跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/06 15:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝沛築
研究生(外文):SIE, PEI-JHU
論文名稱:以豆渣和茶葉渣為基質培養菌絲體生物複合材料
論文名稱(外文):Development of Mycelium Based Biocomposite from Soybean Pulp and Spent Tea Leave
指導教授:鄭宇伸
指導教授(外文):CHENG, YU-SHEN
口試委員:藍祺偉張嘉修王惠民周宗翰
口試委員(外文):LAN, CHI-WEICHANG, JO-SHUWANG, HUI-MINChou, Tzung-Han
口試日期:2022-07-05
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:43
中文關鍵詞:菌絲體有機廢棄物生物緩衝材可再生生物材料
外文關鍵詞:MyceliumOrganic wasteRenewable biomaterialMycelium packaging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
自 1950 年以來,已經製造了超過 83 億噸塑料,並且需要幾個世紀才能分解。因此,未來的可持續發展需要可生物降解的材料。利用來自農業和食品加工業的有機廢物和植物生物質作為生產原料是實現可持續和循環經濟的一種途徑。近來,近來利用長生菌絲的粘性和快速生長來製備多功能材料。本研究的主要目的是利用食品加工有機廢棄物,包括豆漿和廢茶葉,作為原料,接種少孢根黴菌,製成生物複合材料。製備的生物複合材料會隨者乾燥溫度和組成的變化以改變其機械性能。豆漿和廢茶葉是可再生原料,可在當地大量供應。它們不與糧食和農業資源競爭,並且可以以合理的成本獲得。此外,它們的增值可以防止不適當的廢物處理相關的環境污染。結果表明,本研究開發的生物複合材料具有與聚苯乙烯相當的力學性能,EPS 抗彎強度介於 0.07 -0.69 MPa ,本實驗研究出的菌絲複合材料強度則為0.06-0.58 MPa之間,且不含化學粘合劑,可作為一種新型複合材料。
Synthetic plastic decomposes over hundreds of years and have hazardous properties that may impair the healthy and environment. .Therefore, the use of biodegradable and environmentally friendly raw materials is the right choice in order to fulfill the economic circulation of sustainable development. The stickiness and rapid growth of fungal mycelium have recently been used to prepare functional plates. The main goal of this research is to use food processing organic wastes, including soybean pulp and spent tea leaves, as raw materials with inoculation of Rhizopus oligosporus to make bio-plywood. The prepared mycelium-based bio-composite change their mechanical properties with drying temperature and composition.Soybean pulp and spent tea leaves are renewable raw materials that can be provided in large quantities locally. They do not compete with food and agricultural resources and can be obtained at reasonable costs. Additionally, their valorization can prevent the environmental pollution associated with inappropriate waste treatment. The results show that the mycelium-based bio-composite developed in this study has mechanical properties comparable to polystyrene and does not contain chemical binders, The flexural strength of EPS is between 0.07-0.69 MPa, and the strength of the mycelial composite material studied in this experiment is between 0.06-0.58 MPa. which can be used as a new type of composite materials.
Table of contents

摘要 i
Abstract ii
Table of contents iii
List of tables v
List of figures vi
Chapter 1. Introduction 1
1.1 Plastic usage soars due to the COVID-19 1
1.2 Mycelium composite is an NFPC (natural fiber polymer composite) 3
1.3 The main component of the mycelial cell wall 5
1.4 Rhizopus oligosporus is a fast-growing Rhizopus species 6
1.5 Green cycle of mycelial composites 8
1.6 Commercial applications of mycelial composites 9
1.7 Mycelium Packaging Market and Estimated Market 11
1.8 The product cycle estimated in this experiment 12
Chapter 2 13
2.1 Experimental reagents and materials 13
2.2 Experimental instruments 13
2.3 Stock substrate for culturing mycelium 14
2.4 Preparation of Mycelium Composites and Sample 14
2.4.1 Culturing mycelial complex 14
2.4.2 Prepare the mycelial composite to be tested 14
2.5 Water absorption test 15
2.6 FTIR 15
2.7 Flexural tests 16
2.8 Compression test 17
2.9 Biodegradable test 17
Chapter 3 Results and discussion 18
3.1Mycelium composite appearance 18
3.2.SEM analysis 20
3.3 Growth rate 22
3.4.Density of mycelial composites 23
3.5.Water absorption test 24
3.6 FTIR 25
3.7.Flexural tests 27
3.7.1 Flexural modulud 27
3.7.2 Flexural strength 28
3.8 Compression test 29
3.9 Biodegradable test 31
Chapter 4. Conclusion 39
References 40


References
1、Fan, Y. V., Jiang, P., Tan, R. R., Aviso, K. B., You, F., Zhao, X., Lee, C. T., & Klemeš, J. J. (2022). Forecasting plastic waste generation and interventions for environmental hazard mitigation. Journal of Hazardous Materials, 424, p. 127330.
2、Zhao, X., Cornish, K., & Vodovotz, Y. (2020). Narrowing the gap for bioplastic use in food packaging: an update. Environmental science & technology, 54(8), p. 4712-4732.
3、Klemeš, J. J., Fan, Y. V., & Jiang, P. (2021). Plastics: friends or foes? The circularity and plastic waste footprint. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(13), p. 1549-1565.
4、Lau, W. W., Shiran, Y., Bailey, R. M., Cook, E., Stuchtey, M. R., Koskella, J., Velis, C. A., Godfrey, L., Boucher, J., & Murphy, M. B. (2020). Evaluating scenarios toward zero plastic pollution. Science, 369(6510), p. 1455-1461.
5、da Costa, J. P., Santos, P. S., Duarte, A. C., & Rocha-Santos, T. (2016). (Nano) plastics in the environment–sources, fates and effects. Science of the total environment, 566, p. 15-26.
6、Bouwmeester, H., Hollman, P. C., & Peters, R. J. (2015). Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: experiences from nanotoxicology. Environmental science & technology, 49(15), p. 8932-8947.
7、Silva, A. L. P., Prata, J. C., Walker, T. R., Campos, D., Duarte, A. C., Soares, A. M., Barcelò, D., & Rocha-Santos, T. (2020). Rethinking and optimising plastic waste management under COVID-19 pandemic: policy solutions based on redesign and reduction of single-use plastics and personal protective equipment. Science of the total environment, 742, 140565.
8、Ghisellini, P., Cialani, C., & Ulgiati, S. (2016). A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner production, 114, p. 11-32.
9、D'Amato, D., Droste, N., Allen, B., Kettunen, M., Lähtinen, K., Korhonen, J., Leskinen, P., Matthies, B. D., & Toppinen, A. (2017). Green, circular, bio economy: A comparative analysis of sustainability avenues. Journal of Cleaner production, 168, p. 716-734.
10、Sherwood, J. (2020). The significance of biomass in a circular economy. Bioresource Technology, 300, 122755.
11、Pinales-Márquez, C. D., Rodríguez-Jasso, R. M., Araújo, R. G., Loredo-Treviño, A., Nabarlatz, D., Gullón, B., & Ruiz, H. A. (2021). Circular bioeconomy and integrated biorefinery in the production of xylooligosaccharides from lignocellulosic biomass: a review. Industrial Crops and Products, 162, 113274.
12、Londo, M., van Stralen, J., Uslu, A., Mozaffarian, H., & Kraan, C. (2018). Lignocellulosic biomass for chemicals and energy: an integrated assessment of future EU market sizes, feedstock availability impacts, synergy and competition effects, and path dependencies. Biofuels, Bioproducts and Biorefining, 12(6), p. 1065-1081.
13、Dahmen, N., Henrich, E., & Henrich, T. (2017). Synthesis gas biorefinery. Biorefineries, p. 217-245.
14、Shams, M., Alam, I., & Mahbub, M. S. (2021). Plastic pollution during COVID-19: Plastic waste directives and its long-term impact on the environment. Environmental Advances, 5, 100119.
15、Tiseo, I. (2021). Global Plastic Production 1950–2019. Chemicals & Resources.
16、Venkatarajan, S., & Athijayamani, A. (2021). An overview on natural cellulose fiber reinforced polymer composites. Materials Today: Proceedings, 37, p. 3620-3624.
17、Shakir, M. A., Azahari, B., Yusup, Y., Yhaya, M. F., Salehabadi, A., & Ahmad, M. I. (2020). Preparation and characterization of mycelium as a bio-matrix in fabrication of bio-composite. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 65(2), p. 253-263.
18、Ghanbari, F., Costanzo, F., Hughes, D. P., & Peco, C. (2020). Phase-field modeling of constrained interactive fungal networks. Journal of the Mechanics and Physics of Solids, 145, 104160.
19、Pelletier, M., Holt, G., Wanjura, J., Greetham, L., McIntyre, G., Bayer, E., & Kaplan-Bie, J. (2019). Acoustic evaluation of mycological biopolymer, an all-natural closed cell foam alternative. Industrial Crops and Products, 139, p. 111533.
20、Jiang, L., Walczyk, D., McIntyre, G., Bucinell, R., & Tudryn, G. (2017). Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms. Journal of Manufacturing Processes, 28, p. 50-59.
21、Jiang, L., Walczyk, D., McIntyre, G., Bucinell, R., & Li, B. (2019). Bioresin infused then cured mycelium-based sandwich-structure biocomposites: resin transfer molding (RTM) process, flexural properties, and simulation. Journal of Cleaner production, 207, p. 123-135.
22、Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L., & Picu, R. (2017). Morphology and mechanics of fungal mycelium. Scientific reports, 7(1), p.1-12.
23、Manan, S., Ullah, M. W., Ul-Islam, M., Atta, O. M., & Yang, G. (2021). Synthesis and applications of fungal mycelium-based advanced functional materials. Journal of Bioresources and Bioproducts, 6(1), p. 1-10.
24、Ghazvinian, A., Farrokhsiar, P., Vieira, F., Pecchia, J., & Gursoy, B. (2019). Mycelium-based bio-composites for architecture: assessing the effects of cultivation factors on compressive strength.
25、Yang, Z., Zhang, F., Still, B., White, M., & Amstislavski, P. (2017). Physical and mechanical properties of fungal mycelium-based biofoam. Journal of Materials in Civil Engineering, 29(7), 04017030.
26、Curto, M. Á., Butassi, E., Ribas, J. C., Svetaz, L. A., & Cortés, J. C. G. (2021). Natural products targeting the synthesis of β(1,3)-D-glucan and chitin of the fungal cell wall. Existing drugs and recent findings. Phytomedicine, 88, 153556.
27、Gastebois, A., Clavaud, C., Aimanianda, V., & Latgé, J.-P. (2009). Aspergillus fumigatus: cell wall polysaccharides, their biosynthesis and organization. Future microbiology, 4(5), p. 583-595.
28、Jones, M., Mautner, A., Luenco, S., Bismarck, A., & John, S. (2020). Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials & Design, 187, 108397.
29、Wikipedia contributors. (2022, June 13). Chitin. In Wikipedia, The Free Encyclopedia.
Retrieved 07:55, June 15, 2022,
from https://en.wikipedia.org/w/index.php?title=Chitin&oldid=1092866955
30、Wikipedia contributors. (2022, June 9). Tempeh. In Wikipedia, The Free Encyclopedia.
Retrieved 07:58, June 15, 2022,
from https://en.wikipedia.org/w/index.php?title=Tempeh&oldid=1092337361
31、Appels, F. V. W., Camere, S., Montalti, M., Karana, E., Jansen, K. M. B., Dijksterhuis, J., Krijgsheld, P., & Wösten, H. A. B. (2019). Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Materials & Design, 161, p. 64-71.
32、Elsacker, E., Søndergaard, A., Van Wylick, A., Peeters, E., & De Laet, L. (2021). Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. Construction and Building Materials, 283, 122732.
33、Kuribayashi, T., Lankinen, P., Hietala, S., & Mikkonen, K. S. (2022). Dense and continuous networks of aerial hyphae improve flexibility and shape retention of mycelium composite in the wet state. Composites Part A: Applied Science and Manufacturing, 152, 106688.
34、Soh, E., Chew, Z. Y., Saeidi, N., Javadian, A., Hebel, D., & Le Ferrand, H. (2020). Development of an extrudable paste to build mycelium-bound composites. Materials & Design, 195, 109058.
35、Girometta, C., Picco, A. M., Baiguera, R. M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M., & Savino, E. (2019). Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review. Sustainability, 11(1), 281.
36、Ross, P. (2016). Method for producing fungus structures. In: Google Patents.
37、Ul-Islam, M., Wajid Ullah, M., Khan, S., Kamal, T., Ul-Islam, S., Shah, N., & Kon Park, J. (2016). Recent advancement in cellulose based nanocomposite for addressing environmental challenges. Recent patents on nanotechnology, 10(3), p. 169-180.
38、Jasim, A., Ullah, M. W., Shi, Z., Lin, X., & Yang, G. (2017). Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor. Carbohydrate polymers, 163, p. 62-69.
39、Ul-Islam, M., Subhan, F., Islam, S. U., Khan, S., Shah, N., Manan, S., Ullah, M. W., & Yang, G. (2019). Development of three-dimensional bacterial cellulose/chitosan scaffolds: analysis of cell-scaffold interaction for potential application in the diagnosis of ovarian cancer. International journal of biological macromolecules, 137, p. 1050-1059.
40、Farooq, U., Ullah, M. W., Yang, Q., Aziz, A., Xu, J., Zhou, L., & Wang, S. (2020). High-density phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus. Biosensors and Bioelectronics, 157, 112163.
41、Hyde, K., Bahkali, A., & Moslem, M. (2010). Fungi—an unusual source for cosmetics. Fungal diversity, 43(1), p. 1-9.
42、Poucheret, P., Fons, F., & Rapior, S. (2006). Biological and pharmacological activity of higher fungi: 20-year retrospective analysis. Cryptogamie Mycologie, 27(4), 311.
43、Kalač, P. (2013). A review of chemical composition and nutritional value of wild‐growing and cultivated mushrooms. Journal of the Science of Food and Agriculture, 93(2), p. 209-218.
44、Madurwar, M. V., Ralegaonkar, R. V., & Mandavgane, S. A. (2013). Application of agro-waste for sustainable construction materials: A review. Construction and Building Materials, 38, p. 872-878.
45、Collet, F., & Pretot, S. (2014). Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Construction and Building Materials, 65, p. 612-619.
46、Yang, Z., Zhang, F., Still, B., White, M., & Amstislavski, P. (2017). Physical and mechanical properties of fungal mycelium-based biofoam. Journal of Materials in Civil Engineering, 29(7), 04017030.
47、Abhijith, R., Ashok, A., & Rejeesh, C. (2018). Sustainable packaging applications from mycelium to substitute polystyrene: a review. Materials Today: Proceedings, 5(1), 2139-2145.
48、Ziegler, A. R., Bajwa, S. G., Holt, G. A., McIntyre, G., & Bajwa, D. S. (2016). Evaluation of physico-mechanical properties of mycelium reinforced green biocomposites made from cellulosic fibers. Applied engineering in agriculture, 32(6), p. 931-938.
49、Pelletier, M., Holt, G., Wanjura, J., Bayer, E., & McIntyre, G. (2013). An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Industrial Crops and Products, 51, p. 480-485.
50、Lelivelt, R., Lindner, G., Teuffel, P., & Lamers, H. (2015). The production process and compressive strength of mycelium-based materials. First International Conference on Bio-based Building Materials. P. 22-25 .
51、Liu, R., Long, L., Sheng, Y., Xu, J., Qiu, H., Li, X., Wang, Y., & Wu, H. (2019). Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties. Industrial Crops and Products, 141, 111732.
52、I. G. Research . (2021). Mushroom Packaging Market: Global Industry Analysis, Trends, Market Size, and Forecasts up to 2027. Mushroom Packaging Market, 5438572

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top