跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 17:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:涂仲薇
研究生(外文):TU,JHONG-WEI
論文名稱:建立磁振造影顯影劑最佳化濃度於呈現最佳化影像數據分析
論文名稱(外文):Study on Establishing Reference Safe Concentrations of MRI Contrast Agents for Optimized Images
指導教授:蕭文田
指導教授(外文):HSIAO,WEN-TIEN
口試委員:蕭文田王愛義李志明
口試委員(外文):HSIAO,WEN-TIENWANG,AI-YIHLI,JHIH-MING
口試日期:2021-06-24
學位類別:碩士
校院名稱:元培醫事科技大學
系所名稱:醫學影像暨放射技術系碩士在職專班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:47
中文關鍵詞:順磁性超順磁性脈衝序列P值
外文關鍵詞:ParamagnetismSuperparamagnetismPulse sequenceP value
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究計畫目的,建立磁振造影(Magnetic resonance imaging, MRI) 顯影劑可注射最低劑量、影像最佳化劑量數據分析,提升 MRI 注射顯影劑用藥安全。實驗用材料,選擇臨床常用順磁性(Paramagnetism) OptiMARK (Gd-DTPA)及超順磁性(Superparamagnetism) Resovist (Iron-oxide)兩種顯影劑,進行體外(Invitro)及體內(Invivo)影像灰階分析實驗。於體外影像實驗結果顯示,對於兩種不同屬性顯影劑,分別以T1及T2兩種不同脈衝序列(Pulse sequence),進行造影影像One way ANOVA灰階統計與分析,於OptiMARK 每毫升稀釋比例0.60%及Resovist每毫升稀釋比例 0.025%所造影T1及T2 影像最為佳,P值也皆小於0.001,於統計上有非常顯著的差異。將體外稀釋濃度分析結果運用,進行體內影像實驗,分別注射 100μl 劑量於小鼠體內,分別比對顯影劑注射前後腦部(Brain)、心臟(Cardiac)、肝臟(Liver)及腸系膜(Mesentery) T1 及 T2 影像灰階分析比對,結果顯示,OptiMARK 於 T1 造影灰階統計分析,腦部、心臟P < 0.05,於統計上有明顯差異,Resovist 於T2造影灰階統計分析,除了腸系膜(Mesentery)無顯著統計差異外,腦部、心臟、肝臟皆有統計上顯著差異(P < 0.05, P < 0.001, P < 0.05)。雖然應用體外實驗稀釋安全濃度為體內實驗的基準,但腦部成像比對上無統計上的變化,此實驗結果顯示,不同器官仍有其所屬不同安全稀釋濃度比例,也對未來注射顯影劑用藥安全上可提供做為參考。
Purpose: Optimization of injectable maximum dose and image quality for magnetic resonance imaging (MRI) contrast agent can improve the safety of MRI injection contrast agents.

Materials and Methods: In this study, two contrast agents including paramagnetic OptiMARK (Gd-DTPA) and superparamagnetic iron oxide (Resovist) were used to conduct grayscale analysis for in vitro and in vivo images. For in-vitro experiments, two MRI contrast agents were scanned with T1-weighted and T2-weighted imaging and analyzed using a one-way ANOVA model. The dilution ratios (per milliliter) of 0.3512% and 0.05% were optimal for OptiMARK and Resovist ,respectively (p<0.001). Further, we apply the optimal in-vitro dilution concentration to in-vitro experiments, and inject 100 μl agents into mice separately. The T1-weighted and T2-weighted images of the brain, cardiac, liver, and mesentery were analyzed.

Results: Results show thatOptiMARK in T1 angiography grayscale statistical analysis. Statistically significant differenceP value is less than 0.05in brain and heart. Resovist's T2 Contrast Gray Scale Statistical Analysis.Except for Mesentery, there is no significant statistical.There are statistically significant differences in brain, heart, and liver (P < 0.05, P < 0.001, P < 0.05).

Concluson: Although the use of in vitro experiments to dilute the safe concentration is the benchmark for in vivo experiments.But there is nostatistically significant in brain.The experiment showsdifferent organs still have different safe dilution concentration ratios.It can also be used as a reference for the safety of future injection of contrast agent.

第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究目的 3
1.4 研究流程 4
第二章 基礎理論 5
2.1 MRI介紹 5
2.1.1 MRI構造 5
2.1.2 MRI成像原理 7
2.2 基本加權參數介紹 11
2.3 MRI成像序列介紹 12
2.3.1 T1成像原理 13
2.3.2 T2成像原理 14
2.4 顯影劑介紹 15
2.4.1 T1顯影劑 15
2.4.2 T2顯影劑 17
第三章 材料與方法 20
3.1 顯影劑 20
3.2 顯影劑的稀釋 22
3.3 顯影劑稀釋後的分佈方式 22
3.4 磁振造影儀器 23
3.5 脈衝序列 24
3.6 體內實驗 26
3.6.1 體內實驗流程 26
3.6.2 實驗小鼠介紹 26
3.7 統計分析 28
第四章 實驗結果 29
4.1 體外實驗結果 29
4.2 體內實驗結果 36
第五章 討論與結論 40
5.1 討論 40
5.2 結論 42
參考文獻 43

1.Lauterbur, P.C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 1973, 242, 190–191. [CrossRef]

2.Fox, N.C.; Freeborough, P.A. Brain atrophy progression measured from registered serial MRI: Validation and application to Alzheimer’s disease. J. Magn. Reson. Imaging 1997, 7, 1069–1075. [CrossRef] [PubMed]

3.Darge, K.; Jaramillo, D.; Siegel, M.J. Whole-body MRI in children: Current status and future applications. Eur. J. Radiol. 2008, 68, 289–298. [CrossRef] [PubMed]

4.Townsend, K.A.; Wollstein, G.; Schuman, J.S. Clinical application of MRI in ophthalmology. NMR Biomed 2008, 21, 997–1002. [CrossRef]

5.Atlas, S.W. Magnetic Resonance Imaging of the Brain and Spine, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009.

6.Cadotte, D.W.; Wilson, J.R.; Mikulis, D.; Stroman, P.W.; Brady, S.; Fehlings, M.G. Conventional MRI as a diagnostic and prognostic tool in spinal cord injury: A systemic review of its application to date and an overview on emerging MRI methods. Expert Opin. Med. Diagn. 2011, 5, 121–133. [CrossRef] [PubMed]

7.Vargas, M.I.; Delattre, B.M.A.; Boto, J.; Gariani, J.; Dhouib, A.; Fitsiori, A.; Dietemann, J.L. Advanced magnetic resonance imaging (MRI) techniques of the spine and spinal cord in children and adults. Insights Imaging 2018, 9, 549–557. [CrossRef] [PubMed]

8. Zhi-Pei Liang and Paul C. Lauterbur. Principles of magnetic resonance imaging: a signal processing perspective. SPIE Optical Engineering Press, 2000, 416pp.

9. Santimukul Santra, Samuel D. Jativa, Charalambos Kaittanis, Guillaume Normand, Jan Grimm, and J. Manuel Perez. J. M. (2012). Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent. ACS nano, 6(8), 7281–7294. https://doi.org/10.1021/nn302393e

10. Weishaupt, D.; Köchli, V.D.; Marincek, B. How Does MRI Work? An Introduction to the Physics and Function of Magnetic Resonance Imaging, 2nd ed.; Springer Science & Business Media: Philadelphia, PA, USA, 2008.

11.Wei,H.;Bruns,O.T.;Kaul,M.G.;Hansen,E.C.;Barch,M.;Wis ́niowska,A.;Cordero,J.M.Exceedinglysmallironoxide nanoparticles as positive MRI contrast agents. Proc. Natl. Acad. Sci. USA 2017, 114, 2325–2330. [CrossRef]

12. Strijkers, G.J.; Mulder, W.J.M.; van Tilborg, G.A.F.; Nicolay, K. MRI contrast agents: Current status and future perspectives.Anticancer Agents Med. Chem. 2007, 7, 291–305. [CrossRef]

13. Wang, Y.X.J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011, 1, 35–40.

14. Santra, S.; Jativa, S.D.; Kaittanis, C.; Normand, G.; Grimm, J.; Perez, J.M. Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent. ACS Nano 2012, 6, 7281–7294. [CrossRef]

15. Serlin, Y.; Shelef, I.; Knyazer, B.; Friedman, A. Anatomy and physiology of the blood–brain barrier. Semin. Cell Dev. Biol. 2015, 38, 2–6. [CrossRef] [PubMed]

16. Runge, V.M.; Schoerner, W.; Niendorf, H.P.; Laniado, M.; Koehler, D.; Claussen, C.; James, A.E., Jr. Initial clinical evaluation of gadolinium DTPA for contrast-enhanced magnetic resonance imaging. Magn. Reson. Imaging 1985, 3, 27–35. [CrossRef]

17. Greenberger, P.A.; Patterson, R. The prevention of immediate generalized reactions to radiocontrast media in high-risk patients. J. Allergy Clin. Immunol. 1991, 87, 867–872. [CrossRef]

18. Reimer, P.; Balzer, T. Ferucarbotran (Resovist): A new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: Properties, clinical development, and applications. Eur. Radiol. 2003, 13, 1266–1276. [CrossRef]

19. Valdiglesias, V.; Fernández-Bertólez, N.; Kiliç, G.; Costa, C.; Costa, S.; Fraga, S.; Laffon, B. Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J. Trace Elem. Med. Biol. 2016, 38, 53–63. [CrossRef]

20. Tesileanu, T.; Conte, M.M.; Briguglio, J.J.; Hermundstad, A.M.; Victor, J.D.; Balasubramanian, V. Efficient coding of natural scene statistics predicts discrimination thresholds for grayscale textures. Elife 2020, 9, e54347. [CrossRef]

21. Misaki, M.; Savitz, J.; Zotev, V.; Phillips, R.; Yuan, H.; Young, K.D.; Bodurka, J. Contrast enhancement by combining T1-and T2-weighted structural brain MR Images. Magn. Reson. Med. 2015, 74, 1609–1620. [CrossRef]

22. US Food and Drug Administration. FDA Identifies No Harmful Effects to Date with Brain Retention of Gadolinium-Based Contrast Agents for MRIs; Review to Continue. 2017. Available online: https://www.fda.gov/drugs/fda-drug-safety-podcasts/
fda-drug-safety-podcast-fda-identifies-no-harmful-effects-date-brain-retention-gadolinium-based (accessed on 26 January 2021).

23.Wei, H., Bruns, O. T., Kaul, M. G., Hansen, E. C., Barch, M., Wiśniowska, A., ... & Cordero, J. M. (2017). Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proceedings of the national academy of sciences, 114(9), 2325-2330.

24.辛加安。超順磁性氧化鐵奈米粒子鍵結 8G7 之磁振造影研究. 生物科技學院(分子醫學與生物工程研究所), 59, 2009. DOI://10.6842/NCTU.2009.01173.

25.謝明芝、陳啟昌、李潤川、陳榮邦。(2008)。放射線檢查之用藥安全流程。中華放射醫誌,33,85-90。

26.Valdiglesias V, Fernández-Bertólez N, Kiliç G, Costa C, Costa S, Fraga S, Bessa MJ, Pásaro E, Teixeira JP, Laffon B. Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J Trace Elem Med Biol. 2016 Dec;38:53-63. doi: 10.1016/j.jtemb.2016.03.017. Epub 2016 Mar 31. PMID: 27056797.

27.Misaki, M., Savitz, J., Zotev, V., Phillips, R., Yuan, H., Young, K. D., Drevets, W. C., &Bodurka, J. (2015). Contrast enhancement by combining T1- and T2-weighted structural brain MR Images. Magnetic resonance in medicine, 74(6), 1609–1620. https://doi.org/10.1002/mrm.25560.

28. FDA Drug Safety Communication: FDA identifies no harmful effects to date with brain retention of gadolinium-based contrast agents for MRIs; review to continue. May 22, 2017. https://www.fda.gov/Drugs/DrugSafety/ucm559007.htm. Accessed Nov. 09, 2020.

29.Burton, M.E. Applied Pharmacokinetics & Pharmacodynamics: Principles of Therapeutic Drug Monitoring, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006.

30.Dieckhoff, J.; Kaul, M.G.; Mummert, T.; Jung, C.; Salamon, J.; Adam, G.; Ittrich, H. In vivo liver visualizations with magnetic particle imaging based on the calibration measurement approach. Phys. Med. Biol. 2017, 62, 3470. [CrossRef]

31.Mørkenborg, J.; Pedersen, M.; Jensen, F.T.; Stødkilde-Jørgensen, H.; Djurhuus, J.C.; Frøkiær, J. Quantitative assessment of Gd-DTPA contrast agent from signal enhancement: An in vitro study. Magn. Reson. Imaging 2003, 21, 637–643. [CrossRef]

32.Runge, V.M. Safety of approved MR contrast media for intravenous injection. J. Magn. Reson. Imaging JMRI 2000, 12, 205–213. [CrossRef]

33.Runge, V.M.; Clanton, J.A.; Price, A.C.; Wehr, C.J.; Herzer, W.A.; Partain, C.L.; James, A.E., Jr. The use of Gd DTPA as a perfusion agent and marker of blood-brain barrier disruption. Magn. Reson. Imaging 1985, 3, 43–55. [CrossRef]

34.Kopp, A.F.; Laniado, M.; Dammann, F.; Stern, W.; Grönewäller, E.; Balzer, T.; Claussen, C.D. MR imaging of the liver with Resovist: Safety, efficacy, and pharmacodynamic properties. Radiology 1997, 204, 749–756. [CrossRef]

35.Lee, J.S.; Goo, E.H.; Park, C.S.; Lee, S.Y.; Choi, Y.S. A Study on Usefulness of Specific Agents with Liver Disease at MRI Imaging: Comparison with Ferucarbotran and Gd-EOB-DTPA Contrast Agents. Korean J. Med. Phys. 2009, 20, 235–243.

36.Bulte, J.W. In vivo MRI cell tracking: Clinical studies. Am. J. Roentgenol. 2009, 193, 314–325. [CrossRef]

37.Cho, E.S.; Yu, J.S.; Kim, M.J.; Kim, J.H.; Chung, J.J.; Kim, K.W. Focal Eosinophilic Necrosis on Superparamagnetic Iron Oxide– Enhanced MRI. Am. J. Roentgenol. 2010, 194, 1296–1302. [CrossRef]

38.Lee, S.M.; Lee, S.H.; Kang, H.Y.; Baek, S.Y.; Kim, S.M.; Shin, M.J. Assessment of musculoskeletal infection in rats to determine usefulness of SPIO-enhanced MRI. Am. J. Roentgenol. 2007, 189, 542–548. [CrossRef]

39.Neuwelt, A.; Sidhu, N.; Hu, C.A.A.; Mlady, G.; Eberhardt, S.C.; Sillerud, L.O. Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. Am. J. Roentgenol. 2015, 204, 302–313. [CrossRef] [PubMed]

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top