跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/06 15:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳虹廷
研究生(外文):CHEN, HONG-TING
論文名稱:硬模板與生物質協同製備用於超級電容器的三維碳球插層多孔碳
論文名稱(外文):Three-Dimensional Carbon Sphere-intercalated Porous Carbon Fabricated by Synergistic Combination of Hard Template and Biomass for Supercapacitor Application
指導教授:楊沛欣
指導教授(外文):YOUNG, PEI-HSIN
口試委員:楊沛欣林哲宇粘譽薰
口試委員(外文):YOUNG, PEI-HSINLIN, JHE-YUNIEN, YU-HSUN
口試日期:2022-06-30
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:97
中文關鍵詞:生物質碳活化法Stöber方法多孔碳有機超級電容器
外文關鍵詞:biomass carbonactivationStöber methodthree-dimensional carbon sphere-intercalated porous carbonorganic supercapacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
將對環境友善的生物質透過適當的碳化能夠衍生出具有高度多孔性且高比表面積的活性碳,並且作為儲能元件的電極使用。然而一般來說活性碳的孔徑較小,這可能會阻礙其在各種電解質中的廣泛適用性。因此,我們通過將活性碳和硬模板衍生的中孔碳球結合,製備了一種新型的三維碳球插層多孔碳,其結合了各自的優勢。對於活性碳,我們使用阿勃勒種子 (GTs)作為碳前體,將高鐵酸鉀 (K2FeO4)作為活化劑,獲得了具有高比表面積和富有大量微孔 (SBET = 1915 m2·g-1 和Smicro = 794.6 m2·g-1)的阿勃勒多孔碳(GTPC),其中高鐵酸鉀在高溫下會分解出鐵而因此作為生成石墨化碳的催化劑,因此提升了GTPC的石墨化程度,從而提高了導電度,另外以Stöber方法合成空心中孔碳球 (HMCS),並以hexadecyl trimethyl ammonium bromide (CTAB)作為界面活化劑將GTPC和HMCS結合,得到具有獨特形貌的三維碳球插層多孔碳 (SC-Y),其孔徑結構不僅擁有GTPC所貢獻的微孔,還有HMCS所貢獻的中孔。在三電極測量中,SC-Y在0.5 A·g-1的電流密度下呈現137.8 F·g-1,其保留率為68%,表現出顯著的電化學性能。而在組裝成有機電解液體系的超級電容器後,其電位窗口有3 V,在5 mV·s-1的掃描速率下有著69.5 F·g-1的高比電容,並且在功率密度為2500 W·kg-1時,能量密度為14.7 Wh·kg-1,說明SC-Y是作為有機超級電容器電極的最佳選擇。
Activated carbons derived from sustainable biomass for energy storage applications are highly porous and have high surface areas. They are promising materials for the scientific community due to their eco-friendliness, low cost and sustainability. However, biomass derived activated carbons are usually suffered from narrow pore sizes which may hinder their practicability and applicability to various types of electrolytes. In this study, we used golden shower tree seeds (GTs) as the carbon precursors and potassium ferrate (K2FeO4) as the activation agent. Via chemical activation, a golden shower tree porous carbon (GTPC) with high specific surface area and substantial micropores (SBET = 1915 m2·g-1 and Smicro = 794.6 m2·g-1) was obtained. It is noteworthy that during high-temperature process, potassium ferrate transforms to iron, which can be a catalyst for generating graphitized carbon. The graphitization degree of the samples thus can be enhanced, leading to a higher electrical conductivity. Hollow mesoporous carbon spheres (HMCS) were synthesized by standard Stöber method. The three-dimensional carbon sphere-intercalated porous carbon (SC-Y) with unique morphology was obtained by combining GTPC and HMCS with the favor of hexadecyl trimethyl ammonium bromide (CTAB) as modifier and dispersant. SC-Y rendered 137.8 F·g-1 at the current density of 0.5 A·g-1 in a three-electrode measurement, and its retention was 68%, showing remarkable electrochemical performance. After being assembled into an organic supercapacitor, it had high specific capacitance of 69.5 F·g-1 at scan rate of 5 mV·s-1, and energy density of 14.7 Wh·kg-1 at a power density of 2500 W·kg-1, indicating that SC-Y is the best choice as an electrode for organic supercapacitors.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1前言 1
1.2 研究動機 3
第二章 文獻回顧 4
2.1 超級電容器 (Supercapacitors)的介紹 4
2.1.1 超級電容器的工作原理 5
2.1.1.1 電雙層電容器儲能機制 5
2.1.1.2 擬電容器儲能機制 8
2.1.2 超級電容器電解質的種類 9
2.1.2.1 水系超級電容器 10
2.1.2.2 有機超級電容器 10
2.1.2.3 固態超級電容器 11
2.2 生物質 (Biomass)衍生碳 14
2.2.1 一維 (1-D)生物質衍生碳 15
2.2.2 二維 (2-D)生物質衍生碳 18
2.2.3 三維 (3-D)生物質衍生碳 20
2.3 活化法 (Activation method) 22
2.3.1 化學活化法 23
2.3.2 物理活化法 24
2.3.3 化學活化法配合物理活化法 24
2.3.4 微波輔助活化法 25
2.4 模板法 (template method) 26
2.4.1 軟模板法 (Soft-templating method) 27
2.4.2 硬模板法 (Hard-templating method) 27
2.4.3軟模板和硬模板組合 27
2.4.4 無模板法 (template-free method) 28
第三章 實驗藥品設備及步驟 29
3.1 實驗藥品 29
3.2 實驗儀器 31
3.2.1 製程儀器 31
3.2.2 物性檢測儀器、原理與參數設定 33
3.2.2.1 場發式電子顯微鏡 (FE-SEM) 33
3.2.2.2 高解析度穿透式電子顯微鏡 (HR-TEM) 35
3.2.2.3 比表面積與孔隙度分析儀 37
3.2.2.4 X光繞射儀 (XRD) 38
3.2.2.5 拉曼光譜儀 (Raman) 39
3.2.2.6 化學分析電子光譜儀 (ESCA) 40
3.2.2.7 奈米粒徑/界面電位分析儀 (Zeta/Nano Particle Analyzer) 41
3.2.3 電化學量測儀器與參數設定 42
3.2.3.1 恆電位/電流/交流阻抗儀 42
3.3 實驗流程和機制 43
3.4 實驗步驟 46
3.4.1 生物質多孔奈米片 (GTPC)的製備 46
3.4.2空心中孔碳球 (HMCSs)的製備 47
3.4.3 三維碳球插層多孔碳 (SCs)的製備 48
3.4.4 三電極量測樣品製備 49
3.4.4.1 活性材料漿料的製備 49
3.4.4.2 三電極系統電極片製備 49
3.5 有機超級電容器的組裝 50
3.6 電化學公式 51
第四章 結果與討論 52
4.1微觀形貌及結構觀察 52
4.1.1 場發式電子顯微鏡 (FE-SEM) 52
4.1.2 穿透式電子顯微鏡 (TEM) 54
4.2 結構與性質分析 55
4.2.1 X射線繞射 (XRD)晶體結構鑑定 55
4.2.2拉曼光譜 (Raman)石墨化程度分析 56
4.2.3 化學分析電子光譜 (ESCA)元素成分分析 58
4.2.4 界面電荷 (Zeta potential) 62
4.3 多孔性質分析 64
4.3.1 氮氣吸脫附測試 (Nitrogen adsorption--desorption isotherm) 64
4.3.2 孔徑分佈圖 (Pore size distribution) 66
4.4 電化學測試 68
4.4.1 三電極系統 (Three-electrode system) 68
4.4.2 有機超級電容器 72
第五章 結論 75
參考文獻 76


[1]International Energy Agency, Coal final consumption by sector World, 1990-2019, from https://www.iea.org/fuels-and-technologies/coal#data-browser.
[2]Sevilla, Marta; Mokaya, Robert, Energy storage applications of activated carbons: supercapacitors and hydrogen storage, Energy & Environmental Science, 7, p.1250-1280, 2014.
[3]Zhang, Li Li; Zhao, X. S., Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews, 38, p.2520-2531, 2009.
[4]Burke, A., R&D considerations for the performance and application of electrochemical capacitors, Electrochimica Acta, 53, p.1083-1091, 2007.
[5]Gamby, J.; Taberna, P. L.; Simon, P.; Fauvarque, J. F.; Chesneau, M., Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, Journal Power Sources, 101, p.109-116, 2001.
[6]Chen, Li-Feng; Zhang, Xu-Dong; Liang, Hai-Wei; Kong, Mingguang; Guan, Qing-Fang; Chen, Ping; Wu, Zhen-Yu; Yu, Shu-Hong, Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors, ACS Nano, 6, p.7092-7102, 2012.
[7]Wang, Yan; Shi, Zhiqiang; Huang, Yi; Ma, Yanfeng; Wang, Chengyang; Chen, Mingming; Chen, Yongsheng, Supercapacitor Devices Based on Graphene Materials, Journal of Physical Chemistry C, 113, p.13103-13107, 2009.
[8]Kaempgen, Martti; Chan, Candace K.; Ma, J.; Cui, Yi; Gruner, George, Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes, Nano Letters, 9, p.1872-1876, 2009.
[9]Seo, Sang Wan; Choi, Yun Jeong; Kim, Ji Hong; Cho, Jong Hoon; Lee, Young-Seak; Im, Ji Sun, Micropore-structured activated carbon prepared by waste PET/petroleum-based pitch, Carbon Letters, 29, p.385-392, 2009.
[10]Hou, Lijie; Hu, Zhongai; Wang, Xiaotong; Qiang, Lulu; Zhou, Yi; Lv, Liwen; Li, Shanshan, Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors, Journal of Colloid and Interface Science, 540, p.88-96, 2019.
[11]Tsai, Cheng-Yen; Tai, Hung-Chun; Su, Chien-An; Chiang, Li-Ming; Li, Yuan-Yao, Activated Microporous Carbon Nanospheres for Use in Supercapacitors, ACS Applied Nano Materials, 3, p.10380-10388, 2020.
[12]Divyashree, A.; Hegde, Gurumurthy, Activated carbon nanospheres derived from bio-waste materials for supercapacitor applications - a review, RSC Advances, 5, p.88339-88352, 2015.
[13]Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L., Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 313, p.1760-1763, 2006.
[14]Jadhav, Vijaykumar V.; Mane, Rajaram S.; Shinde, Pritamkumar V., Electrochemical Supercapacitors: History, Types, Designing Processes, Operation Mechanisms, and Advantages and Disadvantages, Bismuth-Ferrite-Based Electrochemical Supercapacitors, p.11-36, 2020.
[15]Kim, Brian Kihun; Sy, Serubbable; Yu, Aiping; Zhang, Jinjun, Electrochemical Supercapacitors for Energy Storage and Conversion, Handbook of Clean Energy Systems, 2015.
[16]Atwell, Cabe, Supercapacitors: Past, Present, and Future, 2018, from https://www.electronicdesign.com/technologies/alternative-energy/article/21199519/supercapacitors-past-present-and-future
[17]Javaid, A., 11 - Activated carbon fiber for energy storage, Activated Carbon Fiber and Textiles, p.281-303, 2017.
[18]Zhang, Sanliang; Pan, Ning, Supercapacitors Performance Evaluation, Advance Energy Materials, 5, 2015.
[19]Khan, N.; Mariun, N.; Zaki, M.; Dinesh, L., TENCON 2000, 3, p.193-199.
[20]Conway, Brian Evans, Encyclopedia of Surface and Colloid Science, Dekker Publishing Co, 2002.
[21]Garrison Sposito, Gouy-Chapman Theory, Encyclopedia of Geochemistry, 2018.
[22]Oldham, Keith B., A Gouy-Chapman-Stern model of the double layer at a (metal)/(ionic liquid) interface, Journal of Electroanalytical Chemistry, 613, p.131-138, 2008.
[23]Herr Otto Stern, Zur theorie der elektrolytischen doppelschicht, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 30, p.508, 1924.
[24]Jeon, Sohyun; Jeong, Ji Hwan; Yoo, Hyomin; Yu, Hak Ki; Kim, Bo-Hye; Kim, Myung Hwa, RuO2 Nanorods on Electrospun Carbon Nanofibers for Supercapacitors, ACS Applied Nano Materials, 3, p.3847-3858, 2020
[25]Maheswari, Nallappan; Muralidharan, Gopalan, Supercapacitor Behavior of Cerium Oxide Nanoparticles in Neutral Aqueous Electrolytes, Energy & Fuels, 29, p.8246-8253, 2015.
[26]Zhang, Xiaoyan; Wang, Xianyou; Jiang, Lanlan; Wu, Hao; Wu, Chun; Su, Jingcang, Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons, Journal of Power Sources, 216, p.290-296, 2012.
[27]Fan, Yang; Yang, Xin; Zhu, Bing; Liu, Pei-Fang; Lu, Hai-Ting, Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors, Journal of Power Sources, 268, p.584-590, 2014.
[28]Rufford, Thomas E.; Hulicova-Jurcakova, Denisa; Zhu, Zhonghua; Lu, Gao Qing, Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors, Electrochemistry Communications, 10, p.1594-1597, 2008.
[29]Scibioh, M. Aulice; Viswanathan, B., Chapter 4 - Electrolyte materials for supercapacitors, Materials for Supercapacitor Applications, p.205-314, 2020.
[30]Azais, Philippe; Duclaux, Laurent; Florian, Pierre; Massiot, Dominique; Lillo-Rodenas, Maria-Angeles; Linares-Solano, Angel; Peres, Jean-Paul; Jehoulet, Christophe; Beguin, Frangois, Causes of supercapacitors ageing in organic electrolyte, Journal of Power Sources, 171, p.1046-1053, 2007.
[31]Rufford, Thomas E.; Hulicova-Jurcakova, Denisa; Fiset, Erika; Zhu, Zhonghua; Lu, Gao Qing, Double-layer capacitance of waste coffee ground activated carbons in an organic electrolyte, Electrochemistry Communications, 11, p.974-977, 2009.
[32]Francisco, Brian E.; Jones, Christina M.; Lee, Se-Hee; Stoldt, Conrad R., Nanostructured all-solid-state supercapacitor based on Li2S-P2S5 glass-ceramic electrolyte, Applied Physics Letters, 100, 2012.
[33]Ulihin, A. S.; Mateyshina, Yu. G.; Uvarov, N. F., All-solid-state asymmetric supercapacitors with solid composite electrolytes, Solid State Ionics, 251, p.62-65, 2013.
[34]Verma, Mohan L.; Minakshi, Manickam; Singh, Nirbhay K., Synthesis and characterization of solid polymer electrolyte based on activated carbon for solid state capacitor, Electrochimica Acta, 137, p.497-503, 2014.
[35]Fang, X.; Yao, D., Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, San Diego, California, USA, 2013.
[36]Zhong, Cheng; Deng, Yida; Hu, Wenbin; Qiao, Jinli; Zhang, Lei; Zhang, Jiujun, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chemical Society Reviews, 44, p.7484-7539, 2015.
[37]Qin, Kaiqiang; Kang, Jianli; Li, Jiajun; Shi, Chunsheng; Li, Yuxiang; Qiao, Zhijun; Zhao, Naiqin, Free-Standing Porous Carbon Nanofiber/Ultrathin Graphite Hybrid for Flexible Solid-State Supercapacitors, ACS Nano, 9, p.481-487, 2015.
[38]Seredych, Mykola; Hulicova-Jurcakova, Denisa; Lu, Gao Qing; Bandosz, Teresa J., Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon, 46, p.1475-1488, 2008.
[39]Zhao, Yunhui; Liu, Mingxian; Deng, Xiangxiang; Miao, Ling; Tripathi, Pranav K.; Ma, Xiaomei; Zhu, Dazhang; Xu, Zijie; Hao, Zhixian; Gan, Lihua, Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode, Electrochimica Acta, 153, p.448-455, 2015.
[40]Ismagilov, Zinfer R.; Shalagina, Anastasia E.; Podyacheva, Olga Yu.; Ischenko, Arkady V.; Kibis, Lidiya S.; Boronin, Andrey I.; Chesalov, Yury A.; Kochubey, Dmitry I.; Romanenko, Anatoly I.; Anikeeva, Olga B.; Buryakov, Timofey I.; Tkachev, Evgeniy N., Structure and electrical conductivity of nitrogen-doped carbon nanofibers, Carbon, 47, p.1922-1929, 2009.
[41]Lin, Gaoxin; Ma, Ruguang; Zhou, Yao; Liu, Qian; Dong, Xiaoping; Wang, Jiacheng, KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction, Electrochimica Acta, 261, p.49-57, 2018.
[42]Wei, Qiulong; Xiong, Fangyu; Tan, Shuangshuang; Huang, Lei; Lan, Esther H; Dunn, Bruce; Mai, Liqiang, Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage, Advanced Materials, 29, 2017.
[43]Jin, Zhi; Yan, Xiaodong; Yu, Yunhua; Zhao, Guangjie, Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors, Journal of Materials Chemistry A, 2, p.11706-11715, 2014.
[44]Kang, Yu Jin; Chun, Sang-Jin; Lee, Sung-Suk; Kim, Bo-Yeong; Kim, Jung Hyeun; Chung, Haegeun; Lee, Sun-Young; Kim, Woong, All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels, ACS Nano, 6, p.6400-6406, 2012.
[45]Wang, Zhaohui; Carlsson, Daniel O.; Tammela, Petter; Hua, Kai; Zhang, Peng; Nyholm, Leif; Strømme, Maria, Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances, ACS Nano, 9, p.7563-7571, 2015.
[46]Li, Shaohui; Huang, Dekang; Yang, Junchuan; Zhang, Bingya; Zhang, Xiaofan; Yang, Guang; Wang, Mingkui; Shen, Yan, Freestanding bacterial cellulose-polypyrrole nanofibers paper electrodes for advanced energy storage devices, Nano Energy, 9, p.309-317, 2014.
[47]Long, Conglai; Qi, Dongping; Wei, Tong; Yan, Jun; Jiang, Lili; Fan, Zhuangjun, Nitrogen-Doped Carbon Networks for High Energy Density Supercapacitors Derived from Polyaniline Coated Bacterial Cellulose, Advanced Functional Material, 24, p.3953-3961, 2014.
[48]Mai, Liqiang; Tian, Xiaocong; Xu, Xu; Chang, Liang; Xu, Lin, Nanowire Electrodes for Electrochemical Energy Storage Devices, Chemical Reviews, 114, p.11828-11862, 2014.
[49]Cao, Yufang; Xie, Lijing; Sun, Guohua; Su, Fangyuan; Kong, Qing-Qiang; Li, Feng; Ma, Weiping; Shi, Jing; Jiang, Dong; Lu, Chunxiang; Chen, Cheng-Meng, Hollow carbon microtubes from kapok fiber: structural evolution and energy storage performance, Sustainable Energy & Fuels, 2, p.455-465, 2018.
[50]Chen, Li-Feng; Huang, Zhi-Hong; Liang, Hai-Wei; Yao, Wei-Tang; Yua, Zi-You; Yu, Shu-Hong, Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose, Energy & Environmental Science, 6, p.3331-3338, 2013.
[51]Han, Li-Na; Wei, Xiao; Zhu, Qian-Cheng; Xu, Shu-Mao; Wang, Kai-Xue; Chen, Jie-Sheng, Nitrogen-doped carbon nets with micro/mesoporous structures as electrodes for high-performance supercapacitors, Journal of Materials Chemistry A, 4, p.16698-16705, 2016.
[52]Liu, Mengyue; Niu, Jin; Zhang, Zhengping; Dou, Meiling; Wang, Feng, Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors, Nano Energy, 51, p.366-372, 2018.
[53]Hou, Yang; Qiu, Ming; Zhang, Tao; Zhuang, Xiaodong; Kim, Chang-Soo; Yuan, Chris; Feng, Xinliang, Ternary Porous Cobalt Phosphoselenide Nanosheets: An Efficient Electrocatalyst for Electrocatalytic and Photoelectrochemical Water Splitting, Advanced Materials, 29, 2017.
[54]Hou, Yang; Lohe, Martin R.; Zhang, Jian; Liu, Shaohua; Zhuang, Xiaodong; Feng, Xinliang, Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting, Energy & Environmental Science, 9, p.478-483, 2016.
[55]Tan, Chaoliang; Cao, Xiehong; Wu, Xue-Jun; He, Qiyuan; Yang, Jian; Zhang, Xiao; Chen, Junze; Zhao, Wei; Han, Shikui; Nam, Gwang-Hyeon; Sindoro, Melinda; Zhang, Hua, Recent Advances in Ultrathin Two-Dimensional Nanomaterials, Chem. Rev., 117, p.6225-6331, 2017.
[56]Yi, Fang; Ren, Huaying; Shan, Jingyuan; Sun, Xiao; Wei, Di; Liu, Zhongfan, Wearable energy sources based on 2D materials, Chemical Society Reviews, Reviews, 47, p.3152-3188, 2018.
[57]He, Yafei; Zhuang, Xiaodong; Lei, Chaojun; Lei, Lecheng; Hou, Yang; Mai, Yiyong; Feng, Xinliang, Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications, Nano Today, 24, p.103-119, 2019.
[58]Sankar, S.; Ahmed, Abu Talha Aqueel; Inamdar, Akbar I.; Im, Hyunsik; Bin Im, Young; Lee, Youngmin; Kim, Deuk Young; Lee, Sejoon, Biomass-derived ultrathin mesoporous graphitic carbon nanoflakes as stable electrode material for high-performance supercapacitors, Mater Design, 169, 2019.
[59]Purkait, Taniya; Singh, Guneet; Singh, Mandeep; Kumar, Dinesh; Dey, Ramendra Sundar, Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor, Scientific Reports, 7, 2017.
[60]Zhang, Yadi; Hu, Zhongai; An, Yufeng; Guo, Bingshu; An, Ning; Liang, Yarong; Wu, Hongying, High-performance symmetric supercapacitor based on manganese oxyhydroxide nanosheets on carbon cloth as binder-free electrodes, Journal of Power Sources, 311, p.121-129, 2016.
[61]Zhang, Yadi; Hu, Zhongai; Liang, Yarong; Yang, Yuying; An, Ning; Li, Zhimin; Wu, Hongying, Growth of 3D SnO2 nanosheets on carbon cloth as a binder-free electrode for supercapacitors, Journal of Materials Chemistry A, 3, p.15057-15067, 2015.
[62]Jiang, Hao; Lee, Pooi See; Li, Chunzhong, 3D carbon based nanostructures for advanced supercapacitors, Energy & Environmental Science, 6, p.41-53, 2013.
[63]Bi, Zhihong; Kong, Qingqian; Cao, Yufang; Sun, Guohua; Su, Fangyuan; Wei, Xianxia; Li, Xiaoming; Ahmad, Aziz; Xie, Lijing; Chen, Cheng-Meng, Biomass-Derived Porous Carbon Materials with Different Dimensions for Supercapacitor Electrodes: a review, Journal of Materials Chemistry A, 7, p.16028-16045, 2019.
[64]Zhao, Gongyuan; Chen, Chong; Yu, Dengfeng; Sun, Lei; Yang, Chenhui; Zhang, Hong; Sun, Ye; Besenbacher, Flemming; Yu, Miao, One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors, Nano Energy, 47, p.547-555, 2018.
[65]Abioye, Adekunle Moshood; Ani, Farid Nasir, Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review, Renewable & Sustainable Energy Reviews, 52, p.1282-1293, 2015.
[66]Hesas, Roozbeh Hoseinzadeh; Daud, Wan Mohd Ashri Wan; Sahu, J. N., The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review, Journal of Analytical and Applied Pyrolysis, 100, p.1-11, 2013.
[67]He, Xiaojun; Ling, Pinghua; Qiu, Jieshan; Yu, Moxin; Zhang, Xiaoyong; Yu, Chang; Zheng, Mingdong, Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density, Journal of Power Sources, 240, p.109-113, 2013.
[68]Jin, Xiao-Juan; Yu, Zhi-Ming; Wu, Yu, Preparation of Activated carbon from Lignin Obtained by Straw Pulping by KOH and K2CO3 Chemical Activation
[69]Lang, Lang; Hu, Xiao-min; Zhao, Yan; Wang, Jun; Lin, Hong, Corncob waste activated with different pore formers for capacitive deionization (CDI) materials, Desalination and Water Treatment, 155, p.55-63, 2019.
[70]Kilic, Murat; Apaydin-Varol, Esin; Putun, Ayse Eren, Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4, Applied Surface Science, 261, p.247-254, 2012.
[71]Lillo-Rodenas, MA; Lozano-Castello, D; Cazorla-Amoros, D; Linares-Solano, A, Preparation of activated carbons from Spanish anthracite II. Activation by NaOH, Carbon, 39, p.751-759, 2001.
[72]Pereira, Elaine; Oliveira, Luiz C. A.; Vallone, Andrea; Sapag, Karim; Pereira, Marcio, Preparation of activated carbon at low carbonization temperatures: Utilization of FeCl3 as an alternative activating agent, 31, p.1296-1300, 2008.
[73]Bedia, J.; Belver, C.; Ponce, S.; Rodriguez, J.; Rodriguez, J. J., Adsorption of antipyrine by activated carbons from FeCl3-activation of Tara gum, Chemical Engineering Journal, 333, p.58-65, 2018.
[74]Yorgun, Sait; Yildiz, Derya, Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4, Journal of The Taiwan Institute of Chemical Engineers, 53, p.122-131, 2015.
[75]Eduardo Vargas, Jaime; Giraldo Gutierrez, Liliana; Carlos Moreno-Pirajan, Juan, Preparation of activated carbons from seeds of Mucuna mutisiana by physical activation with steam, Journal of Analytical and Applied Pyrolysis, 89, p.307-312, 2010.
[76]Nabais, Joao M. Valente; Nunes, Pedro; Carrott, Peter J. M.; Carrott, M. Manuela L. Ribeiro; Macias-Garcia, A.; Diaz-Diez, M. A., Production of activated carbons from coffee endocarp by CO2 and steam activation, Fuel Processing Technology, 89, p.262-268, 2008.
[77]Farma, R.; Deraman, M.; Awitdrus, A.; Talib, I. A.; Taer, E.; Basri, N. H.; Manjunatha, J. G.; Ishak, M. M.; Dollah, B. N. M; Hashmi, S. A., Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors, Bioresource Technology, 132, p.254-261, 2013.
[78]Ismanto, Andrian Evan; Wang, Steven; Soetaredjo, Felycia Edi; Ismadji, Suryadi, Preparation of capacitor's electrode from cassava peel waste, 101, p.3534-3540, 2010.
[79]Deng, Hui; Li, Guoxue; Yang, Hongbing; Tang, Jiping; Tang, Jiangyun, Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation, 163, p.373-381, 2010.
[80]Foo, K. Y.; Hameed, B. H., Preparation of activated carbon from date stones by microwave induced chemical activation: Application for methylene blue adsorption, Chemical Engineering Journal, 170, p.338-341, 2011.
[81]Foo, K. Y.; Hameed, B. H., Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating, 111, p.425-432, 2012.
[82]Foo, K. Y.; Hameed, B. H., Preparation of activated carbon by microwave heating of langsat (Lansium domesticum) empty fruit bunch waste, Bioresource Technology, 116, p.522-525, 2012.
[83]Deng, Hu; Yang, Le; Tao, Guanghui; Dai, Jiulei, Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation-Application in methylene blue adsorption from aqueous solution, Journal of Hazardous Materials, 166, p.1514-1521, 2009.
[84]Wang, Tonghua; Tan, Suxia; Liang, Changhai, Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation, 47, p.1800-1883, 2009.
[85]Deng, Hui; Zhang, Genlin; Xu, Xiaolin; Tao, Guanghui; Dai, Jiulei, Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation, Journal of Hazardous Materials, 182, p.217-224, 2010.
[86]Hesas, Roozbeh Hoseinzadeh; Daud, Wan Mohd Ashri Wan; Sahu, J. N.; Arami-Niya, Arash, The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review, 100, p.1-11, 2013.
[87]Yuen, Foo Keng; Hameed, B. H., Recent developments in the preparation and regeneration of activated carbons by microwaves, 149, p.19-27, 2009.
[88]Li, Wei; Zhao, Dongyuan, An overview of the synthesis of ordered mesoporous materials, Chemical Communications, 49, p.943-946, 2013.
[89]Li, Wei; Liu, Jun; Zhao, Dongyuan, Mesoporous materials for energy conversion and storage devices, Nature Reviews Materials, 1, p. 16023, 2016.
[90]Wei, Jing; Wang, Hai; Deng, Yonghui; Sun, Zhenkun; Shi, Lin; Tu, Bo; Luqman, Mohammad; Zhao, Dongyuan, Solvent Evaporation Induced Aggregating Assembly Approach to Three-Dimensional Ordered Mesoporous Silica with Ultralarge Accessible Mesopores, Journal of the American Chemical Society, 133, p.20369-20377, 2011.
[91]Deng, Yonghui; Wei, Jing; Sun, Zhenkun; Zhao, Dongyuan, Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers, Chemical Society Reviews, 42, p.4054-4070, 2013.
[92]Petkovich, Nicholas D.; Stein, Andreas, Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating, Chemical Society Reviews, 42, p.3721-3739, 2013.
[93]Li, Wei; Liu, Minbo; Feng, Shanshan; Li, Xiaomin; Wang, Jinxiu; Shen, Dengke; Li, Yuhui; Sun, Zhenkun; Elzatahry, Ahmed A.; Lu, Haojie; Zhao, Dongyuan, Template-free synthesis of uniform magnetic mesoporous TiO2 nanospindles for highly selective enrichment of phosphopeptides, Materials Horizons, 1, p.439-445, 2014.
[94]Li, Wei; Deng, Yonghui; Wu, Zhangxiong; Qian, Xufang; Yang, Jianping; Wang, Yao; Gu, Dong; Zhang, Fan; Tu, Bo; Zhao, Dongyuan, Hydrothermal Etching Assisted Crystallization: A Facile Route to Functional Yolk-Shell Titanate Microspheres with Ultrathin Nanosheets-Assembled Double Shells, Journal of the American Chemical Society, 133, p.15830-15833, 2011.
[95]Fuertes, Antonio B.; Valle-Vigon, Patricia; Sevilla, Marta, One-step synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules, Chemical Communications, 48, p.6124-p.6126, 2012.
[96]Liu, Chao; Wang, Jing; Li, Jiansheng; Zeng, Mengli; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun, Synthesis of N-Doped Hollow-Structured Mesoporous Carbon Nanospheres for High-Performance Supercapacitors, ACS Applied Materials & Interfaces, 8, p.7194-7204, 2016.
[97]Wang, Xin; Li, Shuying; Yang, Guangsheng; Jin, Changzi; Huang, Shengjun, Insights into the Resorcinol-Formaldehyde Resin Coating Process Focusing on Surface Modification of Colloidal SiO2 Particles, Langmuir, 36, p.2654-2662, 2020.
[98]Xie, Zhengzheng; Shang, Xiaohong; Yan, Junbin; Hussain, Taimoor; Nie, Pengfei; Liu, Jianyun, Biomass-derived porous carbon anode for high-performance capacitive deionization, Electrochimica Acta, 290, p.666-675, 2018.
[99]Dobiasova, L; Stary, V; Glogar, P; Valvoda, V, Analysis of carbon fibers and carbon composites by asymmetric X-ray diffraction technique, Carbon, 37, p.621-625, 1999.
[100]Wei, Tongye; Wei, Xiaolin; Gao, Yong; Li, Huaming, Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors, Electrochimica Acta, 169, p.186-194, 2015.
[101]Sevilla, Marta; Fuertes, Antonio B., Fabrication of porous carbon monoliths with a graphitic framework, Carbon, 56, p.155-166, 2013.
[102]Ferrari, AC; Robertson, J, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, 61, p.14095-14107, 2000.
[103]Tang, Hongwei; Si, Yanli; Chang, Kun; Fu, Xiaoning; Li, Bao; Shangguan, Enbo; Chang, Zhaorong; Yuan, Xiao-Zi; Wang, Haijiang, Carbon gel assisted low temperature liquid-phase synthesis of CLiFePO4/graphene layers with high rate and cycle performances, Journal of Power Sources, 295, p.131-138, 2015.
[104]Hernandez-Rentero, Celia; Marangon, Vittorio; Olivares-Marin, Mara; Gomez-Serrano, Vicente; Caballero, Alvaro; Morales, Julian; Hassoun, Jusef, Alternative lithium-ion battery using biomass-derived carbons as environmentally sustainable anode, Journal of colloid and Interface Science, 573, p.396-408, 2020.
[105]Hu, Yi; Quan, Hongying; Cui, Jingmiao; Luo, Wansheng; Zeng, Weiliang; Chen, Dezhi, Carbon nanodot modified N, O-doped porous carbon for solid-state supercapacitor: A comparative study with carbon nanotube and graphene oxide, Journal of Alloys and Compounds, 877, 2021.
[106]Zhang, Qian; Wang, Ni; Zhao, Peng; Yao, Mengqi; Hu, Wencheng, Azide-assisted hydrothermal synthesis of N-doped mesoporous carbon cloth for high-performance symmetric supercapacitor employing LiClO4 as electrolyte, Composites Part A-Applied Science and Manufacturing, 98, p.58-65, 2017.
[107]Lim, Jonghui; Lee, Na-Eun; Lee, Eunji; Yoon, Sangwoon, Surface Modification of Citrate-Capped Gold Nanoparticles Using CTAB Micelles, Bulletin of The Korean Chemical Society, 35, p.2567-2569, 2014.
[108]Khademi, Mahmoud; Wang, Wuchun; Reitinger, Wolfgang; Barz, Dominik P. J., Zeta Potential of Poly(methyl methacrylate) (PMMA) in Contact with Aqueous Electrolyte-Surfactant Solutions, Langmuir, 33, p.10473-10482, 2017.
[109]Dong, Cui; Li, Zhaohui; Zhang, Lin; Li, Guangheng; Yao, Hongchang; Wang, Jianshe; Liu, Qingchao; Li, Zhongjun, Synthesis of hollow carbon spheres from polydopamine for electric double layered capacitors application, Diamond and Related Materials, 92, p.32-40, 2019.
[110]Zhu, Jun; Shi, Hongwei; Zhuo, Xin; Hu, Yalin, Fe-Catalyzed Synthesis of Porous Carbons Spheres with High Graphitization Degree for High-Performance Supercapacitors, Journal of Electronic Materials, 46, p.5995-6000, 2017.
[111]Chu, A; Braatz, P, Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization, Journal of Power Sources, 112, p.236-246, 2002.
[112]Li, Zhen; Li, Yanfeng; Wang, Liang; Cao, Ling; Liu, Xiang; Chen, Zhiwen; Pan, Dengyu; Wu, Minghong, Assembling nitrogen and oxygen co-doped graphene quantum dots onto hierarchical carbon networks for all-solid-state flexible supercapacitors, Electrochimica Acta, 235, p.561-569, 2017.
[113]Cheng, Yingwen; Lu, Songtao; Zhang, Hongbo; Varanasi, Chakrapani V.; Liu, Jie, Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors, Nano Letters, 12, p.4206-4211, 2012.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top