|
[1]程薇, "BP 公司在 2019 年世界能源統計年鑑中指出世界正走在一條不可持續的道路上," 石油煉製與化工, vol. 50, no. 9, p. 96, 2019. [2]C. Grey and J. Tarascon, "Sustainability and in situ monitoring in battery development," Nature materials, vol. 16, no. 1, pp. 45-56, 2017. [3]孟祥飛、龐秀嵐、崇鋒、侯少攀、祁斌, "電化學儲能在電網中的應用分析及展望," 儲能科學與技術, vol. 8, no. S1, p. 38, 2019. [4]Y. Xing, E. W. Ma, K. L. Tsui, and M. Pecht, "Battery management systems in electric and hybrid vehicles," Energies, vol. 4, no. 11, pp. 1840-1857, 2011. [5]M. S. H. Lipu, M. A. Hannan, A. Hussain, M. M. Hoque, P. J. Ker, M. H. M. Saad, and A. Ayob," A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations," Journal of cleaner production, vol. 205, pp. 115-133, 2018. [6]S. Park, J. Ahn, T. Kang, S. Park, Y. Kim, I. Cho, and J. Kim, "Review of state-of-the-art battery state estimation technologies for battery management systems of stationary energy storage systems," Journal of Power Electronics, vol. 20, no. 6, pp. 1526-1540, 2020. [7]G. Pil'atowicz, A. Marongiu, J. Drillkens, P. Sinhuber, and D. U. Sauer, "A critical overview of definitions and determination techniques of the internal resistance using lithium-ion, lead-acid, nickel metal-hydride batteries and electrochemical double-layer capacitors as examples," Journal of Power Sources, vol. 296, pp. 365-376, 2015. [8]莊全超、徐守東、邱祥雲、崔永麗、方亮、孫世剛, "鋰離子電池的電化學阻抗譜分析," 化學進展, vol. 22, no. 06, p. 1044, 2010. [9]S. Montoya-Bedoya, L. A. Sabogal-Moncada, E. Garcia-Tamayo, and H. V. Martínez-Tejada, "A circular economy of electrochemical energy storage systems: Critical review of SOH/RUL estimation methods for second-life batteries," Green Energy and Environment, p. 67, 2020. [10]Y. Li, K. Liu, A. M. Foley, A. Zülke, M. Berecibar, E. Nanini-Maury, J. Van Mierlo, and H. E. Hoster, "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, vol. 113, p. 109254, 2019. [11]S. Zhang, "A new method for lithium-ion battery's SOH estimation and RUL prediction," IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 2693-2697, 2018. [12]F. Geng, Y. Kang, Z. Li, C. Zhang, and B. Duan, "Remaining useful life prediction of LiFePO4 battery based on particle filter," Chinese Automation Congress (CAC), pp. 1149-1153, 2017. [13]Y. Zhang, R. Xiong, H. He, and Z. Liu, "A LSTM-RNN method for the lithuim-ion battery remaining useful life prediction," Prognostics and System Health Management Conference (PHM-Harbin), IEEE, pp. 1-4, 2017 [14]Y. Zhang, R. Xiong, H. He, and M. G. Pecht, "Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries," IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 5695-5705, 2018. [15]C. Wang, N. Lu, S. Wang, Y. Cheng, and B. Jiang, "Dynamic long short-term memory neural-network-based indirect remaining-useful-life prognosis for satellite lithium-ion battery," Applied Sciences, vol. 8, no. 11, p. 2078, 2018. [16]K. A. Severson, P. M. Attia, N. Jin, N. Perkins, B. Jiang, Z. Yang, M. H. Chen, M. Aykol, P. K. Herring, D. Fraggedakis, M. Z. Bazant, S. J. Harris, W. C. Chueh, and R. D. Braatz, "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, vol. 4, no. 5, pp. 383-391, 2019. [17]I. Sanz-Gorrachategui, P. Pastor-Flores, M. Pajovic, Y. Wang, P. V. Orlik, C. Bernal-Ruiz, A. Bono-Nuez, and J. S. Artal-Sevil, "Remaining Useful Life Estimation for LFP Cells in Second-Life Applications," IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-10, 2021. [18]S. Lu, F. Wang, C. Piao, and Y. Ma, "Health State Prediction of Lithium Ion Battery Based On Deep Learning Method," in IOP Conference Series: Materials Science and Engineering, vol. 782, 2020. [19]C. Olah, "Understanding LSTM networks", available at: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (Accessed 20 November 2021), 2015. [20]S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997. [21]G. Dos Reis, C. Strange, M. Yadav, and S. Li, "Lithium-ion battery data and where to find it," Energy and AI, p. 100081, 2021. [22]B. Saha and K. Goebel. Battery data set. NASA Ames Prognostics Data Repository; NASA Ames: Moffett Field, CA, USA, 2007. Available online: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#battery (accessed on 21 September 2021), 2007. [23]D. P. Abraham, D. W. Dees, J. Knuth, E. Reynolds, R. Gerald, Y-E. Hyung, I. Belharouak, M. Stoll, E. Sammann, S. MacLaren, R. Haasch, R. Twesten, M. Sardela, V. Battaglia, E. Cairns, J. Kerr, M. Kerlau, R. Kostecki, J. Lei, K. McCarthy, F. McLarnon, J. Reimer, T. Richardson, P. Ross, S. Sloop, X. Song, V. Zhuang, M. Balasubramanian, J. McBreen, K-Y. Chung, X. Q. Yang, W.-S. Yoon, and L. Norin, "Diagnostic examination of Generation 2 lithium-ion cells and assessment ofperformance degradation mechanisms," in Argonne National Lab.(ANL), Argonne, IL (United States), no. ANL-05/21, 2005 [24]D. Liu, J. Pang, J. Zhou, and Y. Peng, "Data-driven prognostics for lithium-ion battery based on Gaussian process regression," in Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing), pp. 1-5, 2012.
|