|
[1]International Energy Agency, Coal final consumption by sector World, 1990-2019, from https://www.iea.org/fuels-and-technologies/coal#data-browser. [2]Sevilla, Marta; Mokaya, Robert, Energy storage applications of activated carbons: supercapacitors and hydrogen storage, Energy & Environmental Science, 7, p.1250-1280, 2014. [3]Zhang, Li Li; Zhao, X. S., Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews, 38, p.2520-2531, 2009. [4]Burke, A., R&D considerations for the performance and application of electrochemical capacitors, Electrochimica Acta, 53, p.1083-1091, 2007. [5]Gamby, J.; Taberna, P. L.; Simon, P.; Fauvarque, J. F.; Chesneau, M., Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, Journal Power Sources, 101, p.109-116, 2001. [6]Chen, Li-Feng; Zhang, Xu-Dong; Liang, Hai-Wei; Kong, Mingguang; Guan, Qing-Fang; Chen, Ping; Wu, Zhen-Yu; Yu, Shu-Hong, Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors, ACS Nano, 6, p.7092-7102, 2012. [7]Wang, Yan; Shi, Zhiqiang; Huang, Yi; Ma, Yanfeng; Wang, Chengyang; Chen, Mingming; Chen, Yongsheng, Supercapacitor Devices Based on Graphene Materials, Journal of Physical Chemistry C, 113, p.13103-13107, 2009. [8]Kaempgen, Martti; Chan, Candace K.; Ma, J.; Cui, Yi; Gruner, George, Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes, Nano Letters, 9, p.1872-1876, 2009. [9]Seo, Sang Wan; Choi, Yun Jeong; Kim, Ji Hong; Cho, Jong Hoon; Lee, Young-Seak; Im, Ji Sun, Micropore-structured activated carbon prepared by waste PET/petroleum-based pitch, Carbon Letters, 29, p.385-392, 2009. [10]Hou, Lijie; Hu, Zhongai; Wang, Xiaotong; Qiang, Lulu; Zhou, Yi; Lv, Liwen; Li, Shanshan, Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors, Journal of Colloid and Interface Science, 540, p.88-96, 2019. [11]Tsai, Cheng-Yen; Tai, Hung-Chun; Su, Chien-An; Chiang, Li-Ming; Li, Yuan-Yao, Activated Microporous Carbon Nanospheres for Use in Supercapacitors, ACS Applied Nano Materials, 3, p.10380-10388, 2020. [12]Divyashree, A.; Hegde, Gurumurthy, Activated carbon nanospheres derived from bio-waste materials for supercapacitor applications - a review, RSC Advances, 5, p.88339-88352, 2015. [13]Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L., Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 313, p.1760-1763, 2006. [14]Jadhav, Vijaykumar V.; Mane, Rajaram S.; Shinde, Pritamkumar V., Electrochemical Supercapacitors: History, Types, Designing Processes, Operation Mechanisms, and Advantages and Disadvantages, Bismuth-Ferrite-Based Electrochemical Supercapacitors, p.11-36, 2020. [15]Kim, Brian Kihun; Sy, Serubbable; Yu, Aiping; Zhang, Jinjun, Electrochemical Supercapacitors for Energy Storage and Conversion, Handbook of Clean Energy Systems, 2015. [16]Atwell, Cabe, Supercapacitors: Past, Present, and Future, 2018, from https://www.electronicdesign.com/technologies/alternative-energy/article/21199519/supercapacitors-past-present-and-future [17]Javaid, A., 11 - Activated carbon fiber for energy storage, Activated Carbon Fiber and Textiles, p.281-303, 2017. [18]Zhang, Sanliang; Pan, Ning, Supercapacitors Performance Evaluation, Advance Energy Materials, 5, 2015. [19]Khan, N.; Mariun, N.; Zaki, M.; Dinesh, L., TENCON 2000, 3, p.193-199. [20]Conway, Brian Evans, Encyclopedia of Surface and Colloid Science, Dekker Publishing Co, 2002. [21]Garrison Sposito, Gouy-Chapman Theory, Encyclopedia of Geochemistry, 2018. [22]Oldham, Keith B., A Gouy-Chapman-Stern model of the double layer at a (metal)/(ionic liquid) interface, Journal of Electroanalytical Chemistry, 613, p.131-138, 2008. [23]Herr Otto Stern, Zur theorie der elektrolytischen doppelschicht, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 30, p.508, 1924. [24]Jeon, Sohyun; Jeong, Ji Hwan; Yoo, Hyomin; Yu, Hak Ki; Kim, Bo-Hye; Kim, Myung Hwa, RuO2 Nanorods on Electrospun Carbon Nanofibers for Supercapacitors, ACS Applied Nano Materials, 3, p.3847-3858, 2020 [25]Maheswari, Nallappan; Muralidharan, Gopalan, Supercapacitor Behavior of Cerium Oxide Nanoparticles in Neutral Aqueous Electrolytes, Energy & Fuels, 29, p.8246-8253, 2015. [26]Zhang, Xiaoyan; Wang, Xianyou; Jiang, Lanlan; Wu, Hao; Wu, Chun; Su, Jingcang, Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons, Journal of Power Sources, 216, p.290-296, 2012. [27]Fan, Yang; Yang, Xin; Zhu, Bing; Liu, Pei-Fang; Lu, Hai-Ting, Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors, Journal of Power Sources, 268, p.584-590, 2014. [28]Rufford, Thomas E.; Hulicova-Jurcakova, Denisa; Zhu, Zhonghua; Lu, Gao Qing, Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors, Electrochemistry Communications, 10, p.1594-1597, 2008. [29]Scibioh, M. Aulice; Viswanathan, B., Chapter 4 - Electrolyte materials for supercapacitors, Materials for Supercapacitor Applications, p.205-314, 2020. [30]Azais, Philippe; Duclaux, Laurent; Florian, Pierre; Massiot, Dominique; Lillo-Rodenas, Maria-Angeles; Linares-Solano, Angel; Peres, Jean-Paul; Jehoulet, Christophe; Beguin, Frangois, Causes of supercapacitors ageing in organic electrolyte, Journal of Power Sources, 171, p.1046-1053, 2007. [31]Rufford, Thomas E.; Hulicova-Jurcakova, Denisa; Fiset, Erika; Zhu, Zhonghua; Lu, Gao Qing, Double-layer capacitance of waste coffee ground activated carbons in an organic electrolyte, Electrochemistry Communications, 11, p.974-977, 2009. [32]Francisco, Brian E.; Jones, Christina M.; Lee, Se-Hee; Stoldt, Conrad R., Nanostructured all-solid-state supercapacitor based on Li2S-P2S5 glass-ceramic electrolyte, Applied Physics Letters, 100, 2012. [33]Ulihin, A. S.; Mateyshina, Yu. G.; Uvarov, N. F., All-solid-state asymmetric supercapacitors with solid composite electrolytes, Solid State Ionics, 251, p.62-65, 2013. [34]Verma, Mohan L.; Minakshi, Manickam; Singh, Nirbhay K., Synthesis and characterization of solid polymer electrolyte based on activated carbon for solid state capacitor, Electrochimica Acta, 137, p.497-503, 2014. [35]Fang, X.; Yao, D., Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, San Diego, California, USA, 2013. [36]Zhong, Cheng; Deng, Yida; Hu, Wenbin; Qiao, Jinli; Zhang, Lei; Zhang, Jiujun, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chemical Society Reviews, 44, p.7484-7539, 2015. [37]Qin, Kaiqiang; Kang, Jianli; Li, Jiajun; Shi, Chunsheng; Li, Yuxiang; Qiao, Zhijun; Zhao, Naiqin, Free-Standing Porous Carbon Nanofiber/Ultrathin Graphite Hybrid for Flexible Solid-State Supercapacitors, ACS Nano, 9, p.481-487, 2015. [38]Seredych, Mykola; Hulicova-Jurcakova, Denisa; Lu, Gao Qing; Bandosz, Teresa J., Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon, 46, p.1475-1488, 2008. [39]Zhao, Yunhui; Liu, Mingxian; Deng, Xiangxiang; Miao, Ling; Tripathi, Pranav K.; Ma, Xiaomei; Zhu, Dazhang; Xu, Zijie; Hao, Zhixian; Gan, Lihua, Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode, Electrochimica Acta, 153, p.448-455, 2015. [40]Ismagilov, Zinfer R.; Shalagina, Anastasia E.; Podyacheva, Olga Yu.; Ischenko, Arkady V.; Kibis, Lidiya S.; Boronin, Andrey I.; Chesalov, Yury A.; Kochubey, Dmitry I.; Romanenko, Anatoly I.; Anikeeva, Olga B.; Buryakov, Timofey I.; Tkachev, Evgeniy N., Structure and electrical conductivity of nitrogen-doped carbon nanofibers, Carbon, 47, p.1922-1929, 2009. [41]Lin, Gaoxin; Ma, Ruguang; Zhou, Yao; Liu, Qian; Dong, Xiaoping; Wang, Jiacheng, KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction, Electrochimica Acta, 261, p.49-57, 2018. [42]Wei, Qiulong; Xiong, Fangyu; Tan, Shuangshuang; Huang, Lei; Lan, Esther H; Dunn, Bruce; Mai, Liqiang, Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage, Advanced Materials, 29, 2017. [43]Jin, Zhi; Yan, Xiaodong; Yu, Yunhua; Zhao, Guangjie, Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors, Journal of Materials Chemistry A, 2, p.11706-11715, 2014. [44]Kang, Yu Jin; Chun, Sang-Jin; Lee, Sung-Suk; Kim, Bo-Yeong; Kim, Jung Hyeun; Chung, Haegeun; Lee, Sun-Young; Kim, Woong, All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels, ACS Nano, 6, p.6400-6406, 2012. [45]Wang, Zhaohui; Carlsson, Daniel O.; Tammela, Petter; Hua, Kai; Zhang, Peng; Nyholm, Leif; Strømme, Maria, Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances, ACS Nano, 9, p.7563-7571, 2015. [46]Li, Shaohui; Huang, Dekang; Yang, Junchuan; Zhang, Bingya; Zhang, Xiaofan; Yang, Guang; Wang, Mingkui; Shen, Yan, Freestanding bacterial cellulose-polypyrrole nanofibers paper electrodes for advanced energy storage devices, Nano Energy, 9, p.309-317, 2014. [47]Long, Conglai; Qi, Dongping; Wei, Tong; Yan, Jun; Jiang, Lili; Fan, Zhuangjun, Nitrogen-Doped Carbon Networks for High Energy Density Supercapacitors Derived from Polyaniline Coated Bacterial Cellulose, Advanced Functional Material, 24, p.3953-3961, 2014. [48]Mai, Liqiang; Tian, Xiaocong; Xu, Xu; Chang, Liang; Xu, Lin, Nanowire Electrodes for Electrochemical Energy Storage Devices, Chemical Reviews, 114, p.11828-11862, 2014. [49]Cao, Yufang; Xie, Lijing; Sun, Guohua; Su, Fangyuan; Kong, Qing-Qiang; Li, Feng; Ma, Weiping; Shi, Jing; Jiang, Dong; Lu, Chunxiang; Chen, Cheng-Meng, Hollow carbon microtubes from kapok fiber: structural evolution and energy storage performance, Sustainable Energy & Fuels, 2, p.455-465, 2018. [50]Chen, Li-Feng; Huang, Zhi-Hong; Liang, Hai-Wei; Yao, Wei-Tang; Yua, Zi-You; Yu, Shu-Hong, Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose, Energy & Environmental Science, 6, p.3331-3338, 2013. [51]Han, Li-Na; Wei, Xiao; Zhu, Qian-Cheng; Xu, Shu-Mao; Wang, Kai-Xue; Chen, Jie-Sheng, Nitrogen-doped carbon nets with micro/mesoporous structures as electrodes for high-performance supercapacitors, Journal of Materials Chemistry A, 4, p.16698-16705, 2016. [52]Liu, Mengyue; Niu, Jin; Zhang, Zhengping; Dou, Meiling; Wang, Feng, Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors, Nano Energy, 51, p.366-372, 2018. [53]Hou, Yang; Qiu, Ming; Zhang, Tao; Zhuang, Xiaodong; Kim, Chang-Soo; Yuan, Chris; Feng, Xinliang, Ternary Porous Cobalt Phosphoselenide Nanosheets: An Efficient Electrocatalyst for Electrocatalytic and Photoelectrochemical Water Splitting, Advanced Materials, 29, 2017. [54]Hou, Yang; Lohe, Martin R.; Zhang, Jian; Liu, Shaohua; Zhuang, Xiaodong; Feng, Xinliang, Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting, Energy & Environmental Science, 9, p.478-483, 2016. [55]Tan, Chaoliang; Cao, Xiehong; Wu, Xue-Jun; He, Qiyuan; Yang, Jian; Zhang, Xiao; Chen, Junze; Zhao, Wei; Han, Shikui; Nam, Gwang-Hyeon; Sindoro, Melinda; Zhang, Hua, Recent Advances in Ultrathin Two-Dimensional Nanomaterials, Chem. Rev., 117, p.6225-6331, 2017. [56]Yi, Fang; Ren, Huaying; Shan, Jingyuan; Sun, Xiao; Wei, Di; Liu, Zhongfan, Wearable energy sources based on 2D materials, Chemical Society Reviews, Reviews, 47, p.3152-3188, 2018. [57]He, Yafei; Zhuang, Xiaodong; Lei, Chaojun; Lei, Lecheng; Hou, Yang; Mai, Yiyong; Feng, Xinliang, Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications, Nano Today, 24, p.103-119, 2019. [58]Sankar, S.; Ahmed, Abu Talha Aqueel; Inamdar, Akbar I.; Im, Hyunsik; Bin Im, Young; Lee, Youngmin; Kim, Deuk Young; Lee, Sejoon, Biomass-derived ultrathin mesoporous graphitic carbon nanoflakes as stable electrode material for high-performance supercapacitors, Mater Design, 169, 2019. [59]Purkait, Taniya; Singh, Guneet; Singh, Mandeep; Kumar, Dinesh; Dey, Ramendra Sundar, Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor, Scientific Reports, 7, 2017. [60]Zhang, Yadi; Hu, Zhongai; An, Yufeng; Guo, Bingshu; An, Ning; Liang, Yarong; Wu, Hongying, High-performance symmetric supercapacitor based on manganese oxyhydroxide nanosheets on carbon cloth as binder-free electrodes, Journal of Power Sources, 311, p.121-129, 2016. [61]Zhang, Yadi; Hu, Zhongai; Liang, Yarong; Yang, Yuying; An, Ning; Li, Zhimin; Wu, Hongying, Growth of 3D SnO2 nanosheets on carbon cloth as a binder-free electrode for supercapacitors, Journal of Materials Chemistry A, 3, p.15057-15067, 2015. [62]Jiang, Hao; Lee, Pooi See; Li, Chunzhong, 3D carbon based nanostructures for advanced supercapacitors, Energy & Environmental Science, 6, p.41-53, 2013. [63]Bi, Zhihong; Kong, Qingqian; Cao, Yufang; Sun, Guohua; Su, Fangyuan; Wei, Xianxia; Li, Xiaoming; Ahmad, Aziz; Xie, Lijing; Chen, Cheng-Meng, Biomass-Derived Porous Carbon Materials with Different Dimensions for Supercapacitor Electrodes: a review, Journal of Materials Chemistry A, 7, p.16028-16045, 2019. [64]Zhao, Gongyuan; Chen, Chong; Yu, Dengfeng; Sun, Lei; Yang, Chenhui; Zhang, Hong; Sun, Ye; Besenbacher, Flemming; Yu, Miao, One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors, Nano Energy, 47, p.547-555, 2018. [65]Abioye, Adekunle Moshood; Ani, Farid Nasir, Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review, Renewable & Sustainable Energy Reviews, 52, p.1282-1293, 2015. [66]Hesas, Roozbeh Hoseinzadeh; Daud, Wan Mohd Ashri Wan; Sahu, J. N., The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review, Journal of Analytical and Applied Pyrolysis, 100, p.1-11, 2013. [67]He, Xiaojun; Ling, Pinghua; Qiu, Jieshan; Yu, Moxin; Zhang, Xiaoyong; Yu, Chang; Zheng, Mingdong, Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density, Journal of Power Sources, 240, p.109-113, 2013. [68]Jin, Xiao-Juan; Yu, Zhi-Ming; Wu, Yu, Preparation of Activated carbon from Lignin Obtained by Straw Pulping by KOH and K2CO3 Chemical Activation [69]Lang, Lang; Hu, Xiao-min; Zhao, Yan; Wang, Jun; Lin, Hong, Corncob waste activated with different pore formers for capacitive deionization (CDI) materials, Desalination and Water Treatment, 155, p.55-63, 2019. [70]Kilic, Murat; Apaydin-Varol, Esin; Putun, Ayse Eren, Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4, Applied Surface Science, 261, p.247-254, 2012. [71]Lillo-Rodenas, MA; Lozano-Castello, D; Cazorla-Amoros, D; Linares-Solano, A, Preparation of activated carbons from Spanish anthracite II. Activation by NaOH, Carbon, 39, p.751-759, 2001. [72]Pereira, Elaine; Oliveira, Luiz C. A.; Vallone, Andrea; Sapag, Karim; Pereira, Marcio, Preparation of activated carbon at low carbonization temperatures: Utilization of FeCl3 as an alternative activating agent, 31, p.1296-1300, 2008. [73]Bedia, J.; Belver, C.; Ponce, S.; Rodriguez, J.; Rodriguez, J. J., Adsorption of antipyrine by activated carbons from FeCl3-activation of Tara gum, Chemical Engineering Journal, 333, p.58-65, 2018. [74]Yorgun, Sait; Yildiz, Derya, Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4, Journal of The Taiwan Institute of Chemical Engineers, 53, p.122-131, 2015. [75]Eduardo Vargas, Jaime; Giraldo Gutierrez, Liliana; Carlos Moreno-Pirajan, Juan, Preparation of activated carbons from seeds of Mucuna mutisiana by physical activation with steam, Journal of Analytical and Applied Pyrolysis, 89, p.307-312, 2010. [76]Nabais, Joao M. Valente; Nunes, Pedro; Carrott, Peter J. M.; Carrott, M. Manuela L. Ribeiro; Macias-Garcia, A.; Diaz-Diez, M. A., Production of activated carbons from coffee endocarp by CO2 and steam activation, Fuel Processing Technology, 89, p.262-268, 2008. [77]Farma, R.; Deraman, M.; Awitdrus, A.; Talib, I. A.; Taer, E.; Basri, N. H.; Manjunatha, J. G.; Ishak, M. M.; Dollah, B. N. M; Hashmi, S. A., Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors, Bioresource Technology, 132, p.254-261, 2013. [78]Ismanto, Andrian Evan; Wang, Steven; Soetaredjo, Felycia Edi; Ismadji, Suryadi, Preparation of capacitor's electrode from cassava peel waste, 101, p.3534-3540, 2010. [79]Deng, Hui; Li, Guoxue; Yang, Hongbing; Tang, Jiping; Tang, Jiangyun, Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation, 163, p.373-381, 2010. [80]Foo, K. Y.; Hameed, B. H., Preparation of activated carbon from date stones by microwave induced chemical activation: Application for methylene blue adsorption, Chemical Engineering Journal, 170, p.338-341, 2011. [81]Foo, K. Y.; Hameed, B. H., Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating, 111, p.425-432, 2012. [82]Foo, K. Y.; Hameed, B. H., Preparation of activated carbon by microwave heating of langsat (Lansium domesticum) empty fruit bunch waste, Bioresource Technology, 116, p.522-525, 2012. [83]Deng, Hu; Yang, Le; Tao, Guanghui; Dai, Jiulei, Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation-Application in methylene blue adsorption from aqueous solution, Journal of Hazardous Materials, 166, p.1514-1521, 2009. [84]Wang, Tonghua; Tan, Suxia; Liang, Changhai, Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation, 47, p.1800-1883, 2009. [85]Deng, Hui; Zhang, Genlin; Xu, Xiaolin; Tao, Guanghui; Dai, Jiulei, Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation, Journal of Hazardous Materials, 182, p.217-224, 2010. [86]Hesas, Roozbeh Hoseinzadeh; Daud, Wan Mohd Ashri Wan; Sahu, J. N.; Arami-Niya, Arash, The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review, 100, p.1-11, 2013. [87]Yuen, Foo Keng; Hameed, B. H., Recent developments in the preparation and regeneration of activated carbons by microwaves, 149, p.19-27, 2009. [88]Li, Wei; Zhao, Dongyuan, An overview of the synthesis of ordered mesoporous materials, Chemical Communications, 49, p.943-946, 2013. [89]Li, Wei; Liu, Jun; Zhao, Dongyuan, Mesoporous materials for energy conversion and storage devices, Nature Reviews Materials, 1, p. 16023, 2016. [90]Wei, Jing; Wang, Hai; Deng, Yonghui; Sun, Zhenkun; Shi, Lin; Tu, Bo; Luqman, Mohammad; Zhao, Dongyuan, Solvent Evaporation Induced Aggregating Assembly Approach to Three-Dimensional Ordered Mesoporous Silica with Ultralarge Accessible Mesopores, Journal of the American Chemical Society, 133, p.20369-20377, 2011. [91]Deng, Yonghui; Wei, Jing; Sun, Zhenkun; Zhao, Dongyuan, Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers, Chemical Society Reviews, 42, p.4054-4070, 2013. [92]Petkovich, Nicholas D.; Stein, Andreas, Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating, Chemical Society Reviews, 42, p.3721-3739, 2013. [93]Li, Wei; Liu, Minbo; Feng, Shanshan; Li, Xiaomin; Wang, Jinxiu; Shen, Dengke; Li, Yuhui; Sun, Zhenkun; Elzatahry, Ahmed A.; Lu, Haojie; Zhao, Dongyuan, Template-free synthesis of uniform magnetic mesoporous TiO2 nanospindles for highly selective enrichment of phosphopeptides, Materials Horizons, 1, p.439-445, 2014. [94]Li, Wei; Deng, Yonghui; Wu, Zhangxiong; Qian, Xufang; Yang, Jianping; Wang, Yao; Gu, Dong; Zhang, Fan; Tu, Bo; Zhao, Dongyuan, Hydrothermal Etching Assisted Crystallization: A Facile Route to Functional Yolk-Shell Titanate Microspheres with Ultrathin Nanosheets-Assembled Double Shells, Journal of the American Chemical Society, 133, p.15830-15833, 2011. [95]Fuertes, Antonio B.; Valle-Vigon, Patricia; Sevilla, Marta, One-step synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules, Chemical Communications, 48, p.6124-p.6126, 2012. [96]Liu, Chao; Wang, Jing; Li, Jiansheng; Zeng, Mengli; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun, Synthesis of N-Doped Hollow-Structured Mesoporous Carbon Nanospheres for High-Performance Supercapacitors, ACS Applied Materials & Interfaces, 8, p.7194-7204, 2016. [97]Wang, Xin; Li, Shuying; Yang, Guangsheng; Jin, Changzi; Huang, Shengjun, Insights into the Resorcinol-Formaldehyde Resin Coating Process Focusing on Surface Modification of Colloidal SiO2 Particles, Langmuir, 36, p.2654-2662, 2020. [98]Xie, Zhengzheng; Shang, Xiaohong; Yan, Junbin; Hussain, Taimoor; Nie, Pengfei; Liu, Jianyun, Biomass-derived porous carbon anode for high-performance capacitive deionization, Electrochimica Acta, 290, p.666-675, 2018. [99]Dobiasova, L; Stary, V; Glogar, P; Valvoda, V, Analysis of carbon fibers and carbon composites by asymmetric X-ray diffraction technique, Carbon, 37, p.621-625, 1999. [100]Wei, Tongye; Wei, Xiaolin; Gao, Yong; Li, Huaming, Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors, Electrochimica Acta, 169, p.186-194, 2015. [101]Sevilla, Marta; Fuertes, Antonio B., Fabrication of porous carbon monoliths with a graphitic framework, Carbon, 56, p.155-166, 2013. [102]Ferrari, AC; Robertson, J, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, 61, p.14095-14107, 2000. [103]Tang, Hongwei; Si, Yanli; Chang, Kun; Fu, Xiaoning; Li, Bao; Shangguan, Enbo; Chang, Zhaorong; Yuan, Xiao-Zi; Wang, Haijiang, Carbon gel assisted low temperature liquid-phase synthesis of CLiFePO4/graphene layers with high rate and cycle performances, Journal of Power Sources, 295, p.131-138, 2015. [104]Hernandez-Rentero, Celia; Marangon, Vittorio; Olivares-Marin, Mara; Gomez-Serrano, Vicente; Caballero, Alvaro; Morales, Julian; Hassoun, Jusef, Alternative lithium-ion battery using biomass-derived carbons as environmentally sustainable anode, Journal of colloid and Interface Science, 573, p.396-408, 2020. [105]Hu, Yi; Quan, Hongying; Cui, Jingmiao; Luo, Wansheng; Zeng, Weiliang; Chen, Dezhi, Carbon nanodot modified N, O-doped porous carbon for solid-state supercapacitor: A comparative study with carbon nanotube and graphene oxide, Journal of Alloys and Compounds, 877, 2021. [106]Zhang, Qian; Wang, Ni; Zhao, Peng; Yao, Mengqi; Hu, Wencheng, Azide-assisted hydrothermal synthesis of N-doped mesoporous carbon cloth for high-performance symmetric supercapacitor employing LiClO4 as electrolyte, Composites Part A-Applied Science and Manufacturing, 98, p.58-65, 2017. [107]Lim, Jonghui; Lee, Na-Eun; Lee, Eunji; Yoon, Sangwoon, Surface Modification of Citrate-Capped Gold Nanoparticles Using CTAB Micelles, Bulletin of The Korean Chemical Society, 35, p.2567-2569, 2014. [108]Khademi, Mahmoud; Wang, Wuchun; Reitinger, Wolfgang; Barz, Dominik P. J., Zeta Potential of Poly(methyl methacrylate) (PMMA) in Contact with Aqueous Electrolyte-Surfactant Solutions, Langmuir, 33, p.10473-10482, 2017. [109]Dong, Cui; Li, Zhaohui; Zhang, Lin; Li, Guangheng; Yao, Hongchang; Wang, Jianshe; Liu, Qingchao; Li, Zhongjun, Synthesis of hollow carbon spheres from polydopamine for electric double layered capacitors application, Diamond and Related Materials, 92, p.32-40, 2019. [110]Zhu, Jun; Shi, Hongwei; Zhuo, Xin; Hu, Yalin, Fe-Catalyzed Synthesis of Porous Carbons Spheres with High Graphitization Degree for High-Performance Supercapacitors, Journal of Electronic Materials, 46, p.5995-6000, 2017. [111]Chu, A; Braatz, P, Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization, Journal of Power Sources, 112, p.236-246, 2002. [112]Li, Zhen; Li, Yanfeng; Wang, Liang; Cao, Ling; Liu, Xiang; Chen, Zhiwen; Pan, Dengyu; Wu, Minghong, Assembling nitrogen and oxygen co-doped graphene quantum dots onto hierarchical carbon networks for all-solid-state flexible supercapacitors, Electrochimica Acta, 235, p.561-569, 2017. [113]Cheng, Yingwen; Lu, Songtao; Zhang, Hongbo; Varanasi, Chakrapani V.; Liu, Jie, Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors, Nano Letters, 12, p.4206-4211, 2012.
|