Anoop, K. P., Sarath, N. S. and Kumar, V. V., 2015, A review of PCB defect detection using image processing, International Journal of Engineering and Innovative Technology, 4(11), 188-192.
Adibhatla, V. A., Shieh, J. S., Abbod, M. F., Chih, H. C., Hsu, C. C. and Cheng, J., 2018, Detecting defects in PCB using deep learning via convolution neural networks, In 2018 13th International Microsystems, Packaging, Assembly and Circuits Technology Conference, Taipei, Taiwan, 202-205.
Bianco, S., Cadene, R., Celona, L. and Napoletano, P., 2018, Benchmark analysis of representative deep neural network architectures, IEEE Access, 6, 64270-64277.
Chollet, F. and others, 2015, Keras, https://github.com./fchollet/keras.
Chollet, F., 2017, Xception: deep learning with depthwise separable convolutions, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honlulu, HI, USA, 1251-1258.
Dave, N., Tambade, V., Pandhare, B. and Saurav, S., 2016, PCB defect detection using image processing and embedded system, International Research Journal of Engineering and Technology, 3(5), 1897-1901.
Deng, Y. S., Luo, A. C. and Dai, M. J., 2018, Building an automatic defect verification system using deep neural network for PCB defect classification, In 2018 4th International Conference on Frontiers of Signal Processing, Poitiers, France, 145-149.
George, O. D. A., Silva, L. H. D. S., Júnior, A. A., Fernandes, B. J. and Oliveira, S. C., 2020, Binary and multi-label defect classification of printed circuit board based on transfer learning, In Proceedings of 28th European Symposium on Artificial Neural Networks, Bruges, Belgium, 655-660.
Huang, W. and Wei, P., 2019, A PCB dataset for defects detection and classification, Journal of Latex Class Files, 14(8),1-9.
He, K., Zhang, X., Ren, S.and Sun, J., 2016, Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 770-778.
He, F., Tang, S., Mehrkanoon, S., Huang, X. and Yang, J., 2020, A real-time PCB defect detector based on supervised and semi-supervised learning, In Proceedings of 28th European Symposium on Artificial Neural Networks, Bruges, Belgium, 527-532.
Khalilian, S., Hallaj, Y., Balouchestani, A., Karshenas, H. and Mohammadi, A., 2020, PCB defect detection using denoising convolutional autoencoders, In Proceedings of 2020 International Conference on Machine Vision and Image Processing, Iran, 1-5.
Malge, P. S. and Nadaf, R. S., 2014, A survey: automated visual PCB inspection algorithm, International Journal of Engineering Research & Technology, 3(1), 223-229.
Munisankar, N., Nagarajar, S. and Narendra Kumar Rao, B., 2019, Defect detection in printed board circuit using image processing, International Journal of Innovative Technology and Exploring Engineering, 9(2), 2278-3075.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E., 2001, Scikit-learn:machine learning in Python, Journal of Machine Learning Research, 12, 2825-2830.
Pan, S. J. and Yang, Q., 2009, A survey on transfer learning, IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359.
Rawat, W. and Wang, Z., 2017, Deep convolutional neural networks for image classification: A comprehensive review, Neural Computation, 29(9), 2352-2449.
Simonyan, K. and Zisserman, A., 2014, Very deep convolutional networks for large-scale image recognition, In International Conference on Learning Representations, San Diego, USA, 1150-1220.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z. 2016, Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 2818-2826.
Shiina, T., Iwahori, Y. and Kijsirikul, B., 2018, Defect classification of electronic circuit board using multi-input convolutional neural network, International Journal of Computer and Software Engineering, 3(10), 2456-4451.
Silva, L. H. D. S., George, O. D. A., Fernandes, B. J., Bezerra, B. L., Lima, E. B. and Oliveira, S. C., 2019, Automatic optical inspection for defective PCB detection using transfer learning, In IEEE Latin American Conference on Computational Intelligence, Cartagena, Colombia, 1-6.
Taha, E. M., Emary, E. and Moustafa, K., 2014, Automatic optical inspection for PCB manufacturing: a survey, International Journal of Scientific and Engineering Research, 5(7), 1095-1102.
Takada, Y., Shiina, T., Usami, H., Iwahori, Y. and Bhuyan, M. K., 2017, Defect detection and classification of electronic circuit boards using keypoint extraction and CNN features, In The Ninth International Conferences on Pervasive Patterns and Applications Defect, Athens, Greece, 100, 113-116.
Tang, S., He, F., Huang, X. and Yang, J., 2019, Online PCB defect detector on a new PCB defect dataset, arXiv:1902.06197.
Wei, P., Liu, C., Liu, M., Gao, Y. and Liu, H., 2018, CNN-based reference comparison method for classifying bare PCB defects, The Journal of Engineering, 16, 1528-1533.
Wu, K. L. and Hsu, C. Y., 2020, Defect inspection by convolution neural network and empirical study in printed circuit board manufacturing, International Standard on Quality Management, 10(5).
Zhang, L., Jin, Y., Yang, X., Li, X., Duan, X., Sun, Y. and Liu, H., 2018, Convolutional neural network-based multi-label classification of PCB defects, The Journal of Engineering, 16, 1612-1616.
石明于,湯燦泰,黃茂裕,黃泰惠,簡珮珊,2018,「人工智慧於 PCB 瑕疵覆判之應用」,電工通訊季刊,81-95。
陳冠羽,2018,「建構以卷積神經網路為基礎之瑕疵檢測分類模型與實證研究」,桃園,元智大學資訊管理研究所碩士論文。賴威豪,曾紹崟,2017,「基於深度卷積神經網路之印刷電路板影像瑕疵分類」,2017 AOI論壇與展覽。