|
1.Lauterbur, P.C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 1973, 242, 190–191. [CrossRef]
2.Fox, N.C.; Freeborough, P.A. Brain atrophy progression measured from registered serial MRI: Validation and application to Alzheimer’s disease. J. Magn. Reson. Imaging 1997, 7, 1069–1075. [CrossRef] [PubMed]
3.Darge, K.; Jaramillo, D.; Siegel, M.J. Whole-body MRI in children: Current status and future applications. Eur. J. Radiol. 2008, 68, 289–298. [CrossRef] [PubMed]
4.Townsend, K.A.; Wollstein, G.; Schuman, J.S. Clinical application of MRI in ophthalmology. NMR Biomed 2008, 21, 997–1002. [CrossRef]
5.Atlas, S.W. Magnetic Resonance Imaging of the Brain and Spine, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009.
6.Cadotte, D.W.; Wilson, J.R.; Mikulis, D.; Stroman, P.W.; Brady, S.; Fehlings, M.G. Conventional MRI as a diagnostic and prognostic tool in spinal cord injury: A systemic review of its application to date and an overview on emerging MRI methods. Expert Opin. Med. Diagn. 2011, 5, 121–133. [CrossRef] [PubMed]
7.Vargas, M.I.; Delattre, B.M.A.; Boto, J.; Gariani, J.; Dhouib, A.; Fitsiori, A.; Dietemann, J.L. Advanced magnetic resonance imaging (MRI) techniques of the spine and spinal cord in children and adults. Insights Imaging 2018, 9, 549–557. [CrossRef] [PubMed]
8. Zhi-Pei Liang and Paul C. Lauterbur. Principles of magnetic resonance imaging: a signal processing perspective. SPIE Optical Engineering Press, 2000, 416pp.
9. Santimukul Santra, Samuel D. Jativa, Charalambos Kaittanis, Guillaume Normand, Jan Grimm, and J. Manuel Perez. J. M. (2012). Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent. ACS nano, 6(8), 7281–7294. https://doi.org/10.1021/nn302393e
10. Weishaupt, D.; Köchli, V.D.; Marincek, B. How Does MRI Work? An Introduction to the Physics and Function of Magnetic Resonance Imaging, 2nd ed.; Springer Science & Business Media: Philadelphia, PA, USA, 2008.
11.Wei,H.;Bruns,O.T.;Kaul,M.G.;Hansen,E.C.;Barch,M.;Wis ́niowska,A.;Cordero,J.M.Exceedinglysmallironoxide nanoparticles as positive MRI contrast agents. Proc. Natl. Acad. Sci. USA 2017, 114, 2325–2330. [CrossRef]
12. Strijkers, G.J.; Mulder, W.J.M.; van Tilborg, G.A.F.; Nicolay, K. MRI contrast agents: Current status and future perspectives.Anticancer Agents Med. Chem. 2007, 7, 291–305. [CrossRef]
13. Wang, Y.X.J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011, 1, 35–40.
14. Santra, S.; Jativa, S.D.; Kaittanis, C.; Normand, G.; Grimm, J.; Perez, J.M. Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent. ACS Nano 2012, 6, 7281–7294. [CrossRef]
15. Serlin, Y.; Shelef, I.; Knyazer, B.; Friedman, A. Anatomy and physiology of the blood–brain barrier. Semin. Cell Dev. Biol. 2015, 38, 2–6. [CrossRef] [PubMed]
16. Runge, V.M.; Schoerner, W.; Niendorf, H.P.; Laniado, M.; Koehler, D.; Claussen, C.; James, A.E., Jr. Initial clinical evaluation of gadolinium DTPA for contrast-enhanced magnetic resonance imaging. Magn. Reson. Imaging 1985, 3, 27–35. [CrossRef]
17. Greenberger, P.A.; Patterson, R. The prevention of immediate generalized reactions to radiocontrast media in high-risk patients. J. Allergy Clin. Immunol. 1991, 87, 867–872. [CrossRef]
18. Reimer, P.; Balzer, T. Ferucarbotran (Resovist): A new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: Properties, clinical development, and applications. Eur. Radiol. 2003, 13, 1266–1276. [CrossRef]
19. Valdiglesias, V.; Fernández-Bertólez, N.; Kiliç, G.; Costa, C.; Costa, S.; Fraga, S.; Laffon, B. Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J. Trace Elem. Med. Biol. 2016, 38, 53–63. [CrossRef]
20. Tesileanu, T.; Conte, M.M.; Briguglio, J.J.; Hermundstad, A.M.; Victor, J.D.; Balasubramanian, V. Efficient coding of natural scene statistics predicts discrimination thresholds for grayscale textures. Elife 2020, 9, e54347. [CrossRef]
21. Misaki, M.; Savitz, J.; Zotev, V.; Phillips, R.; Yuan, H.; Young, K.D.; Bodurka, J. Contrast enhancement by combining T1-and T2-weighted structural brain MR Images. Magn. Reson. Med. 2015, 74, 1609–1620. [CrossRef]
22. US Food and Drug Administration. FDA Identifies No Harmful Effects to Date with Brain Retention of Gadolinium-Based Contrast Agents for MRIs; Review to Continue. 2017. Available online: https://www.fda.gov/drugs/fda-drug-safety-podcasts/ fda-drug-safety-podcast-fda-identifies-no-harmful-effects-date-brain-retention-gadolinium-based (accessed on 26 January 2021).
23.Wei, H., Bruns, O. T., Kaul, M. G., Hansen, E. C., Barch, M., Wiśniowska, A., ... & Cordero, J. M. (2017). Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proceedings of the national academy of sciences, 114(9), 2325-2330.
24.辛加安。超順磁性氧化鐵奈米粒子鍵結 8G7 之磁振造影研究. 生物科技學院(分子醫學與生物工程研究所), 59, 2009. DOI://10.6842/NCTU.2009.01173.
25.謝明芝、陳啟昌、李潤川、陳榮邦。(2008)。放射線檢查之用藥安全流程。中華放射醫誌,33,85-90。
26.Valdiglesias V, Fernández-Bertólez N, Kiliç G, Costa C, Costa S, Fraga S, Bessa MJ, Pásaro E, Teixeira JP, Laffon B. Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J Trace Elem Med Biol. 2016 Dec;38:53-63. doi: 10.1016/j.jtemb.2016.03.017. Epub 2016 Mar 31. PMID: 27056797.
27.Misaki, M., Savitz, J., Zotev, V., Phillips, R., Yuan, H., Young, K. D., Drevets, W. C., &Bodurka, J. (2015). Contrast enhancement by combining T1- and T2-weighted structural brain MR Images. Magnetic resonance in medicine, 74(6), 1609–1620. https://doi.org/10.1002/mrm.25560.
28. FDA Drug Safety Communication: FDA identifies no harmful effects to date with brain retention of gadolinium-based contrast agents for MRIs; review to continue. May 22, 2017. https://www.fda.gov/Drugs/DrugSafety/ucm559007.htm. Accessed Nov. 09, 2020.
29.Burton, M.E. Applied Pharmacokinetics & Pharmacodynamics: Principles of Therapeutic Drug Monitoring, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006.
30.Dieckhoff, J.; Kaul, M.G.; Mummert, T.; Jung, C.; Salamon, J.; Adam, G.; Ittrich, H. In vivo liver visualizations with magnetic particle imaging based on the calibration measurement approach. Phys. Med. Biol. 2017, 62, 3470. [CrossRef]
31.Mørkenborg, J.; Pedersen, M.; Jensen, F.T.; Stødkilde-Jørgensen, H.; Djurhuus, J.C.; Frøkiær, J. Quantitative assessment of Gd-DTPA contrast agent from signal enhancement: An in vitro study. Magn. Reson. Imaging 2003, 21, 637–643. [CrossRef]
32.Runge, V.M. Safety of approved MR contrast media for intravenous injection. J. Magn. Reson. Imaging JMRI 2000, 12, 205–213. [CrossRef]
33.Runge, V.M.; Clanton, J.A.; Price, A.C.; Wehr, C.J.; Herzer, W.A.; Partain, C.L.; James, A.E., Jr. The use of Gd DTPA as a perfusion agent and marker of blood-brain barrier disruption. Magn. Reson. Imaging 1985, 3, 43–55. [CrossRef]
34.Kopp, A.F.; Laniado, M.; Dammann, F.; Stern, W.; Grönewäller, E.; Balzer, T.; Claussen, C.D. MR imaging of the liver with Resovist: Safety, efficacy, and pharmacodynamic properties. Radiology 1997, 204, 749–756. [CrossRef]
35.Lee, J.S.; Goo, E.H.; Park, C.S.; Lee, S.Y.; Choi, Y.S. A Study on Usefulness of Specific Agents with Liver Disease at MRI Imaging: Comparison with Ferucarbotran and Gd-EOB-DTPA Contrast Agents. Korean J. Med. Phys. 2009, 20, 235–243.
36.Bulte, J.W. In vivo MRI cell tracking: Clinical studies. Am. J. Roentgenol. 2009, 193, 314–325. [CrossRef]
37.Cho, E.S.; Yu, J.S.; Kim, M.J.; Kim, J.H.; Chung, J.J.; Kim, K.W. Focal Eosinophilic Necrosis on Superparamagnetic Iron Oxide– Enhanced MRI. Am. J. Roentgenol. 2010, 194, 1296–1302. [CrossRef]
38.Lee, S.M.; Lee, S.H.; Kang, H.Y.; Baek, S.Y.; Kim, S.M.; Shin, M.J. Assessment of musculoskeletal infection in rats to determine usefulness of SPIO-enhanced MRI. Am. J. Roentgenol. 2007, 189, 542–548. [CrossRef]
39.Neuwelt, A.; Sidhu, N.; Hu, C.A.A.; Mlady, G.; Eberhardt, S.C.; Sillerud, L.O. Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. Am. J. Roentgenol. 2015, 204, 302–313. [CrossRef] [PubMed]
|