跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 16:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖梵如
研究生(外文):LIAO, FAN-JU
論文名稱:增益一致性遮罩序列對序列式模型建立具物理解釋性軟儀表應用於非同步採樣頻率品質水平預測
論文名稱(外文):Physics Interpretable Soft-Sensor for Asynchronous Sampling Frequency Horizon Predictions Using Gain-informed Masked Sequence-to-Sequence Model
指導教授:康嘉麟
指導教授(外文):Kang, Jia-Lin
口試委員:汪上曉姚遠
口試委員(外文):Wong, Shan-HillYao, Yuan
口試日期:2022-01-17
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:86
中文關鍵詞:多採樣頻率遮罩序列對序列式模型
外文關鍵詞:multi-sampling ratemasksequence-to-sequence model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 ................................................................................................................................... i
Abstract ............................................................................................................................ iii
目錄 .................................................................................................................................. v
表目錄 ........................................................................................................................... viii
圖目錄 .............................................................................................................................. x
第一章、 緒論 ................................................................................................................ 1
1.1 研究目的 .......................................................................................................... 1
1.2 研究背景與動機 .............................................................................................. 1
第二章、 文獻回顧 ........................................................................................................ 3
2.1 軟儀表 .............................................................................................................. 3
2.2 數據補值 .......................................................................................................... 4
2.3 深度學習網路 .................................................................................................. 5
2.3.1 類神經網路模型 ................................................................................. 5
2.3.2 序列對序列式模型(Sequence-to-Sequence, StS) ............................... 6
2.3.3 遞迴神經網路 ..................................................................................... 6
2.4 模型物理解釋性 .............................................................................................. 7
第三章、 研究方法 ........................................................................................................ 8
3.1 數據預處理 ...................................................................................................... 8
3.1.1 數據標準化 ......................................................................................... 8
3.1.2 移動視窗 ............................................................................................. 8
vi
3.2 序列對序列式模型結構 .................................................................................. 8
3.3 遮罩增益一致性序列對序列式模型損失函數 .............................................. 9
3.3.1 遮罩損失函數 ..................................................................................... 9
3.3.2 增益一致性損失函數 ....................................................................... 10
3.4 物理解釋性驗證 ............................................................................................ 11
3.5 不同補值方法 ................................................................................................ 12
第四章、 研究案例 ...................................................................................................... 13
4.1 丁二烯萃取蒸餾製程 .................................................................................... 13
4.2 Aspen Dynamic模擬製程 .............................................................................. 13
4.3 數據型態 ........................................................................................................ 19
4.4 模型輸入與輸出 ............................................................................................ 19
4.4.1 移動視窗法 ....................................................................................... 26
4.5 損失函數 ........................................................................................................ 27
4.5.1 增益一致性損失函數 ....................................................................... 27
4.5.2 總損失函數 ....................................................................................... 28
第五章、 結果與討論 .................................................................................................. 30
5.1 補值與遮罩模型比較 .................................................................................... 30
5.1.1 不同補值應用於不同模型預測13BD結果 .................................... 30
5.1.2 模型預測綜合比較 ........................................................................... 44
5.2 Mask GI-StS在不同採樣頻率的預測效果及物理解釋性 ........................... 51
5.2.1 Mask GI-StS不同採樣頻率的預測效果 .......................................... 51
vii
5.2.2 Mask GI-StS不同採樣頻率物理解釋性 .......................................... 57
5.3 加入噪音測試 ................................................................................................ 60
5.3.1 加入5%噪音模型預測結果 ............................................................. 60
5.3.2 加入5%噪音模型增益一致性 ......................................................... 66
第六章、 結論 .............................................................................................................. 69
參考文獻 ........................................................................................................................ 71
[1] Shardt, Y. A., Statistics for chemical and process engineers. Springer, 2015.
[2] Kadlec, P., Gabrys, B., and Strandt, S., "Data-driven soft sensors in the process industry," Computers & chemical engineering, vol. 33, no. 4, pp. 795-814, 2009.
[3] Acock, A. C., "Working with missing values," Journal of Marriage and family, vol. 67, no. 4, pp. 1012-1028, 2005.
[4] Xiao, H., Bai, B., Li, X., Liu, J., Liu, Y., and Huang, D., "Interval multiple-output soft sensors development with capacity control for wastewater treatment applications: A comparative study," Chemometrics and Intelligent Laboratory Systems, vol. 184, pp. 82-93, 2019.
[5] Liu, Y., Liu, B., Zhao, X., and Xie, M., "Development of RVM-based multiple-output soft sensors with serial and parallel stacking strategies," IEEE Transactions on Control Systems Technology, vol. 27, no. 6, pp. 2727-2734, 2018.
[6] Li, D., Huang, D., Yu, G., and Liu, Y., "Learning adaptive semi-supervised multi-output soft-sensors with co-training of heterogeneous models," Ieee Access, vol. 8, pp. 46493-46504, 2020.
[7] Schafer, J. L., "Multiple imputation: a primer," Statistical methods in medical research, vol. 8, no. 1, pp. 3-15, 1999.
[8] Khatibisepehr, S., Huang, B., and Khare, S., "Design of inferential sensors in the process industry: A review of Bayesian methods," Journal of Process Control, vol. 23, no. 10, pp. 1575-1596, 2013.
[9] Shao, W. and Tian, X., "Adaptive soft sensor for quality prediction of chemical processes based on selective ensemble of local partial least squares models," Chemical Engineering Research and Design, vol. 95, pp. 113-132, 2015.
[10] Lin, B., Recke, B., Knudsen, J. K., and Jørgensen, S. B., "A systematic approach for soft sensor development," Computers & chemical engineering, vol. 31, no. 5-6, pp. 419-425, 2007.
[11] Facco, P., Doplicher, F., Bezzo, F., and Barolo, M., "Moving average PLS soft
72
sensor for online product quality estimation in an industrial batch polymerization process," Journal of Process Control, vol. 19, no. 3, pp. 520-529, 2009.
[12] Fujiwara, K., Kano, M., Hasebe, S., and Takinami, A., "Soft‐sensor development using correlation‐based just‐in‐time modeling," AIChE Journal, vol. 55, no. 7, pp. 1754-1765, 2009.
[13] da Silva Bispo, V. D., Scheid, C. M., Calçada, L. A., and da Cruz Meleiro, L. A., "Development of an ANN-based soft-sensor to estimate the apparent viscosity of water-based drilling fluids," Journal of Petroleum Science and Engineering, vol. 150, pp. 69-73, 2017.
[14] Liu, Y., Yang, C., Gao, Z., and Yao, Y., "Ensemble deep kernel learning with application to quality prediction in industrial polymerization processes," Chemometrics and Intelligent Laboratory Systems, vol. 174, pp. 15-21, 2018.
[15] Qin, S. J., "Neural networks for intelligent sensors and control——Practical issues and some solutions," in Neural systems for control: Elsevier, 1997, pp. 213-234.
[16] Fortuna, L., Graziani, S., and Xibilia, M. G., "Soft sensors for product quality monitoring in debutanizer distillation columns," Control Engineering Practice, vol. 13, no. 4, pp. 499-508, 2005.
[17] Chou, C.-H., Wu, H., Kang, J.-L., Wong, D. S.-H., Yao, Y., Chuang, Y.-C., Jang, S.-S., and Ou, J. D.-Y., "Physically consistent soft-sensor development using sequence-to-sequence neural networks," IEEE Transactions on Industrial Informatics, vol. 16, no. 4, pp. 2829-2838, 2019.
[18] Qian, X., Huang, K., Jia, S., Chen, H., Yuan, Y., Zhang, L., and Wang, S., "Composition/temperature cascade control for a Kaibel dividing-wall distillation column by combining PI controllers and model predictive control integrated with soft sensor," Computers & Chemical Engineering, vol. 126, pp. 292-303, 2019.
[19] Marzaki, M. H., Jalil, M. H. A., Shariff, H. M., Adnan, R., and Rahiman, M. H. F., "Comparative study of Model Predictive Controller (MPC) and PID Controller on regulation temperature for SSISD plant," in 2014 IEEE 5th Control and System Graduate Research Colloquium, 2014: IEEE, pp. 136-140.
73
[20] Jiang, Y., Yin, S., Dong, J., and Kaynak, O., "A review on soft sensors for monitoring, control and optimization of industrial processes," IEEE Sensors Journal, 2020.
[21] Tham, M. T., Montague, G. A., Glassey, J., and Willis, M. J., "Practical inferential estimation using artificial neural networks," Measurement and Control, vol. 35, no. 1, pp. 5-9, 2002.
[22] Osborne, J. and Overbay, A., "Best practices in data cleaning," Best practices in quantitative methods, vol. 1, no. 1, pp. 205-213, 2008.
[23] Zhou, H., Yu, K.-M., Lee, M.-G., and Han, C.-C., "The application of last observation carried forward method for missing data estimation in the context of industrial wireless sensor networks," in 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), 2018: IEEE, pp. 1-2.
[24] Kano, M. and Nakagawa, Y., "Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry," Computers & Chemical Engineering, vol. 32, no. 1-2, pp. 12-24, 2008.
[25] Wang, D., Liu, J., and Srinivasan, R., "Data-driven soft sensor approach for quality prediction in a refining process," IEEE Transactions on Industrial Informatics, vol. 6, no. 1, pp. 11-17, 2009.
[26] Tipping, M. E. and Bishop, C. M., "Probabilistic principal component analysis," Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 61, no. 3, pp. 611-622, 1999.
[27] Fatehi, A. and Huang, B., "Kalman filtering approach to multi-rate information fusion in the presence of irregular sampling rate and variable measurement delay," Journal of Process Control, vol. 53, pp. 15-25, 2017.
[28] Petrozziello, A., Jordanov, I., and Sommeregger, C., "Distributed neural networks for missing big data imputation," in 2018 International Joint Conference on Neural Networks (IJCNN), 2018: IEEE, pp. 1-8.
[29] Kadlec, P. and Gabrys, B., "Adaptive local learning soft sensor for inferential control support," in 2008 International Conference on Computational Intelligence for Modelling Control & Automation, 2008: IEEE, pp. 243-248.
74
[30] Rallo, R., Ferre-Gine, J., Arenas, A., and Giralt, F., "Neural virtual sensor for the inferential prediction of product quality from process variables," Computers & Chemical Engineering, vol. 26, no. 12, pp. 1735-1754, 2002.
[31] Gonzaga, J., Meleiro, L. A. C., Kiang, C., and Maciel Filho, R., "ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process," Computers & chemical engineering, vol. 33, no. 1, pp. 43-49, 2009.
[32] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y., "Learning phrase representations using RNN encoder-decoder for statistical machine translation," arXiv preprint arXiv:1406.1078, 2014.
[33] Bengio, Y., Simard, P., and Frasconi, P., "Learning long-term dependencies with gradient descent is difficult," IEEE transactions on neural networks, vol. 5, no. 2, pp. 157-166, 1994.
[34] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y., "Empirical evaluation of gated recurrent neural networks on sequence modeling," arXiv preprint arXiv:1412.3555, 2014.
[35] Dey, R. and Salem, F. M., "Gate-variants of gated recurrent unit (GRU) neural networks," in 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS), 2017: IEEE, pp. 1597-1600.
[36] Ribeiro, M. T., Singh, S., and Guestrin, C., "" Why should i trust you?" Explaining the predictions of any classifier," in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016, pp. 1135-1144.
[37] Hsiao, Y.-D., Kang, J.-L., and Wong, D. S.-H., "Development of Robust and Physically Interpretable Soft Sensor for Industrial Distillation Column Using Transfer Learning with Small Datasets," Processes, vol. 9, no. 4, p. 667, 2021.
[38] Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L., "The expressive power of neural networks: A view from the width," in Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 6232-6240.
電子全文 電子全文(網際網路公開日期:20270210)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top