|
References 1、Fan, Y. V., Jiang, P., Tan, R. R., Aviso, K. B., You, F., Zhao, X., Lee, C. T., & Klemeš, J. J. (2022). Forecasting plastic waste generation and interventions for environmental hazard mitigation. Journal of Hazardous Materials, 424, p. 127330. 2、Zhao, X., Cornish, K., & Vodovotz, Y. (2020). Narrowing the gap for bioplastic use in food packaging: an update. Environmental science & technology, 54(8), p. 4712-4732. 3、Klemeš, J. J., Fan, Y. V., & Jiang, P. (2021). Plastics: friends or foes? The circularity and plastic waste footprint. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(13), p. 1549-1565. 4、Lau, W. W., Shiran, Y., Bailey, R. M., Cook, E., Stuchtey, M. R., Koskella, J., Velis, C. A., Godfrey, L., Boucher, J., & Murphy, M. B. (2020). Evaluating scenarios toward zero plastic pollution. Science, 369(6510), p. 1455-1461. 5、da Costa, J. P., Santos, P. S., Duarte, A. C., & Rocha-Santos, T. (2016). (Nano) plastics in the environment–sources, fates and effects. Science of the total environment, 566, p. 15-26. 6、Bouwmeester, H., Hollman, P. C., & Peters, R. J. (2015). Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: experiences from nanotoxicology. Environmental science & technology, 49(15), p. 8932-8947. 7、Silva, A. L. P., Prata, J. C., Walker, T. R., Campos, D., Duarte, A. C., Soares, A. M., Barcelò, D., & Rocha-Santos, T. (2020). Rethinking and optimising plastic waste management under COVID-19 pandemic: policy solutions based on redesign and reduction of single-use plastics and personal protective equipment. Science of the total environment, 742, 140565. 8、Ghisellini, P., Cialani, C., & Ulgiati, S. (2016). A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner production, 114, p. 11-32. 9、D'Amato, D., Droste, N., Allen, B., Kettunen, M., Lähtinen, K., Korhonen, J., Leskinen, P., Matthies, B. D., & Toppinen, A. (2017). Green, circular, bio economy: A comparative analysis of sustainability avenues. Journal of Cleaner production, 168, p. 716-734. 10、Sherwood, J. (2020). The significance of biomass in a circular economy. Bioresource Technology, 300, 122755. 11、Pinales-Márquez, C. D., Rodríguez-Jasso, R. M., Araújo, R. G., Loredo-Treviño, A., Nabarlatz, D., Gullón, B., & Ruiz, H. A. (2021). Circular bioeconomy and integrated biorefinery in the production of xylooligosaccharides from lignocellulosic biomass: a review. Industrial Crops and Products, 162, 113274. 12、Londo, M., van Stralen, J., Uslu, A., Mozaffarian, H., & Kraan, C. (2018). Lignocellulosic biomass for chemicals and energy: an integrated assessment of future EU market sizes, feedstock availability impacts, synergy and competition effects, and path dependencies. Biofuels, Bioproducts and Biorefining, 12(6), p. 1065-1081. 13、Dahmen, N., Henrich, E., & Henrich, T. (2017). Synthesis gas biorefinery. Biorefineries, p. 217-245. 14、Shams, M., Alam, I., & Mahbub, M. S. (2021). Plastic pollution during COVID-19: Plastic waste directives and its long-term impact on the environment. Environmental Advances, 5, 100119. 15、Tiseo, I. (2021). Global Plastic Production 1950–2019. Chemicals & Resources. 16、Venkatarajan, S., & Athijayamani, A. (2021). An overview on natural cellulose fiber reinforced polymer composites. Materials Today: Proceedings, 37, p. 3620-3624. 17、Shakir, M. A., Azahari, B., Yusup, Y., Yhaya, M. F., Salehabadi, A., & Ahmad, M. I. (2020). Preparation and characterization of mycelium as a bio-matrix in fabrication of bio-composite. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 65(2), p. 253-263. 18、Ghanbari, F., Costanzo, F., Hughes, D. P., & Peco, C. (2020). Phase-field modeling of constrained interactive fungal networks. Journal of the Mechanics and Physics of Solids, 145, 104160. 19、Pelletier, M., Holt, G., Wanjura, J., Greetham, L., McIntyre, G., Bayer, E., & Kaplan-Bie, J. (2019). Acoustic evaluation of mycological biopolymer, an all-natural closed cell foam alternative. Industrial Crops and Products, 139, p. 111533. 20、Jiang, L., Walczyk, D., McIntyre, G., Bucinell, R., & Tudryn, G. (2017). Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms. Journal of Manufacturing Processes, 28, p. 50-59. 21、Jiang, L., Walczyk, D., McIntyre, G., Bucinell, R., & Li, B. (2019). Bioresin infused then cured mycelium-based sandwich-structure biocomposites: resin transfer molding (RTM) process, flexural properties, and simulation. Journal of Cleaner production, 207, p. 123-135. 22、Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L., & Picu, R. (2017). Morphology and mechanics of fungal mycelium. Scientific reports, 7(1), p.1-12. 23、Manan, S., Ullah, M. W., Ul-Islam, M., Atta, O. M., & Yang, G. (2021). Synthesis and applications of fungal mycelium-based advanced functional materials. Journal of Bioresources and Bioproducts, 6(1), p. 1-10. 24、Ghazvinian, A., Farrokhsiar, P., Vieira, F., Pecchia, J., & Gursoy, B. (2019). Mycelium-based bio-composites for architecture: assessing the effects of cultivation factors on compressive strength. 25、Yang, Z., Zhang, F., Still, B., White, M., & Amstislavski, P. (2017). Physical and mechanical properties of fungal mycelium-based biofoam. Journal of Materials in Civil Engineering, 29(7), 04017030. 26、Curto, M. Á., Butassi, E., Ribas, J. C., Svetaz, L. A., & Cortés, J. C. G. (2021). Natural products targeting the synthesis of β(1,3)-D-glucan and chitin of the fungal cell wall. Existing drugs and recent findings. Phytomedicine, 88, 153556. 27、Gastebois, A., Clavaud, C., Aimanianda, V., & Latgé, J.-P. (2009). Aspergillus fumigatus: cell wall polysaccharides, their biosynthesis and organization. Future microbiology, 4(5), p. 583-595. 28、Jones, M., Mautner, A., Luenco, S., Bismarck, A., & John, S. (2020). Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials & Design, 187, 108397. 29、Wikipedia contributors. (2022, June 13). Chitin. In Wikipedia, The Free Encyclopedia. Retrieved 07:55, June 15, 2022, from https://en.wikipedia.org/w/index.php?title=Chitin&oldid=1092866955 30、Wikipedia contributors. (2022, June 9). Tempeh. In Wikipedia, The Free Encyclopedia. Retrieved 07:58, June 15, 2022, from https://en.wikipedia.org/w/index.php?title=Tempeh&oldid=1092337361 31、Appels, F. V. W., Camere, S., Montalti, M., Karana, E., Jansen, K. M. B., Dijksterhuis, J., Krijgsheld, P., & Wösten, H. A. B. (2019). Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Materials & Design, 161, p. 64-71. 32、Elsacker, E., Søndergaard, A., Van Wylick, A., Peeters, E., & De Laet, L. (2021). Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. Construction and Building Materials, 283, 122732. 33、Kuribayashi, T., Lankinen, P., Hietala, S., & Mikkonen, K. S. (2022). Dense and continuous networks of aerial hyphae improve flexibility and shape retention of mycelium composite in the wet state. Composites Part A: Applied Science and Manufacturing, 152, 106688. 34、Soh, E., Chew, Z. Y., Saeidi, N., Javadian, A., Hebel, D., & Le Ferrand, H. (2020). Development of an extrudable paste to build mycelium-bound composites. Materials & Design, 195, 109058. 35、Girometta, C., Picco, A. M., Baiguera, R. M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M., & Savino, E. (2019). Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review. Sustainability, 11(1), 281. 36、Ross, P. (2016). Method for producing fungus structures. In: Google Patents. 37、Ul-Islam, M., Wajid Ullah, M., Khan, S., Kamal, T., Ul-Islam, S., Shah, N., & Kon Park, J. (2016). Recent advancement in cellulose based nanocomposite for addressing environmental challenges. Recent patents on nanotechnology, 10(3), p. 169-180. 38、Jasim, A., Ullah, M. W., Shi, Z., Lin, X., & Yang, G. (2017). Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor. Carbohydrate polymers, 163, p. 62-69. 39、Ul-Islam, M., Subhan, F., Islam, S. U., Khan, S., Shah, N., Manan, S., Ullah, M. W., & Yang, G. (2019). Development of three-dimensional bacterial cellulose/chitosan scaffolds: analysis of cell-scaffold interaction for potential application in the diagnosis of ovarian cancer. International journal of biological macromolecules, 137, p. 1050-1059. 40、Farooq, U., Ullah, M. W., Yang, Q., Aziz, A., Xu, J., Zhou, L., & Wang, S. (2020). High-density phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus. Biosensors and Bioelectronics, 157, 112163. 41、Hyde, K., Bahkali, A., & Moslem, M. (2010). Fungi—an unusual source for cosmetics. Fungal diversity, 43(1), p. 1-9. 42、Poucheret, P., Fons, F., & Rapior, S. (2006). Biological and pharmacological activity of higher fungi: 20-year retrospective analysis. Cryptogamie Mycologie, 27(4), 311. 43、Kalač, P. (2013). A review of chemical composition and nutritional value of wild‐growing and cultivated mushrooms. Journal of the Science of Food and Agriculture, 93(2), p. 209-218. 44、Madurwar, M. V., Ralegaonkar, R. V., & Mandavgane, S. A. (2013). Application of agro-waste for sustainable construction materials: A review. Construction and Building Materials, 38, p. 872-878. 45、Collet, F., & Pretot, S. (2014). Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Construction and Building Materials, 65, p. 612-619. 46、Yang, Z., Zhang, F., Still, B., White, M., & Amstislavski, P. (2017). Physical and mechanical properties of fungal mycelium-based biofoam. Journal of Materials in Civil Engineering, 29(7), 04017030. 47、Abhijith, R., Ashok, A., & Rejeesh, C. (2018). Sustainable packaging applications from mycelium to substitute polystyrene: a review. Materials Today: Proceedings, 5(1), 2139-2145. 48、Ziegler, A. R., Bajwa, S. G., Holt, G. A., McIntyre, G., & Bajwa, D. S. (2016). Evaluation of physico-mechanical properties of mycelium reinforced green biocomposites made from cellulosic fibers. Applied engineering in agriculture, 32(6), p. 931-938. 49、Pelletier, M., Holt, G., Wanjura, J., Bayer, E., & McIntyre, G. (2013). An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Industrial Crops and Products, 51, p. 480-485. 50、Lelivelt, R., Lindner, G., Teuffel, P., & Lamers, H. (2015). The production process and compressive strength of mycelium-based materials. First International Conference on Bio-based Building Materials. P. 22-25 . 51、Liu, R., Long, L., Sheng, Y., Xu, J., Qiu, H., Li, X., Wang, Y., & Wu, H. (2019). Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties. Industrial Crops and Products, 141, 111732. 52、I. G. Research . (2021). Mushroom Packaging Market: Global Industry Analysis, Trends, Market Size, and Forecasts up to 2027. Mushroom Packaging Market, 5438572
|