跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/22 19:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:河野共喜
研究生(外文):KONO TOMOKI
論文名稱:以大豆和豆渣為基質發酵味噌及天貝的物理化學性質比較
論文名稱(外文):Comparison of the physical-chemical properties of fermented miso and tempeh using soybeans and okara as the substrate
指導教授:林仲聖林仲聖引用關係林錫斌林錫斌引用關係
指導教授(外文):LIN,CHUNG-SAINTLIN,HSI-PIN
口試委員:蔡永祥林仲聖林錫斌
口試委員(外文):TSAI,YUNG-HSIUNGLIN,CHUNG-SAINTLIN,HSI-PIN
口試日期:2022-06-30
學位類別:碩士
校院名稱:元培醫事科技大學
系所名稱:食品科學系碩士班
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:90
中文關鍵詞:豆渣大豆麴菌天貝菌發酵抗氧化活性
外文關鍵詞:OkaraSoybeansKojiTempehFermentationAntioxidant activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
  豆渣,是指豆腐和豆漿的生產過程中,研磨大豆後的副產品。當 1.0 公斤的大豆被加工後,會產生約 1.2 公斤的新鮮豆渣,豆渣含有 6.1% 的蛋白質和 0.6% 的碳水化合物,其中水分含量可達到 75.5% ,因此存在容易腐敗的問題,所以只有 1 % 的豆渣用作食品,而大部分當作工業廢物處理或用作動物飼料。豆渣具有很高的營養價值,如膳食纖維和大豆異黃酮等。本研究的目的是通過麹菌和天貝菌對豆渣進行固態發酵以獲得最有效的抗氧化活性並用於開發保健食品。本文採用三種不同的麹菌及天貝菌對大豆和豆渣在長期和短期發酵進行了比較,使用的麹菌為 Aspergillus niger、A. kawachii 和 A. oryzae ,天貝菌則是使用 Rhizopus oligosporus;化學特性分析的方法是 DPPH 自由基清除活性、 SOD-like活性、超氧化物歧化酶、還原力、總多酚類化合物、總黃酮化合物、酸性 α-澱粉酶和中性蛋白酶測定;對於物理特性分析的方法是 pH 值和 L*a*b* 色差測定。在味噌方面,比較了大豆及豆渣分別在 3、6 天及 6 個月的抗氧化能力變化;在天貝方面,比較了大豆及豆渣兩種原料在 3、5、7 和 10 天的抗氧化活性。研究結果顯示:第一,比較各菌種發酵豆渣後的 L*a*b* 值,在短期發酵中,各種麴菌發酵後的 L* 值隨著時間的變化從 59.1±1.1 到 35.2±1.0 之間;黑麴的 a* 值從 5.5±0.9 到 3.5±0.8 減少,白麴的 b* 值從 22.6±0.8 到14.7±2.1 之間。發酵大豆相比較低,發酵 6 天和 6 個月的L*值趨於相同;在天貝菌的發酵中,發酵時間無關,L* 值 60.7±0.4 較高,a*值 1.2±0.5 較低。第二,豆渣的 pH 值隨著麴菌和天貝菌發酵的進行而下降,顯示基質變得更酸性。用麴菌的短期發酵 pH 值從 5.9 到4.4 之間,長期發酵 2、3 個月後才下降 pH 值從 5.8 到4.1 之間;而用天貝菌發酵,則豆渣的 pH 值從 6.7 到 5.4,差異顯著減少。第三,在豆渣的短期發酵中,發酵 3 天和 6 天的抗氧化成分含量相同,但抗氧化能力的活性較發酵前有所增加,並且黑麴的還原力活性從 424.6 µg AAE/g到 845.5 µg AAE/g增加了 2 倍;在長期發酵中,黃麴發酵的味噌顯示出最高的活性能力,而豆渣的黃酮類化合物含量從 0.11 mg QE/g到 0.80 mg QE/g提高了 8 倍。當用天貝菌發酵時,豆渣的黃酮類化合物含量從 0.04 mg QE/g到 0.10 mg QE/g,隨著發酵的進行增加了 2 倍。豆渣經由白麴的發酵,中性蛋白酶活性最高,發酵 6 天活性率為 3.3 units/g,而發酵 6 個月則提高 4 倍至 12.6 units/g。
Okara is a byproduct of the tofu and soymilk production process. Approximately 1.2 kg of fresh okara is produced from 1.0 kg of soybeans processed. Okara contains 6.1% protein, and 0.6% carbohydrates, and the moisture content is 75.5%, making it perish easily. Therefore, only 1% of the okara is used for food, and most of it is disposed of as industrial waste or used as feed. However, okara has high nutritional value, such as dietary fiber and soy isoflavones. The most potent antioxidant activity will lead to the development of healthy foods from soybean residues. The comparisons were made between soybeans and okara fermentations, short and long-term fermentation periods, and three different types of Koji and tempeh fermentation. Aspergillus niger, A. kawachii, and A. oryzae were used for the Koji molds, and Rhizopus oligosporus was used for the tempeh molds. The method of chemical properties was DPPH radical-scavenging activity, Superoxide dismutase (SOD)-like activity, reducing power, total polyphenols, total flavonoids, acid α-amylase and neutral protease. For physical properties, the methods of pH values and L*a*b* color were determined. For miso, the antioxidant activity of soybeans and okara was compared at 3, 6 days, and 6 months. For tempeh, the antioxidant activity of soybeans and okara was compared at 3, 5, 7, and 10 days. According to the results, firstly, in the short-term fermentation of okara, as the L* values of each Koji decreased at 59.1±1.1 to 35.2±1.0, the a* values of black Koji were decreased from 5.5±0.9 to 3.5±0.8, and the b* values of white Koji were 14.7±2.1 to 22.6±0.8, which were lower compared to soybeans. And the comparison between 6 days and 6 months of fermentation showed that the L* values tended to be the same. In the Koji fermentation of okara, the L* values were higher at 60.7±0.4 and the a* value was lower at 1.2±0.5 regardless of fermentation time. Secondly, the pH values of Koji and tempeh decreased as the okara fermentation progressed, indicating that the substrate became more acidic. The short-term fermentation using Koji was pH values ranging from 5.9 to 4.4, and long-term fermentation was ranging from 5.8 to 4.1 decreased after 2 or 3 months. In the fermentation with tempeh, the pH values of okara decreased significantly from 6.7 to 5.4. Third, in the short-term fermentation of okara, the antioxidant content was the same for 3 days and 6 days of fermentation; however, the activity of antioxidant capacity increased compared to the before fermentation period, and the reducing power activity of black Koji with okara increased 2-fold from 424.6 µg AAE/g to 845.5 µg AAE/g. In the long-term fermentation, miso fermented with yellow Koji showed the highest activity capacity, with an 8-fold increase in total flavonoids from 0.11 mg QE/g to 0.80 mg QE/g with okara. When fermented with yellow Koji, the total flavonoids of okara increased from 0.04 mg QE/g to 0.10 mg QE/g by a factor of 2 as fermentation progressed. The neutral protease activity of okara with white Koji was the highest, with an activity rate of 3.3 units/g in 6 days and a 4-fold increase to 12.6 units/g in 6 months.
Chinese Abstract I
English Abstract III
Table of Contents V
List of Figures X
List of Tables XIII
Part 1 Fermentation of okara and soybeans using Koji
Chapter 1 Introduction 1
Chapter 2 Literature review 2
2.1 Soybeans 2
2.1.1 About soybeans 2
2.1.2 Nutritional value of soybeans 2
2.2 Okara 3
2.2.1 About okara 3
2.2.2 Nutritional value of okara 3
2.2.3 Production of okara 4
2.3 Koji 4
2.3.1 About Koji 4
2.3.2 Aspergillus niger 4
2.3.3 Aspergillus luchuensis mut. kawachii 5
2.3.4 Aspergillus oryzae 5
2.4 Miso 6
2.4.1 About miso 6
2.4.2 Nutritional value of miso 6
2.4.3 Production of miso 6
Chapter 3 Materials and Methods 7
3.1 Experiment diagram 7
3.1.1 Short-time fermentation of okara and soybeans using Koji 7
3.1.2 Long-time fermentation of okara and soybeans miso using Koji 8
3.2 Experimental materials 9
3.2.1 Laboratory equipmen 9
3.2.2 Reagents and solvents 11
3.3 Experimental methods 14
3.3.1 Short-time fermentation of okara and soybeans using Koji 14
3.3.1.1 Preparation of rice Koji 14
3.3.1.2 Solid-fermentation of okara and soybeans 14
3.3.1.3 Extraction and storage of fermented okara and soybeans 15
3.3.2 Long-time fermentation of okara and soybeans miso using Koji 15
3.3.2.1 Preparation of okara and soybeans miso 15
3.3.2.2 Extraction and storage of okara and soybeans miso 16
3.3.3 pH measurement 16
3.3.4 Color measurement 16
3.3.5 Determination of antioxidant component analysis 16
3.3.5.1 Total polyphenols 16
3.3.5.2 Total flavonoids 17
3.3.6 Determination of antioxidant activity analysis 17
3.3.6.1 DPPH radical scavenging activity 17
3.3.6.2 SOD-like activity 17
3.3.6.3 Reducing power 18
3.3.7 Enzyme activity analysis 19
3.3.7.1 Acid α-amylase measurement 19
3.3.7.2 Neutral protease measurement 19
Chapter 4 Results and Discussion 21
4.1 Short-time fermentation of okara and soybeans using Koji 21
4.1.1 pH measurement 21
4.1.2 Color measurement 21
4.1.3 Determination of antioxidant component analysis 22
4.1.3.1 Total polyphenols 22
4.1.3.2 Total flavonoids 23
4.1.4 Determination of antioxidant activity analysis 23
4.1.4.1 DPPH radical scavenging activity 23
4.1.4.2 SOD-like activity 24
4.1.4.3 Reducing power 25
4.2 Long-time fermentation of okara and soybeans miso using Koji 26
4.2.1 pH measurement 26
4.2.2 Color measurement 26
4.2.3 Determination of antioxidant component analysis 27
4.2.3.1 Total polyphenols 27
4.2.3.2 Total flavonoids 28
4.2.4 Determination of antioxidant activity analysis 28
4.2.4.1 DPPH radical scavenging activity 28
4.2.4.2 SOD-like activity 29
4.2.4.3 Reducing power 29

Part 2 Fermentation of okara and soybeans using tempeh
Chapter 2 Literature review 30
2.1 Tempeh 30
2.1.1 About tempeh 30
2.1.2 Rhizopus oligosporus 30
2.1.3 Nutritional value of tempeh 31
Chapter 3 Materials and Methods 32
3.1 Experiment diagram 32
3.1.1 Short-time fermentation of okara and soybeans using tempeh 32
3.2 Experimental materials 33
3.2.1 Laboratory equipment 33
3.2.2 Reagents and solvents 33
3.3 Experimental methods 33
3.3.1 Short-time fermentation of okara and soybeans using tempeh 33
3.3.1.1 Preparation of tempeh 33
3.3.1.2 Extraction and storage of tempeh 34
3.3.2 pH measurement 34
3.3.3 Color measurement 34
3.3.4 Determination of antioxidant component analysis 34
3.3.5 Determination of antioxidant activity analysis 34
3.3.6 Enzyme activity analysis 35
Chapter 4 Results and Discussion 36
4.1 Short-time fermentation of okara and soybeans using tempeh 36
4.1.1 pH measurement 36
4.1.2 Color measurement 36
4.1.3 Determination of antioxidant component analysis 37
4.1.3.1 Total polyphenols 37
4.1.3.2 Total flavonoids 37
4.1.4 Determination of antioxidant activity analysis 38
4.1.4.1 DPPH radical scavenging activity 38
4.1.4.2 SOD-like activity 39
4.1.4.3 Reducing power 39
4.1.5 Enzyme activity analysis 40
4.1.5.1 Acid α-amylase measurement 40
4.1.5.2 Neutral protease measurement 40
Chapter 5 Conclusions 42
Reference 82
Appendix 1 2021 Health Management Academic Symposium 89
Appendix 2 2022 International Students Academic Conference 90
1.Agung, I.G.A.A., 2016, Tempeh juice as potential health support culinary tourism., Journal of Business on Hospitality and Tourism, 2 (1), 363-366.

2.Ahlawat, D., Poonia, D., Ahlawat, M. and Ahlawat, S.S., 2008, Effect of drying techniques on functional and physicochemical properties of okara., International Journal of Current Microbiology and Applied Sciences, 7 (5), 582-590.

3.Ahnan‐Winarno, A.D., Cordeiro, L., Winarno, F.G., Gibbons, J. and Xiao, H., 2021, Tempeh: A semicentennial review on its health benefits, fermentation, safety, processing, sustainability, and affordability., Comprehensive Reviews in Food Science and Food Safety, 20 (2), 1717-1767.

4.Allwood, J.G., Wakeling, L.T. and Bean, D.C., 2021, Fermentation and the microbial community of Japanese koji and miso: A review., Journal of Food Science and Technology, 86, 2194-2207.

5.Amin, I. and Mukhrizah, O., 2006, Antioxidant capacity of methanolic and water extracts prepared from food-processing by-products., Journal of the Science of Food and Agriculture, 86, 778-784.

6.Aoki, H., Chuma, S., Iba, Y., Tashiro, H., Watanabe, N. and Oyama, H., 2020, Comparison of bioactive components in tempeh produced by three different Rhizopus starters and immunomodulatory effect of tempeh on atopic dermatitis mice., Food Science and Technology Research, 26 (5), 665-672.

7.Brand, W.W., Cuvelier, M.E. and Berset, C., 1995, Use of a free radical method to evaluate antioxidant activity., Lebensm-Wiss U-Technol, 28, 25-30.

8.Cabrera, O.A., Jimenez, M.C. and Davila, O.G., 2013, Soybean: non-nutritional factors and their biological functionality., Journal of Biology, 17, 388-410.

9.Chancharoonpong, C., Hsieh, P.C. and Sheu, S.C., 2012, Enzyme production and growth of Aspergillus oryzae S. on soybean koji fermentation., APCBEE Procedia, 57-61.

10.Chang, C.T., Hsu, C.K., Chou, S.T., Chen, Y.C., Huang, F.S. and Chung, Y.C., 2009, Effect of fermentation time on the antioxidant activities of tempeh prepared from fermented soybean using Rhizopus oligosporus., Journal of Food Science and Technology, 44, 799-806.

11.Chen, P.C., Lin, C., Chen, M.H. and Chiang, P.Y., 2020, The micronization process for improving the dietary value of okara (soybean residue) by planetary ball milling., Journal of Food Science and Technology, 132, 109848.

12.Chiou, R.Y. and Cheng, S.L., 2001, Isoflavone transformation during soybean koji preparation and subsequent miso fermentation supplemented with ethanol and NaCl., Food Chemistry, 49, 3656-3660.

13.Chiou, R.Y., Ferng, S. and Beuchat, L.R., 1999, Fermentation of low-salt miso as affected by supplementation with ethanol., International Journal of Food Microbiology, 48, 11-20.

14.Chiou, R.Y.Y., 2001, Proteolysis during the fermentation of ethanol-supplemented miso., Food Chemistry and Toxicology, 66, 1080-1083.

15.Chonkeeree, A., Chaowarat, M. and Chumchuere, S., 2013, Antioxidant activity and total phenolic content of dried fermented soybean products fermented with Bacillus subtilis and lab: potential for functional food application., International Proceedings of Chemical, Biological, and Environmental Engineering, 58 (4), 16-21.

16.Dhaubhadel, S., Farhangkhoee, M. and Chapman, R., 2008, Identification and characterization of isoflavonoid specific glycosyltransferase and malonyltransferase from soybean seeds., Journal of Experimental Botany, 59, 981-994.

17.Duh, P.D. and Yen, G.C., 1997, Antioxidative activity of three herbal water extracts., Food Chemistry, 60 (4), 639-645.

18.Ezawa, M., Higashi, K. and Matsuyama, A., 1993, About fermentability of rice miso mixed with okara., Tamagawa university, 33, 67-74.

19.FoodData Central. U.S., 2019, Tempeh., Department of Agriculture., 16114.

20.Friedman, M. and Brandon, D.L., 2001, Nutritional and health benefits of soy proteins., Journal of Agricultural and Food Chemistry, 49 (3), 1069-1086.

21.Gomi, K., Iimura, Y. and Hara, S., 1987, Integrative transformation of Aspergillus oryzae with a plasmid containing the Aspergillus nidulans argB gene., Microbiology & Fermentation Industry, 51 (9), 2549-2555.

22.Handoyo, T. and Morita, N., 2006, Structural and functional properties of fermented soybean (Tempeh) by using Rhizopus oligosporus., International Journal of Food Properties, 9 (2), 347-355.

23.Hong, S.B., Lee, M., Kim, D.H., Varga, J., Frisvad, J.C., Perrone, G., Gomi, K., Yamada, O., Machida, M., Houbraken, J. and Samson, R.A., 2013, Aspergillus luchuensis, an industrially important black Aspergillus in east Asia., Plos one 8 (5), e63769.

24.Ito, A., 2014, Current status and prospects of miso., Journal of the Brewing Society of Japan, 109 (9), 623.

25.Iwano, K., Mikami S., Fukuda, K., Nose, A. and Shiinoki, S., 1987, Influence of cultural conditions on various enzyme activities of shochu koji, Journal of the Brewing Society of Japan, 82 (3), 200-204.

26.Kadooka, C., Izumitsu, K., Onoue, M., Okutsu, K., Yoshizaki, Y., Takamine, K., Goto, M., Tamaki, H. and Futagami, T., 2019, Mitochondrial citrate transporters CtpA and YhmA are required for extracellular citric acid accumulation and contribute to cytosolic acetyl coenzyme A generation in Aspergillus luchuensis mut. kawachii., Applied and Environmental Microbiology, 85 (8), e03136-18.

27.Karyadi, D. and Lukito, W., 1996, Beneficial effects of tempeh in disease prevention and treatment., Nutrition Reviews, 54 (11), S94-S98.

28.Kennedy, A.R., 1995, The evidence for soybean products as cancer preventive agents., Journal of Nutrition, 125, 733S-743S.

29.Khare, S.K., Jha, K. and Gandhi, A.P., 1995, Citric acid production from okara (soy-residue) by solid-state fermentation., Bioresource Technology, 54 (3), 323-325.

30.Kim, I. S., Kim, C. H. and Yang, W. S., 2021, Physiologically active molecules and functional properties of soybeans in human health-A current perspective., International Journal of Molecular Sciences, 22, 4054.

31.Kimura, Y., Ito, H., Kawaji, M., Ikami, T. and Hatano, T., 2008, Characterization and antioxidative properties of oligomeric proanthocyanidin from prunes, dried fruit of Prunus domestica L., Bioscience, Biotechnology, and Biochemistry, 72 (6), 1615-1618.

32.Kusumoto, K.I., Yamagata, Y., Tazawa, R., Kitagawa, M., Kato, T., Isobe, K. and Kashiwagi, Y., 2021, Japanese traditional miso and koji making., Journal of Fungi, 7 (579), 1-17.

33.Li, B., Lu, F., Nan, H. and Liu, Y., 2012, Isolation and structural characterisation of okara polysaccharides., Molecules, 17, 753-761.

34.Li, B., Qiao, M. and Lu, F., 2012, Composition, nutrition, and utilization of okara (Soybean residue)., Food Reviews International, 28 (3), 231-252.

35.Machida, M., Asai, K., Sano, M., Tanaka, T., Kumagai, T., Terai, G., Kusumoto, K., Arima, T., Akita, O., Kashiwagi, Y., Abe, K., Gomi, K., Horiuchi, H., Kitamoto, K., Kobayashi, T., Takeuchi, M., Denning, D.W., Galagan, J.E., Nierman, W.C., Yu, J., Archer, D.B., Bennett, J.W., Bhatnagar, D., Cleveland, T.E., Fedorova, N.D., Gotoh, O., Horikawa, H., Hosoyama, A., Ichinomiya, M., Igarashi, R., Iwashita, K., Juvvadi, P.R., Kato, M., Kato, Y., Kin, T., Kokubun, A., Maeda, H., Maeyama, N., Maruyama, J., Nagasaki, H., Nakajima, T., Oda, K., Okada, K., Paulsen, I., Sakamoto, K., Sawano, T., Takahashi, M., Takase, K., Terabayashi, Y., Wortman, J.R., Yamada, O., Yamagata, Y., Anazawa, H., Hata, Y., Koide, Y., Komori, T., Koyama, Y., Minetoki, T., Suharnan, S., Tanaka, A., Isono, K., Kuhara, S., Ogasawara, N. and Kikuchi, H., 2005, Genome sequencing and analysis of Aspergillus oryzae., Nature, 438, 1157-1161.

36.Maeda, M., Tokashiki, M., Uechi, K., Ito, S. and Taira, T., 2018, Characterization and induction of phenolic acid decarboxylase from Aspergillus luchuensis., Journal of Bioscience and Bioengineering, 126 (2), 162-168.

37.McCue, P. and Shetty, K., 2003, Role of carbohydrate-cleaving enzymes in phenolic antioxidant mobilization from whole soybean fermented with Rhizopus oligosporus., Food Biotechnology, 17 (1), 27-37.

38.Miyazaki, M., 1976, Nutrition of miso., Journal of the Brewing Society of Japan, 71 (12), 909-910.

39.Mona, M.R., Abeer, E.M, Hala, M.A. and Mohamed, U.N., 2011, Improvement of nutritional quality and antioxidant activities of yeast fermented soybean curd residue., African Journal of Biotechnology, 10 (28), 5504-5513.

40.Murakami, H., Asakawa, T., Terao, T. and Matsushita, S., 1984, Antioxidative stability of tempeh and liberation of isoflavones by fermentation., Journal of Agricultural and Food Chemistry, 48, 2971-2975.

41.Nagy, M. and Grancai, D., 1996, Colorimetric determination of flavanones in propolis., International Journal of Pharmaceutical Sciences, 51, 100-101.


42.Nakamori, T., 2021, Research on the deliciousness of processed soybean current state and future prospects of soybean breeding., Japanese Society for Food Science and Technology, 68 (5), 216-218.

43.Nishinari, K., Fang, Guo, Y. and Phillips, S., 2014, Soy proteins: A review on composition, aggregation and emulsification., Food Hydrocolloids, 39, 301-318.

44.Ohara, M., Lu, H., Shiraki, K., Ishimura, Y., Uesaka, T., Katoh, O. and Watanabe, H., 2002, Prevention by long-term fermented miso of induction of colonic aberrant crypt foci by azoxymethane in F344 rats., Oncology Reports, 9, 69-73.

45.Olson, F.C.W., 1950, Quantitative estimation of filamentous algae., Transaction of the American Microscopy Society, 59, 272-279.

46.Redondo, C.A., Villanueva, S.MJ. and Mateos, A.I., 2008, Soybean seeds and its by-product okara as sources of dietary fiber: measurement by AOAC and Englyst methods., Food Chemistry, 108, 1099-1105.

47.Rekha, C.R. and Vijayalakshmi, G., 2011, Accelerated fermentation of ‘idli’ batter using soy residue okara., Journal of Food Science and Technology, 41 (3), 329-334.

48.Robak, J. and Gryglewski, R. J., 1988, Flavonoids are scavengers of superoxide anions., Biochemical Pharmacology, 37, 837-841.

49.Shurtleff, W. and Aoyagi, A., 2020, History of tempeh and tempeh products (1815-2020): Bibliography and sourcebook, Soyinfo Center, 1416.

50.Singleton, V.L. and Rossi, J.A., 1965, Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents., Amer J Enol Viticult, 16, 144-158.

51.Sotanggangi, A.B., Sonaga, W.S.L, Woe, F., Fernandd, F. and Krusdng, W., 2020, Enhanced antioxidant activity of okara through solid state fermentation of GRAS Fungi., Journal of Food Science and Technology, 40 (1), 178-186.

52.Steinkraus, K.H., Cullen, R.E., Pederson, C.S., Nellis, L.F. and Gavitt, B.K., 1983, Indonesian tempeh and related fermentations., Handbook of Indigenous Fermented Foods, 1-94.

53.Suganuma, T., Nhisiyama, S., Kitahara, K. and Nagahama, T., 1995, Glucoamylase and acid stable α-amylase in koji for citric acid production., Kagoshima University, 45, 29-35.

54.Taga, M.S., Miller, E.E. and Pratt, D.E., 1984, China seeds as a source of natural lipid antioxidants., Journal of the American Oil Chemists’ Society, 61, 928-931.

55.Takamura, M., 2010, Application of byproducts on food-product (Reuse of okara)., Annual report of Research Institute for Biological Function, 10, 56-62.

56.Takasaki, S., Kouda, I., Ishikawa, M., Okamoto-kainuma, A., Koizumi, Y. and Fukuda, Y., 2010, Properties of the novel products of miso developed using sesame flour., Journal of Brewing Society of Japan, 105, 749-758.

57.Tamura, Y. and Takenaka, T., 1999, Antioxidative activity of water-soluble extracts from okara fermented with Bacillus natto and Rhizopus oligosporus., Journal of the Japanese Society for Food Science and Technology, 46 (9), 561-569.

58.Vidiany, A., Queiroz, S., Camila, G., Nascimentoa, Carla, A.P.S., Daniel, M., Robert, F.H.D. and Mario Antonio, A.D.C., 2018, Solid-state fermentation of soybean okara: Isoflavones biotransformation, antioxidant activity and enhancement of nutritional quality., Journal of Food Science and Technology, 92, 509-515.

59.Vong, W.C. and Liu, S.Q., 2016, Biovalorisation of okara (soybean residue) for food and nutrition., Trends in Food Science and Technology, 52, 139-147.

60.Walter, R.F. and Henry, H.H., 1980, Soybean., Hybridization of Crop Plants, 42.

61.Wang, H.L. and Hesseltine, C.W., 1979, Mold-modified foods., Microbial technology, 2, 95-129.

62.Watanabe, H., Kashimoto, N., Kajimura, J. and Kamiya, K., 2006, A miso (Japanese soybean paste) diet conferred greater protection against hypertension than a sodium chloride diet in Dahl salt-sensitive rats., Hypertension Research, 29, 731-738.

63.Watanabe, Y., 2017, Consideration of sales promotion methods of miso for consumers who are interested in health beauty., Fukushima University, 86 (1), 13-43.

64.Wu, S., Feng, S., Ci, Z.H., Jiang, C., Cui, Y., Sasaki, Y., Ota, Y. and Kojima, M., 2016, Anti-obesity effect and antioxidant activity in high-fat diet mice fed fermented buckwheat products (Miso)., Journal of Food and Nutrition Research, 4 (6), 355-360.

65.Wu, S., Feng, S., Ci, Z.H., Jiang, C., Cui, Y., Sasaki, Y., Ota, Y. and Kojima, M., 2015, Fermented miso with adzuki beans or black soybeans decreases lipid peroxidation and serum cholesterol in mice fed a high-fat diet., Journal of Food and Nutrition Research, 3 (3), 131-137.

66.Yamashita, H., 2021, Koji starter and koji world in Japan., Journal of Fungi, 7 (569), 1-18.

67.Yoshinaga, M., Toda, N., Tamura, Y., Terakado, S., Ueno, M., Otsuka, K., Numabe, A., Kawabata, Y. and Uehara, Y., 2012, Japanese traditional miso soup attenuates salt-induced hypertension and its organ damage in Dahl salt-sensitive rats., Journal of Nutrition, 28, 924-931.

68.Yoshizaki, Y., Kawasaki, C., Cheng, K.C., Ushikai, M., Amitani, H., Asakawa, A., Okutsu, K., Sameshima, Y., Takamine, K. and Inui, A., 2014, Rice koji reduced body weight gain, fat accumulation, and blood glucose level in high-fat diet-induced obese mice., Peer J, Article e540.

69.Zhu, Y.P., Cheng, Y.Q., Wang, L.J., Fan, J.F. and Li, L.T., 2008, Enhanced antioxidative activity of Chinese traditionally fermented okara (Meitauza) prepared with various microorganism., International Journal of Food Properties, 11, 1532-2386.


電子全文 電子全文(網際網路公開日期:20270715)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊