跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/09 23:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黎宝
研究生(外文):Bao Le
論文名稱:設計 24 小時動態照明以改善癡呆症患者的睡眠模式
論文名稱(外文):Design of 24-hour Dynamic Lighting to Aid Sleep Patterns for Persons Living with Dementia
指導教授:白小明
指導教授(外文):Jonathon David White
口試委員:徐業良陳賦郁陳民樺
口試委員(外文):Yeh-Liang HsuBeverly ChenMin-Hua Chen
口試日期:2021-12-06
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系丙組
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:71
中文關鍵詞:動態照明失智睡眠障礙生物鐘
外文關鍵詞:dynamic lightingdementiasleep disordercircadian clock
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
睡眠障礙在阿茨海默症或相關癡呆症 (ADRD) 患者中很常見,並且會對患者的日常功能產生負面影響。這種睡眠模式的改變已被證明是護理人員倦怠的主要因素。眾所周知,睡眠/覺醒模式是由中樞的晝夜節律起搏器產生的定時信號直接驅動的,這可能會或可能不會在 ADRD 患者中完美運行。許多針對老年人群的研究顯示,精心策劃的 24 小時明暗模式可以提高睡眠效率和鞏固睡眠,但其他研究認為沒有效果。
我們希望使用可以獨立調節光譜和強度的 LED 照明來控制中期或長期護理環境中患者的照明環境。本研究的目標是利用考慮患者和護理人員需求的最佳見解。例如,在早晨,光線的強度逐漸增加,開始時紅色分量在白天轉變為亮白色,然後隨著晚上房間內接近黑暗而逐漸降低色溫,而紅色在走廊中占主導地位。
在這項研究中,我們開發了從條形 LED 到設計的可見光通信模擬,然後基於房間的照明實施房間控制的並開發診斷程式,以明確監測患者睡眠模式的任何改善。其中包括開發以 24 小時為週期控制和監控照明的軟體。

Sleep disorders are common in patients with Alzheimer's disease or related dementia (ADRD) and can adversely affect a patient's daily functions. It has been shown that this variation in sleep patterns is a major factor in nursing staff burnout. It is known that the sleep / wake mode is controlled directly by the timing signal generated by the circadian pacemaker, which may or may not work perfectly in ADRD patients. Some studies in older adults have shown that a carefully planned 24-hour light-and-dark program can improve sleep efficiency and enhance sleep, but other studies suggest that this is not effective.
We hope to be able to use LED lighting, the spectrum and intensity of which can be adjusted independently, to control the patient's lighting environment in a long-term or medium-term care setting. The aim of this study was to consider the needs of patients and nursing staff to the best of our knowledge and belief. For example, the light intensity increases gradually in the morning, initially the red component becomes bright white during the day, then the color temperature gradually decreases as the room approaches darkness at night, while red dominates the hallway.
In this study, we developed a visual light communication simulation from LED bar lights for the design, then implemented a room-based lighting system for room control and developed diagnostic procedures to clearly monitor any improvement in the patient's sleep pattern. This includes the development of lighting control and monitoring software on a 24-hour cycle.

Abstract i
Acknowledgments iii
Table of content iv
List of figures vii
List of Table ix
CHAPTER 1 INTRODUCTION 1
1.1 AIM 3
1.2 OBJECTIVES 3
CHAPTER 2 LITERATURE REVIEW 5
2.1 Photoreceptors in the retina 5
2.2 Lighting characteristics affecting circadian rhythms 6
2.3 Sleep disturbances in person with ADRD 7
2.4 The aging eyes 8
2.4.1 Glare from sources of light 9
2.4.2 Uniformity 9
2.4.3 Reflections and surface materials 9
2.5 Lighting for persons with ADRD 10
2.6 Proposed 24-hour lighting protocol 11
CHAPTER 3 RESEARCH METHODOLOGY 15
3.1 Measured the experimental spectra 15
3.2 Lux 16
3.3 Calculated the basic photopic quantities for the light 16
3.3.1 The CIE 1931 xy 16
3.3.2 Correlated color temperature (CCT) 18
3.3.3 DUV 18
3.3.4 Color rendering index (CRI) 19
3.3.4.1 What is the CRI 19
3.3.4.2 How is CRI calculated 20
3.4 Calculated the biological effects for the light 25
3.4.1 Background 25
3.4.2 Photopic illuminance 26
3.4.3 Human retinal photopigment complement: five α-opic parameters 26
3.4.4 Equivalent α-opic illuminance 27
CHAPTER 4 EXPERIMENT 29
4.1 Hardware 29
4.1.1 Room 70723 layout (Building 7, Yuan Ze University) 29
4.1.2 Cove 29
4.1.3 Equipment 30
4.1.3.1 LEDs strip 30
4.1.3.1.1 RGB strip 30
4.1.3.1.2 Two-color (LED) strip (WWIB) 31
4.1.3.1.3 Amber strip 31
4.1.3.2 Power supply 31
4.1.3.3 Amplifier 32
4.1.3.4 Wiring 32
4.1.3.5 Power board (Aluminum plate) 33
4.2 Measurement 34
4.2.1 Sunlight 34
4.2.1.1 Introduction 34
4.2.1.2 Measured spectra power distribution (SPD) of sunlight 35
4.2.1.3 The photopic quantities of the sunlight 36
4.2.2 LEDs (RGB, WW, IB, Amber) 37
4.2.2.1 Introduction 37
4.2.2.2 Measured SPD of LEDs 37
4.2.2.3 The photopic quantities of the LED 37
4.3 Design 24-hour 38
4.3.1 Background 38
4.3.2 24-hour whites light 40
4.4 Evaluation 44
4.4.1 Visual 44
4.4.2 Glare, and shadows 44
4.4.3 Power consumption 45
4.4.4 Efficient conversion of LEDs 45
4.4.5 Circadian stimulus (CS) and circadian light (CLA) 47
4.4.5.1 Introduction 47
4.4.5.2 How to calculate CS, CLA 47
CHAPTER 5 ULTRAVIOLET LEDS 50
5.1 Introduction 50
5.2 UV and inactivation of Coronavirus 51
5.3 Experiment: Reflection of materials for UV 52
5.3.1 Equipment 52
5.3.1.1 UV-LED 52
5.3.1.2 Blue-LED 53
5.3.1.3 Thorlabs Power 53
5.3.1.4 Materials used for testing 54
5.3.2 Experiment set up 54
5.3.2.1 Input 54
5.3.2.2 Reflection 55
5.4 Results 57
5.4.1 Blue LED 57
5.4.1.1 Input 57
5.4.1.2 Blue reflection 57
5.4.2 UV LED 61
5.4.2.1 Input 61
5.4.2.2 UV reflection 62
5.5 Discussion and conclusion 64
CHAPTER 6 CONCLUSION AND FUTURE STUDY 65
REFERENCES 68

1.Hjetland, G.J., et al., Light interventions and sleep, circadian, behavioral, and psychological disturbances in dementia: A systematic review of methods and outcomes. Sleep Med Rev, 2020. 52: p. 101310.
2.2017 Alzheimer's disease facts and figures. Alzheimer's & Dementia, 2017. 13(4): p. 325-373.
3.Wu, Y.T., et al., Prevalence of dementia in mainland China, Hong Kong and Taiwan: an updated systematic review and meta-analysis. Int J Epidemiol, 2018. 47(3): p. 709-719.
4.Figueiro, M.G., et al., Tailored Lighting Intervention for Persons with Dementia and Caregivers Living at Home. Sleep Health, 2015. 1(4): p. 322-330.
5.Sloane, P.D., M. Figueiro, and L. Cohen, Light as Therapy for Sleep Disorders and Depression in Older Adults. Clin Geriatr, 2008. 16(3): p. 25-31.
6.White, M.D., S. Ancoli-Israel, and R.R. Wilson, Senior living environments: evidence-based lighting design strategies. HERD, 2013. 7(1): p. 60-78.
7.Sack, R.L., et al., Circadian rhythm sleep disorders: part I, basic principles, shift work and jet lag disorders. An American Academy of Sleep Medicine review. Sleep, 2007. 30(11): p. 1460-83.
8.Sack, R.L., et al., Circadian rhythm sleep disorders: part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. An American Academy of Sleep Medicine review. Sleep, 2007. 30(11): p. 1484-501.
9.Van Cauter, E., et al., Metabolic consequences of sleep and sleep loss. Sleep Med, 2008. 9 Suppl 1: p. S23-8.
10.Blume, C., C. Garbazza, and M. Spitschan, Effects of light on human circadian rhythms, sleep and mood. Somnologie (Berl), 2019. 23(3): p. 147-156.
11.Berson, D.M., F.A. Dunn, and M. Takao, Phototransduction by retinal ganglion cells that set the circadian clock. Science, 2002. 295(5557): p. 1070-3.
12.Hanford, N. and M. Figueiro, Light therapy and Alzheimer's disease and related dementia: past, present, and future. J Alzheimers Dis, 2013. 33(4): p. 913-22.
13.McCurry, S.M., et al., Treatment of sleep disturbance in Alzheimer's disease. Sleep Med Rev, 2000. 4(6): p. 603-628.
14.Torrington, J., P.J.L.R. Tregenza, and Technology, Lighting for people with dementia. 2007. 39(1): p. 81-97.
15.Levitt, A.J. and R.W. Lam, Canadian consensus guidelines for the treatment of seasonal affective disorder. 1999: Clinical & Academic Pub.
16.Dowling, G.A., et al., Effect of timed bright light treatment for rest-activity disruption in institutionalized patients with Alzheimer's disease. Int J Geriatr Psychiatry, 2005. 20(8): p. 738-43.
17.Sloane, P.D., et al., High-inteik9nsity environmental light in dementia: effect on sleep and activity. J Am Geriatr Soc, 2007. 55(10): p. 1524-33.
18.Hickman, S.E., et al., The effect of ambient bright light therapy on depressive symptoms in persons with dementia. J Am Geriatr Soc, 2007. 55(11): p. 1817-24.
19.Ancoli-Israel, S., et al., Effect of light treatment on sleep and circadian rhythms in demented nursing home patients. J Am Geriatr Soc, 2002. 50(2): p. 282-9.
20.Dowling, G.A., et al., Melatonin and bright-light treatment for rest-activity disruption in institutionalized patients with Alzheimer's disease. J Am Geriatr Soc, 2008. 56(2): p. 239-46.
21.Burns, A., et al., Bright light therapy for agitation in dementia: a randomized controlled trial. Int Psychogeriatr, 2009. 21(4): p. 711-21.
22.van Lieshout-van Dal, E., L. Snaphaan, and I. Bongers, Biodynamic lighting effects on the sleep pattern of people with dementia. Building and Environment, 2019. 150: p. 245-253.
23.Sloane, P., et al., Effect of home-based light treatment on persons with dementia and their caregivers. 2015. 47(2): p. 161-176.
24.Figueiro, M.G., et al., Tailored lighting intervention improves measures of sleep, depression, and agitation in persons with Alzheimer's disease and related dementia living in long-term care facilities. Clin Interv Aging, 2014. 9: p. 1527-37.
25.Figueiro, M., et al., Research note: a self-luminous light table for persons with Alzheimer’s disease. 2016. 48(2): p. 253-259.
26.Figueiro, M., et al., Non-visual effects of light: How to use light to promote circadian entrainment and elicit alertness. 2018. 50(1): p. 38-62.
27.Figueiro, M.G., et al., On light as an alerting stimulus at night. Acta Neurobiol Exp (Wars), 2007. 67(2): p. 171-8.
28.Figueiro, M.G.J.L.R. and Technology, A proposed 24 h lighting scheme for older adults. 2008. 40(2): p. 153-160.
29.van Lieshout-van Dal, E., et al., Biodynamic lighting effects on the sleep pattern of people with dementia. 2019. 150: p. 245-253.
30.Bolton JR. UV FAQs [Internet]. Chevy Chase: International Ultraviolet Association. [cited 2020 May 15th.
31.Misovic M, Milenkovic D, Marinovic T, et al., Short term exposure to UVA, UVB, and UVC irradiation induces alteration in cytoskeleton and autophagy in human keratinocytes. Ultrastruct Pathold 2013;37:241-8.
32.Zimmer C (26 February 2021). "The Secret Life of a Coronavirus – An oily, 100-nanometer-wide bubble of genes has killed more than two million people and reshaped the world. Scientists don't quite know what to make of it". Retrieved 28 February 202.
33.Yoram G, Hadas M, Nehemya F. Michal M. UV-LED disinfection of Coronavirus: Wavelength effect, Biology 212 (2020) 112044.
34.Gerchaman Y, V. cohen-Yaniv, Y. Betzalel, et al., The involvement of superoxide radicals in medium pressure UV derived inactivation, Water Res. 161 (2019) 119-125.
35.Hull N.m, Linden K.G., Synergy og MS2 disinfection by sequential exposure to tailored UV wavelenths, Water Res. 143 (2018) 292-300.
36.Ye Y., Chang P.H, Hartert J, et al., Reactivity of enveloped virus genome, proteins, and liquids with free chlorine and UV 254, Environ. Sci. Technol. 52 (14) (2018) 7698-7708.
37.Pendyala B, Patras A, D’Souza D, Genomic modeling as an approach to identify surrogates for use in experimental validation of SARS-VoV-2 and HuNoVs inactivation by UV-C treatment (2020) 06.14.151290.
38.Blatchley E. R, Petri B, Sunc W, SARS-CoV-2 UV Dose-Reponse Behavior, International Ultravioet Association (IUVA) White Paper, 2020.
39.Chabot G. Ultraviolet radiation helath physcis society. [Cited 15 Oct 2917].
40.Gerchman Y, Mamane H, Friedman N, Mandelboim M. UV-LED disinfection of Coronavirus: Wavelenghth effect. 2020 1011-1344.
41.Figueiro M. G, Kassandra G, David P. Designing with Circadian Stimulus. The lighting research center proposes a metric for applying circadian light in the built environment.
42.Rea M.S, Figuerio M. G, Bierman A, Bullough J.D. Circadian light. Journal of Circadian Rythms 210, 8:2.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top