跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃惇誠
研究生(外文):HUANG, DUN-CHENG
論文名稱:含噻唑螢光材料應用於藍綠光及串聯式有機發光元件之研究
論文名稱(外文):Study on Thiazole-Based Fluorescent Materials for Bluish-green OLED and Tandem Devices.
指導教授:張志豪張志豪引用關係
指導教授(外文):CHANG, CHIH-HAO
口試委員:劉舜維洪文誼
口試委員(外文):LIU, SHUN-WEIHUNG, WEN-YI
口試日期:2022-07-12
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系丙組
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:95
中文關鍵詞:噻唑螢光材料電荷產生層串聯式元件有機發光元件
外文關鍵詞:ThiazoleFluorescent MaterialsCharge Generation LayerTandemOLED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們與法國史特拉斯堡大學M. Mauro教授合作,開發出以噻唑作為電子受體核心的螢光材料,於兩側連接苯環形成共軛型態,分別以咔唑、三級丁基咔唑、二苯胺作為電子供體基團型成D-A-D分子結構,化合物依序命名為TN52、TN87、TN53。論文第一部分將分別優化三種材料所製作之元件,並以藍光材料TN87和橘紅光材料Ir(MDQ)2acac製作白光元件,此元件結構使用雙發光層來保持色穩定度,其元件在亮度750~15000 cd/m2下,CIE色座標皆保持在(0.41, 0.35),非常適合作為照明燈源。
論文第二部分是應用藍光材料TN87製作串聯式元件,我們參考D. Ma教授團隊,採用多組有機異質節對(Organic Heterojunctions, OHJs)作為電荷產生層(Charge Generation Layer, CGL)基礎架構,結果顯示,以CGL中採用四組的OHJs具最佳效率表現,在亮度為100 cd/m2下,一般傳統元件與串聯式元件最高效率分別為4.4 %(8.9 cd/A、6.2 lm/W)、9.2 %(19.6 cd/A、5.9 lm/W),顯示了此結構應用於串聯式元件上有優異的表現。

We collaborated with Prof. M. Mauro to develop a series of donor-acceptor-donor(D-A-D)thiazole-based fluorescent materials. Three molecules use thiazole as an electron acceptor to combine with different donor moieties, including carbazole, tert-butylcarbazole, or diphenylamine. In the first part of this thesis, three compounds were used to fabricate organic light-emitting diodes (OLEDs) to investigate their electroluminescence (EL) properties. Furthermore, the blue-emitting TN87 with the highest quantum yield was used in combination with the orange-emitting Ir(MDQ)2acac to construct white OLEDs. The device architecture with double emitting layers gave the efficient WOLEDs a stabilized white-light emission with CIE1931 coordinates of (0.41, 0.35) in a wide luminance range from 750 cd/m2 to 15000 cd/m2.
In the second part of the thesis, we further develop a tandem device based on the blue-emitting TN87-OLEDs. Herein, we proposed that multiple organic heterojunction (OHJ) pairs were used in the charge generation layer (CGL) to fabricate the tandem devices, aiming to increase the current density of the devices. As a result, the respective peak efficiencies of the conventional device and the tandem device recorded at 100 cd/m2 achieved 4.4 % (8.9 cd/A, 6.2 lm/W) and 9.2 % (19.6 cd/A, 5.9 lm/W), demonstrating the effectiveness of the designed CGLs.

摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 XI
第一章 緒論 1
第二章 文獻回顧 2
2-1 OLED 基本結構與原理 2
2-1-1 螢光與磷光 OLED 發光原理 3
2-1-2 主客體能量轉換機制 4
2-2 含噻唑(Thiazole)螢光客體材料 5
2-3 電子供體基團 8
2-3-1 咔唑(Carbazole)、三級丁基咔唑(tert-butylCarbazole) 8
2-3-2 二苯胺(Diphenylamine) 9
2-4 有機異質節對與串聯式元件 10
2-5 研究動機與目的 17
第三章 製程介紹 18
3-1 實驗流程 18
3-1-1 材料純化 18
3-1-2 基板清洗 18
3-1-3 腔體整理 19
3-1-4 元件蒸鍍 19
3-1-5 元件量測 20
3-1-6 數據分析 20
3-2 實驗所使用之商用材料 21
第四章 以含噻唑螢光客體材料製作有機發光元件 24
4-1 含噻唑螢光客體材料TN87、TN52、TN53分子材料與材料特性 24
4-2 以TN87為客體製作摻雜藍光及白光元件 31
4-2-1 階梯式注入層及電子傳輸層材料測試 31
4-2-2 P型摻雜電洞注入層及主體材料測試 38
4-2-3 白光元件 44
4-3 以TN52為客體製作摻雜藍光元件 50
4-3-1 P型摻雜電洞注入層及電子傳輸層材料測試 50
4-4 以TN53為客體製作摻雜綠光元件 56
4-4-1 階梯式注入層測試 56
第五章 以TN87製作串聯式有機發光元件 62
5-1 CGL結構測試 62
5-2 以多組有機異質接面電荷產生層製作TN87串聯式元件 67
第六章 實驗結果 75
6-1 含噻唑藍、綠色螢光材料製作有機發光元件及串聯式元件比較 75
6-2 藍光串聯式有機發光元件比較 83
第七章 結論與未來展望 85
參考文獻 89
[1].H. Cho, C. W. Joo, S. Choi, C. M. Kang, G. H. Kim, J. W. Shin, B. H. Kwon, H. Lee, C. W. Byun and N. S. Cho, ETRI J., 2021, 43, 1093.
[2].E. F. Schubert, J. K. Kim, Science, 2005, 308, 1274.
[3].V. C. Bender, T. B. Marchesan, J. M. Alonso, IEEE Ind. Electron. Mag., 2015, 9, 6.
[4].Y. Jeon, H.-R. Choi, M. Lim, S. Choi, H. Kim, J. H. Kwon, K.-C. Park and K. C. Choi, Adv. Mater. Technol., 2018, 3, 1870017.
[5].W. L. Chen, S. Y. Chen, D. C. Huang, D. Luo, H. W. Chen, C. Y. Wang and C. H. Chang, Materials (Basel), 2021, 14, 5723.
[6].C. Adachi, T. Tsutsui and S. Saito, Appl. Phys. Lett., 1989, 55, 1489.
[7].F. Strieth-Kalthoff, M. J. James, M. Teders, L. Pitzer and F. Glorius, Chem. Soc. Rev., 2018, 47, 7190.
[8].R. S. Knox, J Biomed Opt, 2012, 17, 011003.
[9].D. L. Dexter, J. Chem. Phys., 1953, 21, 836.
[10].D. Li, Y. Yuan, H. Bi, D. Yao, X. Zhao, W. Tian, Y. Wang and H. Zhang, Inorg. Chem., 2011, 50, 4825.
[11].Z. Zhang, Y.-A. Chen, W.-Y. Hung, W.-F. Tang, Y.-H. Hsu, C.-L. Chen, F.-Y. Meng and P.-T. Chou, Chem. Mater., 2016, 28, 8815.
[12].X. Zhang, M. Zhang, M. Liu, Y. Chen, J. Wang, X. Zhang, J. Zhang, W.-Y. Lai and W. Huang, Org. Electron., 2018, 53, 353.
[13].L. S. Liao and K. P. Klubek, Appl. Phys. Lett., 2008, 92, 223311.
[14].H. Sun, Q. Guo, D. Yang, Y. Chen, J. Chen and D. Ma, ACS Photonics, 2015, 2, 271.
[15].Y. Chen, H. Tian, Y. Geng, J. Chen, D. Ma, D. Yan and L. Wang, J. Mater. Chem., 2011, 21, 15332.
[16].Q. Guo, Y. Dai, Q. Sun, X. Qiao, J. Chen, T. Zhu and D. Ma, Adv. Electron. Mater., 2018, 4, 1800177.
[17].Y. Chen, Q. Wang, J. Chen, D. Ma, D. Yan and L. Wang, Org. Electron., 2012, 13, 1121.
[18].C.-W. Liao, Y.-C. Hsu, C.-C. Chu, C.-H. Chang, G. Krucaite, D. Volyniuk, J. V. Grazulevicius and S. Grigalevicius, Org. Electron., 2019, 67, 279.
[19].D. H. Kim and T. W. Kim, Org. Electron., 2014, 15, 3452.
[20].T. Lin, T. Zhang, Q. Song, F. Jin, Z. Liu, Z. Su, Y. Luo, B. Chu, C. S. Lee and W. Li, Org. Electron., 2016, 38, 69.
[21].Y.-S. Tsai, L.-A. Hong, F.-S. Juang and C.-Y. Chen, J. Lumin., 2014, 153, 312.
[22].J. Zhang, D. Ding, Y. Wei and H. Xu, Chem Sci, 2016, 7, 2870.
[23].K. Duan, D. Wang, M. Yang, Z. Liu, C. Wang, T. Tsuboi, C. Deng and Q. Zhang, ACS Appl. Mater. Interfaces, 2020, 12, 30591.
[24].J.-H. Jou, W.-B. Wang, S.-Z. Chen, J.-J. Shyue, M.-F. Hsu, C.-W. Lin, S.-M. Shen, C.-J. Wang, C.-P. Liu, C.-T. Chen, M.-F. Wu and S.-W. Liu, J. Mater. Chem., 2010, 20, 38.
[25].S. Liu, B. Li, L. Zhang, H. Song and H. Jiang, Appl. Phys. Lett., 2010, 97, 8.
[26].G. W. Kim, Y. H. Son, H. I. Yang, J. H. Park, I. J. Ko, R. Lampande, J. Sakong, M.-J. Maeng, J.-A. Hong, J. Y. Lee, Y. Park and J. H. Kwon, Chem. Mater., 2017, 29, 8299.
[27].D. Yokoyama, H. Sasabe, Y. Furukawa, C. Adachi and J. Kido, Adv. Funct. Mater., 2011, 21, 1375.
[28].W. Y. Hung, P. Y. Chiang, S. W. Lin, W. C. Tang, Y. T. Chen, S. H. Liu, P. T. Chou, Y. T. Hung and K. T. Wong, ACS Appl. Mater. Interfaces, 2016, 8, 4811.
[29].T. P. I. Saragi, T. Reichert, A. Scheffler, M. Kussler and J. Salbeck, Synth Met, 2012, 162, 1572.
[30].V. Thanikachalam, E. Sarojpurani, J. Jayabharathi and P. Jeeva, New J. Chem., 2017, 41, 2443.
[31].C. Tang, J. Chen, Y. Li, X. Liu, L. Zhang, F. Wang, J. Hu, X. Cao and T. Jiang, Electron. Mater. Lett., 2021, 17, 148.
[32].J. Jia and H. Zhang, J. Photochem. Photobiol. A, 2018, 353, 521.
[33].C. Tang, J. Chen, Y. Li, X. Liu, L. Zhang, F. Wang, J. Hu, X. Cao and T. Jiang, Electron. Mater. Lett., 2021, 17, 148.
[34].B. Vigante, K. Leitonas, D. Volyniuk, V. Andruleviciene, J. Simokaitiene, A. Ivanova, A. Bucinskas, J. V. Grazulevicius and P. Arsenyan, Chemistry, 2019, 25, 3325.
[35].T. Zhang, J. Miao, M. U. Ali, M. Shi, Y. He, T. Fu and H. Meng, Dyes Pigm., 2020, 180, 108477.
[36].W. Z. Yuan, Y. Gong, S. Chen, X. Y. Shen, J. W. Y. Lam, P. Lu, Y. Lu, Z. Wang, R. Hu, N. Xie, H. S. Kwok, Y. Zhang, J. Z. Sun and B. Z. Tang, Chem. Mater., 2012, 24, 1518.
[37].J. L. Liao, L. R. Devereux, M. A. Fox, C. C. Yang, Y. C. Chiang, C. H. Chang, G. H. Lee and Y. Chi, Chemistry, 2018, 24, 624.
[38].S. Noh, C. K. Suman, Y. Hong and C. Lee, J. Appl. Phys., 2009, 105, 033709.
[39].Z. Wu, L. Wang, G. Lei and Y. Qiu, J. Appl. Phys., 2005, 97, 103105.
[40].C.-C. Lee, S. Biring, S.-J. Ren, Y.-Z. Li, M.-Z. Li, N. R. Al Amin and S.-W. Liu, Org. Electron., 2019, 65, 150.
[41].C.-H. Chang, C.-C. Chen, C.-C. Wu, S.-Y. Chang, J.-Y. Hung and Y. Chi, Org. Electron., 2010, 11, 266.
[42].C.-H. Chang, K.-C. Tien, C.-C. Chen, M.-S. Lin, H.-C. Cheng, S.-H. Liu, C.-C. Wu, J.-Y. Hung, Y.-C. Chiu and Y. Chi, Org. Electron., 2010, 11, 412.
[43].J.-L. Liao, Y. Chi, Y.-D. Su, H.-X. Huang, C.-H. Chang, S.-H. Liu, G.-H. Lee and P.-T. Chou, J. Mater. Chem. C, 2014, 2, 31.
[44].R.-H. Yi, C.-M. Shao, C.-H. Lin, Y.-C. Fang, H.-L. Shen, C.-W. Lu, K.-Y. Wang, C.-H. Chang, L.-Y. Chen and Y.-H. Chang, J. Phys. Chem. C, 2020, 124, 20410.
[45].W.-H. Park, D.-P. Park and S. S. Kim, J. Inf. Disp., 2021, 23, 45.
[46].J. Yuan, W. Liu, J. Yao, Q. Sun, Y. Dai, J. Chen, D. Yang, X. Qiao and D. Ma, Org. Electron., 2020, 83, 105745.
[47].C.-L. Lin, H.-W. Lin and C.-C. Wu, Appl. Phys. Lett., 2005, 87, 201101.
[48].Y.-Z. Li, C.-C. Lee, Y.-D. Li, T.-H. Yeh, P.-C. Chang, S. Biring, K.-C. Huang, C.-H. Su and S.-W. Liu, Jpn. J. Appl. Phys., 2017, 56, 129213.
[49].T. Xu, J.-G. Zhou, C.-C. Huang, L. Zhang, M.-K. Fung, I. Murtaza, H. Meng and L.-S. Liao, ACS Appl. Mater. Interfaces, 2017, 9, 10955.
[50].C.-H. Chang, Z.-J. Wu, Y. -H. Liang, Y.-S. Chang, C.-H. Chiu, C.-W. Tai and H.-H. Chang, Thin Solid Films, 2013, 548, 389.
[51].Y.-W. Chang, M.-J. Huang, C.-C. Lai, C.-C. Chang, M.-P. Huang, C.-Y. Liao and C.-H. Cheng, Chem. Commun., 2016, 52, 14294. 
[52].Y.-D. Liu, J.-C. Li, J. Zhang, W.-J. Guo, Z.-S. Wu, Y.-H. Mi and X.-C. Song, Optoelectron. Lett., 2019, 15, 85.
[53].J. Park, J.-H. Lee, J. Lee and H. Cho, J. Inf. Disp., 2020, 22, 107.
[54].Y. Qin, C.-Y. Liu, R.-Q. Li, J. Wang, Y.-N. Lu, Y.-H. Chen, Y.-Z Wang, Y.-N. Xu, X.-W. Zhang and W. Huang, Opt. Lett., 2020, 23, 6450.
[55].A. Chen, Z. Wang, J.-F. Xie, J.-W. Chen, Y.-S. Lu, W.-X. Zhang and F.-P. Lu, Appl. Phys. Express, 2020, 3, 031002.
[56].W.-H. Park, D.-P. Park and S. S. Kim, J. Inf. Disp., 2021, 23, 45.
[57].T. Sudyoadsuk, S. Petdee, P. Chasing, P. Therdkatanyuphong, C. Kaiyasuan, W. Waengdongbung, S. Namuangruk and V. Promarak, Dyes Pigm., 2021, 195, 109712.
[58].V. G. Sree, A. Maheshwaran, H. Kim, H.-Y. Park, Y. Kim, J. C. Lee, M. Song and S.-H. Jin, Adv. Funct. Mater., 2018, 28, 1804714.
[59].J. Saghaei, T. Leitner, V. T. N. Mai, C. S. K. Ranasinghe, P. L. Burn, I. R. Gentle, A. Pivrikas and P. E. Shaw, ACS Appl. Electron. Mater., 2021, 3, 4757.
[60].S. Nasiri, A. Dashti, M. Hosseinnezhad, M. Rabiei, A. Palevicius, A. Doustmohammadi and G. Janusas, Chem. Eng. J., 2022, 430, 131877.
[61].X. Wang, C. Shi, Q. Guo, Z. Wu, D. Yang, X. Qiao, T. Ahamad, S. M. Alshehri, J. Chen and D. Ma, J. Mater. Chem. C, 2016, 4, 8731.
[62].Y. Dai, H. Zhang, Z. Zhang, Y. Liu, J. Chen and D. Ma, J. Mater. Chem. C, 2015, 3, 6809.
[63].W. S. Jeon, J. S. Park, L. Li, D. C. Lim, Y. H. Son, M. C. Suh and J. H. Kwon, Org. Electron., 2012, 13, 939.
[64].H.-H. Jiang, J. Xiao, H.-T. Huang, D. Wu, R.-X. Song, R. Xu, X. Gao, J.-L. Xu, S. Duhm, L.-F. Chi and S.-D. Wang, Appl. Phys. Lett., 2021, 118, 223301. 
[65].M. Liu, M. Shi and H. Meng, New J. Chem., 2020, 44, 2961.
[66].T. Huang, D. Liu, J. Jiang and W. Jiang, Chemistry, 2019, 25, 10926.
[67].H. W. Bae, Y. H. Son, B. Y. Kang, J. M. Lee, H. Nam and J. H. Kwon, Opt. Express, 2015, 23, 30701.
[68].L. S. Liao, W. K. Slusarek, T. K. Hatwar, M. L. Ricks and D. L. Comfort, Adv. Mater., 2008, 20, 324.
[69].H. Sun, X. Tan, S. Sang, Q. Liu, P. Sun, J. Zhang, X.-C. Hang, F. Chen and Z.-K. Chen, Org. Electron., 2020, 78, 105610.
[70].F.-X. Huang, H.-Z. Li, F.-M. Xie, X.-Y. Zeng, Y.-Q. Li, Y.-Y. Hu, J.-X. Tang and X. Zhao, Dyes Pigm., 2021, 195, 109731.
[71].R.-H. Yi, G.-Y. Liu, Y.-T. Luo, W.-Y. Wang, H.-Y. Tsai, C.-H. Lin, H.-L. Shen, C.-H. Chang and C.-W. Lu, Chem. Eur. J., 2021, 27, 12998.
[72].S. H. Rhee, C. S. Kim, M. Song, K. B. Chung and S. Y. Ryu, ECS Solid State Lett., 2014, 3, R49.
[73].V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov and S. R. Forrest, Phys. Rev. B, 1998, 58, 3730.
[74].X. H. Zheng, T. T. Huang, G. X. Yang, A. Q. Lin, K. Chen, X. Chen, J. Y. Li and Q. X. Tong, Chemistry, 2021, 27, 16181.
[75].J. Jayabharathi, S. Sivaraj, V. Thanikachalam and J. Anudeebhana, J. Mater. Chem. C, 2021, 9, 10334.
[76].S. Tongsuk, R. Malatong, T. Unjarern, C. Wongkaew, P. Surawatanawong, T. Sudyoadsuk, V. Promarak and N. Ruangsupapichat, J. Lumin., 2021, 238, 118287.
[77].K. J. Kim, H. Lee, K. M. Hwang, B. Park, H. Y. Oh, Y. K. Kim and T. Kim, Org. Electron., 2021, 96, 106220. 
[78].K. Chen, R. Wu, X. Li, W. Liu, Z. Wei, J. Wang and L. Zhou, Opt. Mater., 2022, 123, 111917.
[79].R. Wang, T. Li, C. Liu, M. Xie, H. Zhou, Q. Sun, B. Yang, S. T. Zhang, S. Xue and W. Yang, Adv. Funct. Mater., 2022.
[80].P. H. A. Nayak, H. S. B. Naik, R. Viswanath and B. R. Kirthan, J Phys Chem Solids, 2021, 159, 110288.
[81].J. Kumsampao, C. Chaiwai, C. Sukpattanacharoen, T. Chawanpunyawat, P. Nalaoh, P. Chasing, N. Kungwan, T. Sudyoadsuk and V. Promarak, Mater. Chem. Front., 2021, 5, 6212.
[82].Z. Wen, T. Yang, D. Zhang, Z. Wang, S. Dong, H. Xu, Y. Miao, B. Zhao and H. Wang, J. Mater. Chem. C, 2022, 10, 3396.
[83].U. Tsiko, O. Bezvikonnyi, G. Sych, R. Keruckiene, D. Volyniuk, J. Simokaitiene, I. Danyliv, Y. Danyliv, A. Bucinskas, X. Tan and J. V. Grazulevicius, J Adv Res, 2021, 33, 41.
[84].V. V. Patil, K. H. Lee and J. Y. Lee, Dyes Pigm., 2020, 174, 108070.
[85].W. S. Jeon, J. S. Park, L. Li, D. C. Lim, Y. H. Son, M. C. Suh and J. H. Kwon, Org. Electron., 2012, 13, 939.
電子全文 電子全文(網際網路公開日期:20270712)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊