跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/15 13:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳思樺
研究生(外文):WU, SIH-HUA
論文名稱:臺灣大氣中PM2.5及O3傳輸現象模擬方法之比較分析
論文名稱(外文):Comparative Analysis of Simulation Methods for Atmospheric PM2.5 and O3 Transport Phenomena in Taiwan
指導教授:張艮輝張艮輝引用關係
指導教授(外文):CHANG, KEN-HUI
口試委員:鄭福田林文印顏有利陳杜甫
口試委員(外文):JHENG, FU-TIANLIN, WUN-YINYAN, YOU-LICHEN, DU-FU
口試日期:2022-08-26
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:221
中文關鍵詞:排放來源跨區域傳輸去耦合直接法整合來源分配法CMAQ
外文關鍵詞:emission sourcesregional transportISAMDDMCMAQ
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
近年來,為了透過台灣自身的排放控制策略,有效的改善空氣品質,利用模式進行模擬以了解台灣自身的影響是必須的。而不同功能模組因為其運作原理不同,針對不同排放源或是不同區域選擇所適用的方法則至關重要,經過探討分析研究目的所適合之模擬模組,將有助於後續制定空氣品質改善策略。
因此本研究將藉由2019年的監測數據及模式之建置,設計六個案例以探討不同模擬分析方法對全臺的影響。案例DDM_E為使用模組DDM模擬各排放源對全臺之影響;DDM_R為使用模組DDM模擬境內跨區域傳輸對全臺之影響;ISAM_R為使用模組ISAM模擬境內跨區域傳輸對全臺之影響;ISAM_RE為使用模組ISAM模擬境內各區域中排放源對全臺之影響,因此同時包含排放來源與跨區域傳輸影響之結果。研究流程先以案例DDM_E、ISAM_RE進行各排放來源影響之比較分析,再以案例DDM_R、ISAM_R進行跨區域傳輸影響之比較分析,最後再以ISAM_RE與ISAM_R進行排放來源是否各別模擬,探討分析其對於結果之影響。
在ISAM與DDM模擬結果的比較中,各排放來源與跨區域傳輸模擬情境皆出現相似的分析結果,由於兩種分析方法的運作原理不同,而造成PM2.5以及DM8O3的影響濃度有明顯的差異。在PM2.5組成份方面,DDM更因為其機制不健全使得硝酸鹽、銨鹽在兩種分析方法中有明顯的影響濃度差異,以及在DM8O3的部分,也造成極端的高濃度發生。DDM的機制問題也透過5.2DDM_E-10的模擬結果證實其不健全原因為使用之CMAQ版本差異。
最後在建議上,由於DDM機制的不健全,建議在模擬臺灣境內各排放來源影響的部分應採用ISAM_RE之模式配置。ISAM_RE之模擬結果在PM2.5部分呈現逸散源為全臺最大的影響來源(30.0%),次之為交通源(17.9%);而在DM8O3部分的最大影響來源為交通源(24.5%),次之則為工業源(19.1%)。根據DDM機制上的不健全,建議使用ISAM_R之模式配置用於模擬臺灣境跨區域傳輸影響的部分。各空品區排放對自身的影響濃度皆為最高的影響量,對區外的影響則是距離愈遠影響愈小,尤其西部的都市地區,自身排放對PM2.5之影響會超過6.75 μg/m3,對DM8O3則會超過5.81 ppb。
In recent years, in order to effectively improve air quality through Taiwan's emission control strategies, it is necessary to simulate the impact in Taiwan. Since different functional modules have different operating principles, it is important to select the applicable method to establish the better air quality control strategy in the future.
Therefore, this study designs four cases based on the monitoring data and models of 2019 to explore the impact of Taiwan's emission resources with two different simulation analysis methods, ISAM and DDM. Case DDM_E is to use the module DDM to simulate the impact of each emission source on Taiwan; DDM_R is to use the module DDM to simulate the impact of regional transport on Taiwan; ISAM_R is to use the module ISAM to simulate the impact of regional transport on Taiwan; ISAM_RE uses the module ISAM to simulate the impact of emission sources in various regions in Taiwan, thus simulation consequence includes the emission sources and regional transport effects.
In the comparison between ISAM and DDM, different operating principles of the two analysis methods, the impact concentrations of PM2.5 and DM8O3 are significantly different. Because of DDM mechanism defect in CMAQ v5.3.2, nitrate and ammonium have a significant difference between two analysis methods, and in the part of DM8O3, it also causes extreme high concentrations. The mechanism problem of DDM is also confirmed through the simulation results of CMAQ v5.2 that the defect is caused by the the CMAQ version.
In the end, for suggesting a more appropriate analysis method, it is recommended that the ISAM_RE mode should be used for the simulation of the impact of various emission sources in Taiwan, due to the shortcomings of the DDM mechanism. The simulation results of ISAM_RE show that in the PM2.5 part, the fugitive source is the largest source (30.0%), followed by the traffic source (17.9%); and the largest source of influence in DM8O3 is the traffic source (24.5%), industrial sources (19.1%) is second. According to the flaws in the DDM mechanism, using the ISAM_R mode to structure simulate model of regional transportation in Taiwan is recommended. The impact concentration of each area on itself is the highest, and the impact on the outside area is the farther the distance is, the smaller the impact, especially in west urban areas, the impact of self-emission on PM2.5 will exceed 6.75 μg/m3, over 5.81 ppb for DM8O3.

目錄
摘要 i
ABSTRACT iii
目錄 v
表目錄 viii
圖目錄 xi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 1
第二章 文獻回顧 2
2.1 敏感性分析方法之介紹 2
2.1.1 整合來源分配法(Integrated Source Apportionment Method, ISAM) 2
2.1.2.1 ISAM介紹 2
2.1.2.2 ISAM的運行弱點 3
2.1.2 去耦合直接法(Decoupled Direct Method, DDM) 6
2.1.2.1 DDM介紹 6
2.1.2.2 DDM模組在CMAQ v5.3.2中的機制缺陷 7
2.1.3 不同模擬模組之結果比較 9
2.2 敏感性分析方法之應用 12
2.2.1 整合來源分配法(ISAM)之應用 12
2.2.2 去耦合直接法(DDM)之應用 13
2.3 區域之間的跨區域傳輸及其貢獻 17
第三章 研究方法 24
3.1 研究流程 24
3.2 模擬系統說明 26
3.2.1 模擬範圍 26
3.2.2 模擬時間之選擇 27
3.2.3 排放量說明 27
3.2.3.1 人為源排放量說明 27
3.2.3.2 生物源排放量 27
3.2.4 氣象資料 28
3.2.5 初始條件與邊界條件 28
3.3 模擬案例說明 29
第四章 結果與討論 31
4.1 基準案例分析 31
4.1.1 地形 31
4.1.2 氣象資料 32
4.1.3 排放量說明 37
4.1.4 空氣品質模式基準案例模擬結果 39
4.1.4.1 PM2.5 39
4.1.4.2 DM8O3 40
4.2 基準案例模擬驗證 44
4.2.1 時間序列分析 44
4.2.2 相關性之分析 49
4.2.3 誤差定量分析 55
4.3 臺灣境內排放源對全台污染物之影響 61
4.3.1 DDM_E、ISAM_RE模擬各排放來源對全台PM2.5影響之比較 61
4.3.1.1 對PM2.5之影響 61
4.3.1.2 對PM2.5組成分之影響 63
4.3.2 DDM_E、ISAM_RE模擬各排放來源對DM8O3影響之比較 76
4.4 臺灣境內跨縣市相互傳輸之影響 85
4.4.1 DDM_R、ISAM_R模擬跨區域傳輸對PM2.5影響之比較 85
4.4.1.1 對PM2.5之影響 85
4.4.1.2 對PM2.5組成分之影響 86
4.4.2 DDM_R、ISAM_R模擬跨區域傳輸對DM8O3影響之比較 105
4.4.3 ISAM_RE、ISAM_R模擬跨區域傳輸影響之比較 109
4.4.3.1 對PM2.5之影響 109
4.4.3.2 對DM8O3之影響 113
4.5 各模擬情境之較佳模擬結果 118
4.5.1 各排放來源對全台空氣品質之影響 118
4.5.1.1 對PM2.5及其組成份之影響 118
4.5.1.2 對DM8O3之影響 125
4.5.1.3 各污染源排放對前驅物之影響 130
4.5.2 跨區域傳輸對全台空氣品質之影響 135
4.5.2.1 對PM2.5及其組成份之影響 135
4.5.2.2 對DM8O3之影響 142
4.5.2.3 跨空品區傳輸對前驅物之影響 146
第五章 結論與建議 151
5.1 結論 151
5.1.1 臺灣境內各排放來源對全台空氣品質之影響 151
5.1.2 臺灣境內跨區域傳輸對全台空氣品質之影響 151
5.1.3 各模擬情境之較佳模擬結果 152
5.2 建議 154
參考文獻 155
附錄 159
附錄A 159
附錄B 168
附錄C 188
參考文獻
1.Arunachalam S., Peer Review of Source Apportionment Tools in CAMx and CMAQ, USEPA, 2009.
2.Carlton, A.G., Pinder, R.W., Bhave, P.V., Pouliot, G.A., “To What Extent Can Biogenic SOA be Controlled?, “ Environmental Science & Technology, 44, 3376–3380, 2010.
3.Chang, K. H., Jeng, F. T., Tsai, Y. L., Lin, P. L., “Modeling of long-range transport on Taiwan’s acid deposition under different weather conditions,” Atmospheric Environment, 34(20), 3281–3295, 2000.
4.Chatani, S., Shimadera, H., Itahashi, S., Yamaji, K., “Comprehensive analyses of source sensitivities and apportionments of PM2.5 and ozone over Japan via multiple numerical techniques,” Atmospheric Chemistry and Physics, 20(17), 10311-10329, 2020.
5.CMAS,2014:https://www.cmascenter.org/cmaq/documentation/4.7.1/DDM3D.txt
6.Cohan, D. S., Hakami, A., Hu, Y., & Russell, A. G., “Nonlinear Response of Ozone to Emissions: Source Apportionment and Sensitivity Analysis,” Environmental Science & Technology, 39(17), 6739–6748, 2005.
7.Collet, S., Kidokoro, T., Karamchandani, P., Jung, J., Shah, T., “Future year ozone source attribution modeling study using CMAQ-ISAM,” Journal of the Air & Waste Management Association, 68(11) 1239-1247, 2018.
8.Cao, J., Qiu, X., Peng, L., Gao, J., Wang, F., Yan, X., “Impacts of the differences in PM2.5 air quality improvement on regional transport and health risk in Beijing–Tianjin–Hebei region during 2013–2017,” Chemosphere, 297, 134179, 2022.
9.Dennis, R.L., Bhave, P.V., Pinder, R.W., “Observable indicators of the sensitivity of PM2.5 nitrate to emission reductions—Part II: Sensitivity to errors in total ammonia and total nitrate of the CMAQ-predicted non-linear effect of SO2 emission reductions,” Atmospheric Environment, 42, 1287–1300, 2008.
10.Dunker, A. M., “The decoupled direct method for calculating sensitivity coefficients in chemical kinetics,” Journal of Chemical Physics, 81(5), 2385–2393, 1984.
11.Fang, T., Zhu, S., Wang, S., Xing, J., Zhao, B., Fan, S., Li, M., Yang, W., Chen, Y., Huang R., “Source impact and contribution analysis of ambient ozone using multi-modeling approaches over the Pearl River Delta region, China,” Environ. Pollut., 289, 117860, 2021.
12.Foley, K. M., Roselle, S. J., Appel, K. W., Bhave, P. V., Pleim, J. E., Otte, T. L., Mathur, R., Sarwar, G., Young, J. O., Gilliam, R. C., Nolte, C. G., Kelly, J. T., Gilliland, A. B., and Bash, J. O., “Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7,” Geoscientific Model Development, 3, 205–226,2010.
13.Foley, K., CMAQ-DDM for v5.3.3, CMAS FORUM, 2022. https://forum.cmascenter.org/t/cmaq-ddm-for-v5-3-3/3373
14.GitHub, overview Kristen Foley, 2022. https://github.com/kmfoley?tab=overview&from=2022-08-01&to=2022-08-21
15.Huang, R. J., Zhang, Y. L., Bozetti, C., Ho, K. F., Cao, J. J., Han, Y. M., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmerman, R., An, Z. S., Szidat, S., Baltensperger, U., Hadded, I. E., Prévôt, A. H., “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature, 514, 218–222, 2014.
16.Itahashi, S., Uno, I., Kim, S., “Seasonal Source Contributions of Tropospheric Ozone over East Asia based on CMAQ–HDDM,” Atmospheric Environment, 70, 204–217, 2013.
17.Itahashi, S., Yamaji, K., Chatani, S., and Hayami, H., “Refinement of Modeled Aqueous-Phase Sulfate Production via the Fe- and Mn-Catalyzed Oxidation Pathway,” Atmosphere, 9(4), 132, 2018.
18.Koo, B., Wilson, G. M., Morris, R. E., Dunker, A. M., Yarwood, G., “Comparison of Source Apportionment and Sensitivity Analysis in a Particulate Matter Air Quality Model,” Environ. Sci. Technol., 43, 6669–6675, 2009.
19.Kwok, R. H. F., Baker, K. R., Napelenok, S. L., Tonnesen, G. S., “Photochemical grid model implementation and application of VOC, NOx, and O3 source apportionment,” Geoscientific Model Development, 8, 99–114, 2015.
20.Kwok, R. H. F., Napelenok, S. L., and Baker, K. R., “Implementation and evaluation of PM2.5 source contribution analysis in a photochemical model,” Atmospheric Environment, 80, 398–407, 2013.
21.Li, M., Zhang, Q., Kurokawa, J. I., Woo, J. H., He K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., Zheng, B., “MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP,” Atmospheric Chemistry and Physics, 17, 935–963, 2017.
22.Li, R., Mei, X., Wei, L., Han, X., Zhang, M., Jing, Y., “Study on the contribution of transport to PM2.5 in typical regions of China using the regional air quality model RAMS-CMAQ,” Atmospheric Environment, 214, 116856, 2019.
23.Napelenok, S. L., Cohan, D. S., Hu, Y., & Russell, A. G., “Decoupled direct 3D sensitivity analysis for particulate matter (DDM-3D/PM),” Atmospheric Environment, 40(32), 6112-6121, 2006.
24.Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda, M. G.,Powers, J. G., “A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR),” University Corporation for Atmospheric Research, 2008.
25.Tao, M., Chen, L., Wang, Z., Ma, P., Tao, J., Jia, S., “A study of urban pollution and haze clouds over northern China during the dusty season based on satellite and surface observations,” Atmospheric Environment, 82(0), 183–192, 2014.
26.USEPA, 2021, CMAQ/DOCS/Users_Guide/CMAQ_UG_ch11_ISAM.md, Integrated Source Apportionment Method (CMAQ-ISAM): https://github.com/USEPA/CMAQ/blob/main/DOCS/Users_Guide/CMAQ_UG_ch11_ISAM.md
27.USEPA, 2021, Description of the ISAM Chemistry Method. https://github.com/USEPA/CMAQ/blob/main/DOCS/Users_Guide/Supplement/CMAQ_ISAM_Chemistry_Supplemental_Equations.pdf
28.USEPA,2021:https://github.com/USEPA/CMAQ/blob/main/DOCS/Users_Guide/CMAQ_UG_ch10_HDDM-3D.md
29.Wang, L., Wei, Z., Wei, W., Fu, J. S., Meng, C., Ma, S., “Source Apportionment of PM2.5 in Top Polluted Cities in Hebei, China Using the CMAQ Model,” Atmospheric Environment, 122, 723–736, 2015.
30.Wu, S., Duncan, B. N., Jacob, D. J., Fiore, A. M., Wild, O., “Chemical nonlinearities in relating intercontinental ozone pollution to anthropogenic emissions,” Geophysical Research Letters, 36, L05806, 2009.
31.Xing, J., Wang, S. X. Jang, C., Zhu, Y., Hao, J. M., “Nonlinear response of ozone to precursor emission changes in China: a modeling study using response surface methodology,” Atmospheric Chemistry and Physics, 11, 5027–5044, 2011.
32.Yang, X., Wu, K., Lu, Y., Wang, S., Qiao, Y., Zhang, X., Wang, Y., Liu, Z., Liu, Y., Lei, Y., “Origin of regional springtime ozone episodes in the Sichuan Basin, China: Role of synoptic forcing and regional transport,” Environ. Pollut., 278, 116845, 2021.
33.Yang, Y. J., Wilkinson, J.G., Russell, A. G., “Fast, direct sensitivity analysis of multidimensional photochemical models,” Environmental Science & Technology, 31, 2859–2868, 1997.
34.Yarwood, G., Rao, S., Yocke, M., and Whitten, G. Z., “Updates to the carbon bond chemical mechanism: CB05,” Final Report to U.S.EPA, RT-04-00675, 2005.
35.Ying, Q., Wu, L., Zhang, H., “Local and inter-regional contributions to PM2.5 nitrate and sulfate in China,” Atmospheric Environment, 94. 582–592, 2014.
36.Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K. Ma, Y. L., Kimoto, T., “Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China,” Atmospheric Chemistry and Physics, 15, 2031–2049, 2015.
37.行政院環境保護署,2019,中華民國空氣品質監測報告-108年年報。
38.李庭毅,2020,“以整合來源分配法模擬分析台灣空品區臭氧及其前驅物跨區域傳輸之相互影響”,國立雲林科技大學,碩士論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊