露天燃燒之排放係數 89
5.2.2、不同燃燒條件對露天燃燒之影響 89
參考文獻 90

1.行政院主計總處,2019,農業廢棄物排放帳。
2.行政院環境保護署,2019,臺灣空氣污染排放清冊 (TEDS 10.0)。
3.行政院環境保護署,2017,排放清冊先期作業資料建置及質損估算,專案工作計畫期末報告。
4.雲林縣環保局,2018,雲林縣污染源PM2.5採樣、指紋及排放係數建置,專案工作計畫期末報告。
5.王明鍵,2003,「以微氣象法量測大氣微量氣體通量之建立與驗證」,國立雲林科技大學環境與安全衛生所。
6.陳維泰,2008,「台灣中海拔BVOCs排放通量量測及環境因子相關性之研究」,國立雲林科技大學環境與安全衛生所。
7.戴玉玲,2005,「缺氧引起肺部通氣血流分佈之變化」,國防醫學院。
8.陳秉鈺,2003,「空氣污染與先天性缺陷發生之相關性研究」,國立成功大學。
9.Ammann, C., 1998, “On the applicability of relaxed eddy accumulation and common methods for measuring trace gas surface fluxes”, Zürcher Geopgraphische Schriften, ETH Zürich, pp. 1-50.
10.Andreae, M. O., and Merlet, P., 2001, “Emission of trace gases and aerosols from biomass burning’’, Global Biogeochemical Cycles, Vol. 15, pp. 955-966.
11.Arsham, H., and Lovric, M., 2011, “Bartlett's Test’’, International encyclopedia of statistical science.
12.Businger, J. A., Oncley S. P., 1990 “Flux measurement with conditional sampling”, ournal of Atmospheric and Oceanic Technology, Vol. 7, pp. 349-352.
13.Beverland, I. J., Oneill, D. H., Scott, S. L., and Moncrieff, J. B., 1996, “Design construction and operation of flux measurement system using the conditional sampling technique”, Atmospheric Environment, Vol. 30, No. 18, pp. 3209-3220.
14.Bowling, D. R., Turnipseed, A. A., Delany, A. C., Baldocchi, D. D., Greenberg, J. P., and Monson, R. K., 1998, “The use of relaxed eddy accumulation to measure biosphere-atmosphere exchange of isoprene and other biological trace gases”, Oecologia, Vol. 116, pp. 306-315.
15.Baker, J. M, Norman, J. M. and Bland, W. L., 1992, “Field-scale application of flux measurement by conditional sampling”, Agricultural and Forest Meteorology, Vol. 62, pp. 31-52.
16.Bartlett, M. S., 1954, “A note on the multiplying factors for various χ 2 approximations’’, Journal of the Royal Statistical Society, pp. 296-298.
17.Breunig, M. M., Kriegel, H. P., Ng, R. T., and Sander, J., 2000, “LOF: identifying density-based local outliers’’, In Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp. 93-104.
18.Chen, Y., Shah, N., Huggins, F. E., Huffman, G. P., Linak, W. P., and Miller, C. A., 2004, ‘‘Investigation of primary fine particulate matter from coal combustion by computer-controlled scanning electron microscopy’’, Fuel Processing Technology, Vol. 85, pp. 743-761.
19.Chantara, S., Thepnuan, D., Wiriya, W., Prawan, S., Tsai, Y. I., 2019, ‘‘Emissions of pollutant gases, fine particulate matters and their significant tracers from biomass burning in an open-system combustion chamber’’, Chemosphere, Vol. 244, pp. 407-416.
20.Dieudonné, E., Ravetta, F., Pelon, J., Goutail, F., and Pommereau, J. P., 2013, “Linking NO2 surface concentration and integrated content in the urban developed atmospheric boundary layer’’, Geophysical research letters, Vol. 40, pp. 1247-1251.
21.Dupont, J. C., Haeffelin, M., Badosa, J., Elias, T., Favez, O., Petit, J. E., ... & Bonne, J. L., 2016, “Role of the boundary layer dynamics effects on an extreme air pollution event in Paris’’, Atmospheric environment, Vol. 141, pp. 571-579.
22.Desjardins, R. L., 1977, “Description and evaluation of a sensible heat flux detector”, Boundary Layer Meteorology, Vol. 11, pp. 147-154.
23.Deng, O., Li, X., Deng, L., Zhang, S., Gao, X., Lan, T., Zhou, W., Tian, D., Xiao, Y., Yang, J., Ou, D. and Luo, L., 2020, “Emission of CO2 and CH4 from a multi-ditches system in rice cultivation region: Flux, temporal-spatial variation and effect factors”, Journal of Environmental Management, Vol, 270, pp. 110918.
24.Fick, A., 1855, “On liquid diffusion, the London, Edinburgh, and dublin philosophical’’, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 10, pp. 30-39.
25.Ferge, T., Maguhn, J., Hafner, K., Mühlberger, F., Davidovic, M., Warnecke, R. and Zimmermann, R., 2005, “On-line analysis of gas-phase composition in the combustion chamber and particle emission characteristics during combustion of wood and waste in a small batch reactor”, Environmental Science and Technology, Vol. 39, pp. 1393-1402.
26.Golder, D., 1972, “Relations among stability parameters in the surface layer”, Boundary-Layer Meteorology, Vol. 3, pp. 47-58.
27.Gash, J. H. C., 1986, “A note on estimating the effect of a limited fetch on micrometeorological evaporation measurements’’, Boundary-Layer Meteorology, Vol. 35, pp.409-413.
28.Gadde, B., bonnet, S., Menke, C. and Garivait, S., 2009, “Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines”, Environment Pollution, Vol. 157, pp. 1554-1558.
29.Guan, Y., Chen, G., Cheng, Z., and Yan, B., 2017, “Air pollutant emissions from straw open burning: A case study in Tianjin’’, Atmospheric Environment, Vol. 171, pp. 155-164.
30.Hsieh, C. I., Katul, G. and Chi, T. W., 2000, “An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows’’, Advances in water Resources, Vol. 23, pp. 765-772.
31.Hayashi, H., Ono, K., Kajiura, M., Sudo, S., Yonemura, S., Fushimi, A., Saitoh, K., Fujitani, Y. and Tanabe, K., 2014, “Trace gas and particle emissions from open burning of three cereal crop residues: Increase in residue moistness enhances emissions of carbon monoxide, methane, and particulate organic carbon”, Atmospheric Environment, Vol. 95, pp. 36-44
32.Hooper, G. H. S., 1978, “Effects of larval rearing temperature on the development of the Mediterranean fruit fly Ceratitis capitata. Entomologia Experimentalis et Applicata’’, Vol. 23, No.3, pp. 222-226.
33.Irfan, M., Riaz, M., Arif, M. S., Shahzad, S. M., Saleem, F., Van Den Berg, L. and Abbas, F., 2014, “Estimation and characterization of gaseous pollutant emissions from agricultural crop residue combustion in industrial and household sectors of Pakistan”, Atmospheric Environment, Vol. 84, pp. 189-197.
34.Jeon, D., Ahn, J. M., Kim, J., and Lee, C., 2021, “A doc2vec and local outlier factor approach to measuring the novelty of patents’’, Technological Forecasting and Social Change, Vol. 174.
35.Kotthaus, S., and Grimmond, C. S. B., 2018, ‘‘Atmospheric boundary‐layer characteristics from ceilometer measurements. Part 2: Application to London's urban boundary layer’’, Quarterly Journal of the Royal Meteorological Society, Vol. 144, pp. 1511-1524.
36.Katul, G., Hsieh, C. I., Oren, R., Ellsworth, D. and Phillips, N., 1996, “Latent and sensible heat flux predictions from a uniform pine forest using surface renewal and flux variance methods’’, Boundary-layer meteorology, Vol. 80, pp. 249-282.
37.Kim, S. S., Kang, Y. S., Lee, H. D., Kim, J. K. and Hong, S. C., 2012, ‘‘Release of potassium and sodium species during combustion of various rank coals, biomass, sludge and peats’’, Journal of Industrial and Engineering Chemistry, Vol. 18, pp. 2199-2203.
38.Kaiser, H. F., 1974, “An index of factorial simplicity’’, Psychometrika, Vol. 39, pp. 31-36.
39.Li, G., Yan, Y., Jin, X., Liu, Y. and Che, D., 2016, “Release and transformation of sodium during combustion of Zhundong coals’’, Journal of the Energy Institute, Vol. 89, pp. 48-56.
40.Li, G., Li, S., Dong, M., Yao, Q., Guo, C. Y. and Axelbaum, R. L., 2013, ‘‘Comparison of particulate formation and ash deposition under oxy-fuel and conventional pulverized coal combustions’’, Fuel, Vol. 106, pp. 544-551.
41.Ma, W., Ma, C., Liu, X., Gu, T., Thengane, S. K., Bourtsalas, A. and Chen, G., 2021, ‘‘Nox formation in fixed-bed biomass combustion: Chemistry and modeling’’, Fuel, Vol. 290.
42.4Nirmalkar, J., and Deb, M. K., 2016 “Impact of intense field burning episode on aerosol mass loading and its possible health implications in rural area of eastern central India’’ Air Quality, Atmosphere & Health, Vol. 9, pp. 241-249.
43.Oanh, N. T. M., Ly, B. T., Tipayarom, D., Manandhar, B. R., Prapat, P., Simpson, C. D., Liu L. J. S., 2011, “Characterization of particulate matter emission from open burning of rice straw’’, Atmospheric Environment, Vol. 45, pp. 493-502.
44.Prion, S. K., & Haerling, K. A., 2014, “Pearson product moment correlation coefficient’’, Clinical Simulation in Nursing, Vol. 10, pp. 587-588.
45.Prion, S. K., & Haerling, K. A., 2020, “Making Sense of Methods and Measurements: Simple Linear Regression’’, Clinical Simulation in Nursing, Vol. 48, pp. 94-95.
46.Rinne, J., 2001, “Application and development of surface layer flux techniques for measurements of volatile organic compound emissions from vegetation”, Atmospheric Science, Vol. 62, NO. 4, pp. 587.
47.Reid, J. S., Koppmann, R., Eck, T. F. and Eleuterio, D. P., 2005, “A review of biomass burning emissions part II: intensive physical properties of biomass burning particles”, Atmospheric Chemistry and Physics, Vol. 5, pp. 799-825.
48.Seinfeld, J. H., 1986, “Atmospheric chemistry and physics of air polution’’, John Wiley & Sons, New York, pp.872.
49.Schäfer, K., Wagner, P., Emeis, S., Jahn, C., Muenkel, C., and Suppan, P., 2012, “Mixing layer height and air pollution levels in urban area. In Remote Sensing of Clouds and the Atmosphere XVII; and Lidar’’, Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VIII, Vol. 8534, pp. 853409.
50.Schmid, H. P., 1994, “Source areas for scalars and scalar fluxes. Boundary-Layer Meteorology’’, Vol. 67, pp. 293-318.
51.Streets, D. G., Yarber, K. F., Woo, J. H., Carmichael, G. R., 2003, “Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions’’, Global Biogeochemical Cycles, Vol. 17, pp. 1-20.
52.Tarkkonen, L., and Vehkalahti, K., 2005, “Measurement errors in multivariate measurement scales’’, Journal of Multivariate Analysis, Vol. 96, pp. 172-189.
53.Tsai, Y. C., Du, Y. Q., & Yang, C. F., 2021, “Anaerobic biohydrogen production from biodetoxified rice straw hydrolysate’’, Journal of the Taiwan Institute of Chemical Engineers, Vol. 123, pp. 134-140.
54.Venkatram, A., Schulte, N., 2018, “Fundamentals of Micrometeorology and Dispersion’’, Urban Transportation and Air Pollution, pp. 39-75.
55.Vassilev, S. V., Vassileva, C. G., Song, Y. C., Li, W. Y. and Feng, J., 2017, ‘‘Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel’’, Vol. 208, pp. 377-409.
56.Wang, Y., Cionco, R., 2007, “Wind profiles in gentle terrains and vegetative canopies for a threedimensional wind field (3DWF) model’’, Army Research Laboratory, Report ARL-TR-4178.
57.World Health Organization, 2016, ‘‘Ambient air pollution: A global assessment of exposure and burden of disease’’.
58.Wyngaard, J. C. and Moeng, C.H., 1992, “Parameterizing turbulent diffusion through joint probability functon”, Boundary layer Meteorology, Vol. 60, pp. 1-13.
59.Wolff, G. T., Groblicki, P. J., Cadle, S. H. and Countess, R. J., 1982, “Particulate carbon at various locations in the United States’’, Particulate Carbon, Springer, Boston, MA, pp. 297-315.
60.Yu, Y., Xu, M., Yao, H., Yu, D., Qiao, Y., Sui, J. and Cao, Q., 2007, “Char characteristics and particulate matter formation during Chinese bituminous coal combustion’’, Proceedings of the Combustion Institute, Vol. 312, pp. 1947-1954.
61.Zhang, H. F., Ye, X. N., Cheng, T. T., Chen, J. M., Yang, X., Wang, L., Zhang, R., 2008, “A laboratory study of agricultural crop residue combustion in China, Emission factors and emission inventory’’, Atmospheric Environment, Vol. 42, pp. 8432-8441.
62.Zhao, W., Li, Z., Wang, D., Zhu, Q., Sun, R., Meng, B. and Zhao, G., 2008, ‘‘Combustion characteristics of different parts of corn straw and NO formation in a fixed bed’’, Bioresource technology, Vol. 99, pp. 2956-2963.
63.Zhang, Y., Shao, M., Lin, Y., Luan, S., Mao, N., Chen, W., Wang, M., 2013, “Emission inventory of carbonaceous pollutants from biomass burning in the Pearl River Delta Region’’, China, Atmospheric Environment, Vol. 76, pp. 189-199.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top