跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/20 14:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱依琳
研究生(外文):CHU, YI-LIN
論文名稱:基於物聯網與區塊鏈技術的自動防竄改機台維修派工系統
論文名稱(外文):Automatic Tamperproof Machine Maintenance Dispatching System (ATMD) based on IOT and Blockchain Technology.
指導教授:蘇傳軍蘇傳軍引用關係
指導教授(外文):SU, CHUAN-JUN
口試委員:梁韵嘉彭德保
口試委員(外文):Liang, YUN-CHIAPerng, DER-BAAU
口試日期:2022-07-12
學位類別:碩士
校院名稱:元智大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:58
中文關鍵詞:物聯網室內定位區塊鏈機台維修
外文關鍵詞:IoTIndoor PositioningBlockchainMachine Maintenance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
智慧製造是現今主要的發展趨勢,提高機台生產效率為其目標之一,機台維護的品質與方法都會影響機台效率。常規維護方式雖可降低機台故障的機率,但依舊會發生故障。因此,如何將機台維修時間降至最小,並以最快速度恢復服務,才是真正的挑戰。
傳統維護作業多由維護部門或派遣員指派,維護人員接收維護工單後,前往故障機台進行維修。然而,這種維修流程存有耗時長、效率低的缺點,更有可能因維護任務分配不均而造成同酬不同工的問題。
本研究提出一個名為ATMD的系統,利用物聯網與區塊鏈實現機台異常檢修自動派工。ATMD系統以共享、自動化及防竄改的方式派遣人員維修機台,並記錄維修歷程資訊。系統使用物聯網感測器監控機台,一旦發生異常,立刻通知該區域內所有由室內定位機制偵測到的符合維修技能門檻之維修人員。此外,區塊鏈智能合約創造不可竄改的獎勵機制,鼓勵他們爭取機台維修工作,並在工作完成後得到報酬。藉此緩解傳統維護派遣的問題,並降低停機及維修時間。

Intelligent manufacturing is a major development trend nowadays, and one of its goals is to improve machine efficiency. The quality and method of machine maintenance will determine machine efficiency. Although common maintenance practices can reduce the likelihood of machine breakdowns, breakdowns will still happen. Consequently, the real challenge is finding a way to minimize machine maintenance time and get it back in service as quickly as possible.
Maintenance operations are traditionally assigned by the central maintenance department or dispatcher. Following receipt of the maintenance work order, the maintenance staff will make their way to the faulty machine for repair. However, this maintenance protocol has the disadvantages of high time consumption and low efficiency, and there is also the possibility of uneven distribution of maintenance tasks, which results in different work being performed for the same amount of pay.
In this study, we propose a system called ATMD that utilizes the Internet of Things (IoT) and blockchain to automate the dispatch of machines to repair abnormalities. The ATMD dispatches staff to repair machines in a shared, automated, and tamper-resistant manner, as well as recording maintenance history information. The machine will be monitored using IoT sensors, and when an abnormality occurs, all maintenance staff detected by indoor positioning mechanism in the area who meet the maintenance skill threshold will be notified. Furthermore, a blockchain smart contract creates a tamperproof incentive mechanism which will be used to encourage them to compete for machine maintenance jobs and to be paid when the work is completed. This alleviates the problem of traditional maintenance dispatch and reduces downtime and repairs.

書名頁 i
論文口試委員審定書 ii
摘 要 iii
ABSTRACT iv
Contents v
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Research Objective 3
1.3 Research Overview 4
Chapter 2 Literature Review 5
2.1 Machine maintenance 5
2.2 Maintenance Dispatch 6
2.3 IoT 8
2.3.1 Indoor Positioning 10
2.4 Blockchain 11
2.4.1 Blockchain development 12
2.4.2 Smart Contract 13
2.4.3 Public Blockchain 14
2.4.4 Private Blockchain 14
2.5 Summary 15
Chapter 3 Research Methodology 17
3.1 Research architecture 18
3.2 IOT 19
3.2.1 Data Source 20
3.2.2 Message Queuing Telemetry Transport (MQTT) 21
3.3 Dispatching Module 22
3.3.1 Node-RED 22
3.3.2 HTTP 22
3.4 Blockchain 23
3.4.1 Hyperledger Fabric 24
3.4.2 Hyperledger Composer 25
3.4.3 REST Server 26
3.5 User Interface 27
3.6 Summary 27
Chapter 4 Implementation 29
4.1 System design descriptions 29
4.1.1 The types of Machine Failure 29
4.1.2 Location 30
4.2 Business Network 31
4.3 Node-RED Flow Design 37
4.4 System Operation Interface 41
4.4.1 Scenario 1 – Auto dispatching 42
4.4.2 Scenario 2 – Manual dispatching 46
Chapter 5 Conclusion and Future Research 51
5.1 Conclusion 51
5.2 Future Research 52
Reference 53


[1]Ayvaz, S., & Alpay, K. (2021). Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time. Expert Systems with Applications, 173, 114598.
[2]Bagadia, K. (1987). Microcomputer-aided maintenance management. Marcel Dekker Incorporated.
[3]Paz, N. M., & Leigh, W. (1994). Maintenance scheduling: issues, results and research needs. International Journal of Operations & Production Management.
[4]Ajayi, M. P., & Abimbola, O. H. (2013). Job satisfaction, organizational stress and employee performance: A study of NAPIMS. Ife PsychologIA: An International Journal, 21(2), 75-82.
[5]Shen, Y. (2018, November). On strengthening the construction of enterprise culture to improve enterprise competitiveness. In 2018 5th International Conference on Education, Management, Arts, Economics and Social Science (ICEMAESS 2018)(pp. 872-876). Amsterdam: Atlantis Press.
[6]Blanchard, B. S., Verma, D. C., & Peterson, E. L. (1995). Maintainability: a key to effective serviceability and maintenance management(Vol. 13). John Wiley & Sons.
[7]Ahmad, R., & Kamaruddin, S. (2012). An overview of time-based and condition-based maintenance in industrial application. Computers & industrial engineering, 63(1), 135-149.
[8]Mann, L., Saxena, A., & Knapp, G. M. (1995). Statistical‐based or condition‐based preventive maintenance?. Journal of Quality in Maintenance Engineering.
[9]Yam, R. C. M., Tse, P. W., Li, L., & Tu, P. (2001). Intelligent predictive decision support system for condition-based maintenance. The International Journal of Advanced Manufacturing Technology, 17(5), 383-391.
[10]Choudhary, D., Tripathi, M., & Shankar, R. (2019). Reliability, availability and maintainability analysis of a cement plant: a case study. International Journal of Quality & Reliability Management.
[11]Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical systems and signal processing, 20(7), 1483-1510.
[12]Sullivan, G., Pugh, R., Melendez, A. P., & Hunt, W. D. (2010). Operations & maintenance best practices-a guide to achieving operational efficiency (release 3)(No. PNNL-19634). Pacific Northwest National Lab.(PNNL), Richland, WA (United States).
[13]Alsyouf, I. (2007). The role of maintenance in improving companies’ productivity and profitability. International Journal of production economics, 105(1), 70-78.
[14]Al-Shayea, A. M. (2012). Maintenance capacity planning: Determination of maintenance workforce.
[15]Chase, H. R. (2005). Improving maintenance work flow processes in a volatile assembly factory environment: maintenance people and processes, spares inventory, and equipment reliability.
[16]Paz, N. M., & Leigh, W. (1994). Maintenance scheduling: issues, results and research needs. International Journal of Operations & Production Management.
[17]Chen, W., Chen, K., Cheng, J. C., Wang, Q., & Gan, V. J. (2018). BIM-based framework for automatic scheduling of facility maintenance work orders. Automation in Construction, 91, 15-30.
[18]Khatab, A., Diallo, C., Venkatadri, U., Liu, Z., & Aghezzaf, E. H. (2018). Optimization of the joint selective maintenance and repairperson assignment problem under imperfect maintenance. Computers & Industrial Engineering, 125, 413-422.
[19]Cheng, J., & Deng, F. (2018, October). Research and Implementation of Dispatch Algorithm for Intelligent Maintenance Based on Internet of Things. In 2018 15th International Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN)(pp. 60-66). IEEE.
[20]Mjema, E. A. (2002). An analysis of personnel capacity requirement in the maintenance department by using a simulation method. Journal of Quality in Maintenance Engineering.
[21]Senra, P., Lopes, I., & Oliveira, J. A. (2017). Supporting maintenance scheduling: a case study. Procedia Manufacturing, 11, 2123-2130.
[22]What is Internet of Things? Retrieved from https://www.sap.com/taiwan/insights/what-is-IoT-internet-of-things.html.(Feb 22, 2022.)
[23]Ismail, M. S., Chan, Y. P., Hussain, M. I., Muhammad, N., & Zain, Z. M. (2019, July). A new approach of temperature and humidity alert system at composite panel manufacturing area. In AIP Conference Proceedings(Vol. 2129, No. 1, p. 020005). AIP Publishing LLC.
[24]Yang, C., & Shao, H. R. (2015). WiFi-based indoor positioning. IEEE Communications Magazine, 53(3), 150-157.
[25]Kunhoth, J., Karkar, A., Al-Maadeed, S., & Al-Ali, A. (2020). Indoor positioning and wayfinding systems: a survey. Human-centric Computing and Information Sciences, 10(1), 1-41.
[26]Liu, F., Liu, J., Yin, Y., Wang, W., Hu, D., Chen, P., & Niu, Q. (2020). Survey on WiFi-based indoor positioning techniques. IET communications, 14(9), 1372-1383.
[27]Batistić, L., & Tomic, M. (2018, May). Overview of indoor positioning system technologies. In 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)(pp. 0473-0478). IEEE.
[28]Bouet, M., & Dos Santos, A. L. (2008, November). RFID tags: Positioning principles and localization techniques. In 2008 1st IFIP Wireless Days(pp. 1-5). Ieee.
[29]Mohamed, N., & Al-Jaroodi, J. (2019, January). Applying blockchain in industry 4.0 applications. In 2019 IEEE 9th annual computing and communication workshop and conference (CCWC)(pp. 0852-0858). IEEE.
[30]Golosova, J., & Romanovs, A. (2018, November). The advantages and disadvantages of the blockchain technology. In 2018 IEEE 6th workshop on advances in information, electronic and electrical engineering (AIEEE)(pp. 1-6). IEEE.
[31]Tama, B. A., Kweka, B. J., Park, Y., & Rhee, K. H. (2017, August). A critical review of blockchain and its current applications. In 2017 International Conference on Electrical Engineering and Computer Science (ICECOS)(pp. 109-113). IEEE.
[32]Liu, B. (2021, June). Overview of the Basic Principles of Blockchain. In 2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)(pp. 588-593). IEEE.
[33]Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper, 151(2014), 1-32.
[34]Mohanta, B. K., Panda, S. S., & Jena, D. (2018, July). An overview of smart contract and use cases in blockchain technology. In 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT)(pp. 1-4). IEEE.
[35]Agrawal, T. K., Kumar, V., Pal, R., Wang, L., & Chen, Y. (2021). Blockchain-based framework for supply chain traceability: A case example of textile and clothing industry. Computers & industrial engineering, 154, 107130
[36]Zhang, Z., Tian, X., Lei, Z., Yang, C., Qiang, R., & Yuan, Q. (2021, September). Application of Blockchain technology in power material performance and settlement. In Journal of Physics: Conference Series(Vol. 2030, No. 1, p. 012021). IOP Publishing.
[37]Szabo, N. (1997). Formalizing and securing relationships on public networks. First monday.
[38]Kim, M., Hilton, B., Burks, Z., & Reyes, J. (2018, November). Integrating blockchain, smart contract-tokens, and IoT to design a food traceability solution. In 2018 IEEE 9th annual information technology, electronics and mobile communication conference (IEMCON)(pp. 335-340). IEEE.
[39]Lu, E. Y. (2018). Which chain should a company choose? ——Public chain vs. Private chain vs. Consortium chain. Retrieved from https://www.blocktempo.com/which-blockchain-analysis/. (Dec. 12, 2018).
[40]Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., ... & Yellick, J. (2018, April). Hyperledger fabric: a distributed operating system for permissioned blockchains. In Proceedings of the thirteenth EuroSys conference(pp. 1-15).
[41]What is Hyperledger Fabric? Retrieved from https://www.ibm.com/topics/hyperledger/ (Feb 17, 2022).
[42]Marchese, A., & Tomarchio, O. (2021). An agri-food supply chain traceability management system based on hyperledger fabric blockchain. In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS2021)(Vol. 2, pp. 648-658).
[43]Miller, D. (2018). Blockchain and the internet of things in the industrial sector. IT professional, 20(3), 15-18.
[44]Lampkin, V., Leong, W. T., Olivera, L., Rawat, S., Subrahmanyam, N., Xiang, R., ... & Locke, D. (2012). Building smarter planet solutions with mqtt and ibm websphere mq telemetry. IBM Redbooks.
[45]Upadhyay, Y., Borole, A., & Dileepan, D. (2016, March). MQTT based secured home automation system. In 2016 Symposium on Colossal Data Analysis and Networking (CDAN)(pp. 1-4). IEEE.
[46]Archer (2019). [Protocol] Meet MQTT. Retrieved from https://oranwind.org/-broker-ren-shi-mqtt/(Apr. 06, 2021).
[47]Node-RED:Getting started. Retrieved from https://nodered.org/docs/getting-started/(MAR. 30, 2022).
[48]HyperText Transfer Protocol. Retrieved from https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol(Apr. 30, 2022).
[49]Puthal, D., Malik, N., Mohanty, S. P., Kougianos, E., & Yang, C. (2018). The blockchain as a decentralized security framework [future directions]. IEEE Consumer Electronics Magazine, 7(2), 18-21.
[50]Cachin, C. (2016, July). Architecture of the hyperledger blockchain fabric. In Workshop on distributed cryptocurrencies and consensus ledgers(Vol. 310, No. 4, pp. 1-4).
[51]Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., ... & Yellick, J. (2018, April). Hyperledger fabric: a distributed operating system for permissioned blockchains. In Proceedings of the thirteenth EuroSys conference(pp. 1-15).
[52]Jain, S. (2019). Hyperledger Fabric Consensus Explained. Retrieved from https://sidshome.wordpress.com/2019/04/01/hyperledger-fabric-consensus-explained/ (May. 02,2022).
[53]Rilee, K. (2018). Understanding Hyperledger Fabric—Byzantine Fault Tolerance. Retrieved from https://medium.com/kokster/understanding-hyperledger-fabric-byzantine-fault-tolerance-cf106146ef43 (May. 02,2022).
[54]Meet Hyperledger Composer. (May 03, 2017). Retrieved from https://www.hyperledger.org/blog/2017/05/03/meet-hyperledger-composer(May 02, 2021).
[55]Ammi, M., Alarabi, S., & Benkhelifa, E. (2021). Customized blockchain-based architecture for secure smart home for lightweight IoT. Information Processing & Management, 58(3), 102482.

電子全文 電子全文(網際網路公開日期:20270722)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊