跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/16 00:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林佳葦
研究生(外文):LIN, JIA-WEI
論文名稱:雙接枝轉鐵蛋白和麥胚凝集素之奈米粒子包覆BV6和Etoposide及SM164對誘導膠質母細胞瘤細胞凋亡之效應
論文名稱(外文):Effect of BV6-SM164-etoposide-encapsulated nanoparticles with double-grafted transferrin and wheat germ agglutinin to induce apoptosis in glioblastoma multiforme
指導教授:郭勇志郭勇志引用關係
指導教授(外文):KUO, YUNG-CHIH
口試委員:周宗翰姚少凌李玫樺郭勇志
口試委員(外文):CHOU, TZUNG-HANYAO, CHAO-LINGLEE, MEI-HWAKUO, YUNG-CHIH
口試日期:2023-07-26
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:168
中文關鍵詞:膠質母細胞瘤細胞凋亡抑制劑奈米粒子轉鐵蛋白麥胚凝集素
外文關鍵詞:glioblastoma multiformeinhibitor of apoptosisnanoparticlestransferrinwheat germ agglutinin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:58
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米粒子(nanoparticles, NPs)包覆第二型拓撲異構酶之etoposide (ETO)誘導腫瘤細胞的DNA損傷,從而引起IAPs消耗且經由Smac模擬物的BV6和SM164增強與IAPs拮抗作用,同時於粒子表面修飾轉鐵蛋白(transferrin, Tf)透過其在血腦屏障與腫瘤細胞大量表現之受體達到專一靶向結合之特性,並接枝麥胚凝集素(wheat germ agglutinin, WGA)輔助粒子穿透血腦屏障之能力。粒子材料選用生物相容性之可可脂(cocoa butter, CB)和聚乙烯醇(polyvinyl alcohol, PVA)作為載體主體,添加界面活性劑分別穩定乳化液和整體結構之單硬脂酸甘油酯(glycerol monostearate, GMS)以及Pluronic F-127,益於降低材料間之聚合並提高結構穩定性有助於後續生物實驗之應用,經由標靶藥物Tf和WGA修飾NPs包覆治療藥物能夠增加對血腦屏障的穿透率,穩定釋放藥物治療in vitro腫瘤細胞於48小時後約有40%細胞毒殺性,藉由in vivo HE染色觀察經治療後之腫瘤細胞型態其細胞密度降低且非典型細胞核分裂減少,治療藥物降低了cIAP-1和XIAP表現並增強caspase-3表現量,造成癌細胞走向凋亡途徑,期望雙功能標靶之奈米粒子傳遞藥物有望應用於腦癌疾病相關治療。
Nanoparticles (NPs) encapsulating etoposide (ETO), inhibitors of type II topoisomerase, induce DNA damage in tumor cells, leading to the depletion of IAPs and enhanced antagonistic effects with IAPs through the use of Smac mimetics BV6 and SM164. Additionally, the particles are surface-modified with transferrin (Tf) to achieve specific targeting by binding to receptors that are abundantly expressed in the blood-brain barrier and tumor cells. Wheat germ agglutinin (WGA) is grafted onto the particle surface to assist in penetrating the blood-brain barrier. The particle material is composed of biocompatible cocoa butter (CB) and polyvinyl alcohol (PVA) as the main carrier, with the addition of surfactants including glycerol monostearate (GMS) and Pluronic F-127 to stabilize the emulsion and overall structure. This reduces aggregation between materials and improves structural stability, which is beneficial for subsequent biological experiments. By incorporating the targeted drugs Tf and WGA, the encapsulated therapeutic drug-loaded NPs can increase the permeability of the blood-brain barrier. The stable release of the drug results in a reduction of approximately 40% in cell viability of tumor cells after 48 hours of in vitro. Hematoxylin and eosin (HE) staining of in vivo experiment reveals a decrease in cell density and a reduction in atypical nuclear division in treated tumor cells, indicating the effectiveness of the therapeutic drug. The treatment reduces the expression of cIAP-1 and XIAP while enhancing caspase-3 expression, leading to apoptosis in cancer cells. It is expected that these dual-targeting nanoparticles delivering drugs hold promise for the treatment of brain cancer-related diseases.
致謝 I
摘要 II
Abstract III
Abbreviation IV
目錄 V
表目錄 XI
圖目錄 XIII
第一章 研究動機與目的 1
第二章 文獻回顧 2
2.1 腦瘤(brain tumors) 2
2.2 血腦屏障(blood-brain barrier, BBB) 3
2.3 藥物載體 5
2.4 奈米粒子(nanoparticles, NPs) 5
2.5 轉鐵蛋白(transferrin, Tf) 6
2.6 麥胚凝集素(wheat germ agglutinin, WGA) 7
2.7 細胞凋亡抑制劑(inhibitor of apoptosis) 8
2.8 BV6 9
2.9 etoposide (ETO) 10
2.10 SM164 10
第三章 實驗材料、儀器、方法及步驟 12
3.1 實驗材料 12
3.1.1 奈米載體製備材料 12
3.1.2 奈米載體修飾 12
3.1.3 蛋白質定量分析 13
3.1.4 BV6、etoposide和SM164包覆和釋放 13
3.1.5 HBMECs、HAs和HBVPs繼代培養 13
3.1.6 U87MG cells繼代培養 15
3.1.7 HBCSCs繼代培養 15
3.1.8 細胞冷凍處理 15
3.1.9 細胞計數計算 15
3.1.10 細胞毒性測試 16
3.1.11 HBMECs/HAs/HBVPs共培養 16
3.1.12 免疫螢光染色 16
3.1.13 西方墨點法(western blot) 17
3.1.14 體內模型建立 19
3.1.15 HE stain 19
3.1.16 免疫組織染色 19
3.1.17 in vivo Western blot 20
3.2 其他實驗器材 21
3.3 實驗儀器 23
3.4 實驗方法與步驟 26
3.4.1 奈米載體製備 26
3.4.2 奈米載體修飾 26
3.4.2.1 Transferrin (Tf)定量分析 27
3.4.2.2 Wheat germ agglutinin (WGA)定量分析 28
3.4.3 粒徑及電位量測 28
3.4.4 場發射掃描式電子顯微鏡(Field emission scanning electron microscopes, FE-SEM) 29
3.4.5 穿透式電子顯微鏡(Transmission electron microscopes, TEM) 29
3.4.6 Fourier transform infrared spectroscopy (FTIR)分析 29
3.4.7 Differential scanning calorimetry (DSC)分析 30
3.4.8 X-ray photoelectron spectroscopy (XPS)分析 30
3.4.9 H-Nuclear magnetic resonance spectroscopy (H-NMR)分析 30
3.4.10 BV6-SM164-ETO-NPs製備 30
3.4.11 BV6、ETO和SM164包覆率分析 31
3.4.12 BV6、ETO和SM164藥物釋放率分析 32
3.4.13 最適化分析 34
3.4.14 U87MG cells培養液配置 35
3.4.15 Human brain cancer stem cells (HBCSCs)培養液配置 35
3.4.16 細胞培養預處理 35
3.4.17 U87MG cells繼代培養 36
3.4.18 HBCSCs繼代培養 37
3.4.19 HBMECs、HAs和HBVPs繼代培養 37
3.4.20 U87MG cells保存 38
3.4.21 HBCSCs保存 38
3.4.22 HBMECs、HAs和HBVPs保存 39
3.4.23 Transwell培養皿上PET模的表面預處理 40
3.4.24 星形細胞條件化培養基(astrocyte-condition medium, ACM)及周細胞條件化培養基(pericyte-condition medium, PCM) 40
3.4.25 HBMECs/HAs/HBVPs共培養 40
3.4.26 細胞的電阻測定(transendothelial electrical resistance, TEER) 41
3.4.27 Propidium iodide檢量線 42
3.4.28 Propidium iodide穿透實驗 42
3.4.29 體外血腦屏障模型實驗 43
3.4.30 Cell viability 44
3.4.31 螢光染色 44
3.4.31.1 Live/Dead 44
3.4.31.2 螢光奈米粒子製備 45
3.4.31.3 U87MG cells、HBCSCs免疫螢光染色 46
3.4.32 西方墨點法(western blot) 47
3.4.33 體內模型建立 51
3.4.34 藥物治療 52
3.4.35 H&E stain 52
3.4.36 免疫組織染色 52
3.4.37 大腦組織蛋白western blot分析 53
第四章 結果與討論 55
4.1 NPs之特性分析 55
4.1.1 Dynamic light scattering / zeta potential analyzer分析 55
4.1.2 Field emission scanning electron microscope (SEM) & Transmission electron microscope (TEM)分析 56
4.1.3 Differential scanning calorimetry (DSC)分析 57
4.1.4 Furier transform infrared (FTIR)分析 57
4.1.5 X-ray photoelectron spectra分析 58
4.1.6 H-Nuclear magnetic resonance spectroscopy (H-NMR)分析 58
4.2 NPs對藥物之包覆與釋放 60
4.2.1 藥物包覆率 60
4.2.2 藥物釋放率 61
4.3 NPs之最適化分析 62
4.4 NPs之表面接枝 63
4.5 體外血腦屏障模型穿透實驗 64
4.5.1 TEER和propidium iodide穿透率影響 64
4.5.2 藥物穿透率 65
4.6 細胞毒性分析與Live and dead 66
4.7 cIAP-1、XIAP、caspase-3 對於 U87MG cells 和 HBCSCs之螢光染色與蛋白表現量分析 68
4.8 in vivo GBM model 72
4.8.1 HE staining of brain tissue 72
4.8.2 cIAP-1、XIAP、caspase-3於GBM mice之免疫組織化學染色與蛋白表現量分析 73
第五章 結論與建議 76
參考文獻 77
附錄 162
[1]R.R. Langley, I.J. Fidler, “The biology of brain metastasis,” Clin. Chem., 59(1), 180-189, 2013.
[2]H. Jiang, K. Yu, Y. Cui, X. Ren, M. Li, G. Zhang, C. Yang, X. Zhao, Q. Zhu, S. Lin, “Differential predictors and clinical implications associated with long-term survivors in IDH wildtype and mutant glioblastoma,” Front. Oncol., 11, 632663, 2021.
[3]M.S. Lesniak, H. Brem, “Targeted therapy for brain tumours,” Nat. Rev. Drug Discov., 3(6), 499-508, 2004.
[4]E. Ozdemir-Kaynak, A.A. Qutub, O. Yesil-Celiktas, “Advances in glioblastoma multiforme treatment: New models for nanoparticle therapy,” Front. Physiol., 9, 170, 2018.
[5]S. Sathornsumetee, D.A. Reardon, A. Desjardins, J.A. Quinn, J.J. Vredenburgh, J.N. Rich, “Molecularly targeted therapy for malignant glioma,” Cancer, 110(1), 13-24, 2007.
[6]A. Wong, M. Ye, A. Levy, J. Rothstein, D. Bergles, P.C. Searson, “The blood-brain barrier: an engineering perspective,” Front. Hum. Neurosci., 6, 7, 2013.
[7]W. Zhang, A. Mehta, Z. Tong, L. Esser, N.H. Voelcker, “Development of polymeric nanoparticles for blood–brain barrier transfer—strategies and challenges,” Adv. Sci., 8(10), 2003937, 2021.
[8]W. Tang, W. Fan, J. Lau, L. Deng, Z. Shen, X. Chen, “Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics,” Chem. Soc. Rev., 48(11), 2967-3014, 2019.
[9]V.V. Jeliazkova-Mecheva, D.J. Bobilya, “A porcine astrocyte/ endothelial cell co-culture model of the blood–brain barrier,” Brain Res. Protoc., 12(2), 91-98, 2003.
[10]B.V. Zlokovic, “The blood-brain barrier in health and chronic neurodegenerative disorders,” Neuron, 57(2), 178-201, 2008.
[11]E. Garcia-Garcia, K. Andrieux, S. Gil, P. Couvreur, “Colloidal carriers and blood–brain barrier (BBB) translocation: a way to deliver drugs to the brain?,” Int. J. Pharm., 298(2), 274-292, 2005.
[12]W.H. De Jong, P.J. Borm, “Drug delivery and nanoparticles: Applications and hazards,” Int. J. Nanomed., 3(2), 133, 2008.
[13]G. Tiwari, R. Tiwari, B. Sriwastawa, L. Bhati, S. Pandey, P. Pandey, S.K. Bannerjee, “Drug delivery systems: An updated review,” Int. J. Pharm. Investig., 2(1), 2-11, 2012.
[14]B. He, X. Sui, B. Yu, S. Wang, Y. Shen, H. Cong, “Recent advances in drug delivery systems for enhancing drug penetration into tumors,” Drug Deliv., 27(1), 1474-1490, 2020.
[15]V. Mohanraj, Y. Chen, “Nanoparticles-a review,” Trop. J. Pharm. Res., 5(1), 561-573, 2006.
[16]K. Hadinoto, A. Sundaresan, W.S. Cheow, “Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review,” Eur. J. Pharm. Biopharm., 85(3), 427-443, 2013.
[17]Q. Yang, Y. Zhou, J. Chen, N. Huang, Z. Wang, Y. Cheng, “Gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound,” Int. J. Nanomed., 16, 185-199, 2021.
[18]S. Shah, P. Famta, R.S. Raghuvanshi, S.B. Singh, S. Srivastava, “Lipid polymer hybrid nanocarriers: Insights into synthesis aspects, characterization, release mechanisms, surface functionalization and potential implications,” Colloids Interface Sci. Commun., 46, 100570, 2022.
[19]P.T. Gomme, K.B. McCann, J. Bertolini, “Transferrin: Structure, function and potential therapeutic actions,” Drug Discov. Today, 10(4), 267-273, 2005.
[20]D.F. Leitner, J.R. Connor, “Functional roles of transferrin in the brain,” Biochim. Biophys. Acta - Gen. Subj., 1820(3), 393-402, 2012.
[21]K.B. Johnsen, A. Burkhart, L.B. Thomsen, T.L. Andresen, T. Moos, “Targeting the transferrin receptor for brain drug delivery,” Prog. Neurobiol., 181, 101665, 2019.
[22]E. Wagner, D. Curiel, M. Cotten, “Delivery of drugs, proteins and genes into cells using transferrin as a ligand for receptor-mediated endocytosis,” Adv. Drug Deliv. Rev., 14(1), 113-135, 1994.
[23]K.M. Mayle, A.M. Le, D.T. Kamei, “The intracellular trafficking pathway of transferrin,” Biochim. Biophys. Acta - Gen. Subj., 1820(3), 264-281, 2012.
[24]P.D. Griffiths, A.R. Crossman, “Autoradiography of transferrin receptors in the human brain,” Neurosci. Lett., 211(1), 53-56, 1996.
[25]H. Li, H. Sun, Z.M. Qian, “The role of the transferrin–transferrin-receptor system in drug delivery and targeting,” Trends Pharmacol. Sci., 23(5), 206-209, 2002.
[26]H.-Y. Xie, M. Xie, Z.-L. Zhang, Y.-M. Long, X. Liu, M.-L. Tang, D.-W. Pang, Z. Tan, C. Dickinson, W. Zhou, “Wheat germ agglutinin-modified trifunctional nanospheres for cell recognition,” Bioconjug. Chem., 18(6), 1749-1755, 2007.
[27]B. Ryva, K. Zhang, A. Asthana, D. Wong, Y. Vicioso, R. Parameswaran, “Wheat germ agglutinin as a potential therapeutic agent for Leukemia,” Front. Oncol., 9, 100, 2019.
[28]X.-T. Li, R.-J. Ju, X.-Y. Li, F. Zeng, J.-F. Shi, L. Liu, C.-X. Zhang, M.-G. Sun, J.-N. Lou, W.-L. Lu, “Multifunctional targeting daunorubicin plus quinacrine liposomes, modified by wheat germ agglutinin and tamoxifen, for treating brain glioma and glioma stem cells,” Oncotarget, 5(15), 6497-6511, 2014.
[29]C. Wang, P.C. Ho, L.Y. Lim, “Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells,” Int. J. Pharm., 400(1-2), 201-210, 2010.
[30]B. Gastman, K. Wang, J. Han, Z.-y. Zhu, X. Huang, G.-Q. Wang, H. Rabinowich, E. Gorelik, “A novel apoptotic pathway as defined by lectin cellular initiation,” Biochem. Biophys. Res. Commun., 316(1), 263-271, 2004.
[31]B. Nachmias, Y. Ashhab, D. Ben-Yehuda, “The inhibitor of apoptosis protein family (IAPs): An emerging therapeutic target in cancer,” Semin. Cancer Biol., 14(4), 231-243, 2004.
[32]S. Kumar, “Caspase function in programmed cell death,” Cell Death Differ., 14(1), 32-43, 2007.
[33]A.D. Schimmer, “Inhibitor of apoptosis proteins: Translating basic knowledge into clinical practice,” Cancer Res., 64(20), 7183-7190, 2004.
[34]Y.L. Yang, X.M. Li, “The IAP family: endogenous caspase inhibitors with multiple biological activities,” Cell Res., 10(3), 169-177, 2000.
[35]S. Fulda, D. Vucic, “Targeting IAP proteins for therapeutic intervention in cancer,” Nat. Rev. Drug Discov., 11(2), 109-124, 2012.
[36]A.J. Kocab, C.S. Duckett, “Inhibitor of apoptosis proteins as intracellular signaling intermediates,” FEBS J., 283(2), 221-231, 2016.
[37]W. Li, B. Li, N.J. Giacalone, A. Torossian, Y. Sun, K. Niu, O. Lin-Tsai, B. Lu, “BV6, an IAP antagonist, activates apoptosis and enhances radiosensitization of non-small cell lung carcinoma in vitro,” J. Thorac. Oncol., 6(11), 1801-1809, 2011.
[38]S. Karmakar, N.L. Banik, S.J. Patel, S.K. Ray, “Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells,” Neurosci. Lett., 407(1), 53-58, 2006.
[39]S. Czaplinski, B.A. Abhari, A. Torkov, D. Seggewiß, M. Hugle, S. Fulda, “Differential role of RIP1 in Smac mimetic-mediated chemosensitization of neuroblastoma cells,” Oncotarget, 6(39), 41522-41534, 2015.
[40]Y.-C. Kuo, I.-S. Yang, R. Rajesh, “Suppressed XIAP and cIAP expressions in human brain cancer stem cells using BV6-and GDC0152-encapsulated nanoparticles,” J. Taiwan Inst. Chem. Eng., 135, 104394, 2022.
[41]S. Fulda, “Promises and challenges of Smac mimetics as cancer therapeutics,” Clin. Cancer Res., 21(22), 5030-5036, 2015.
[42]S. Rafat, P. Singh, K.K. Pandey, S.A. Almatroodi, M.A. Alsahli, A. Almatroudi, A.H. Rahmani, K. Dev, “SMAC mimetic BV6 co-treatment downregulates the factors involved in resistance and relapse of cancer: IAPs and autophagy,” Biology, 11(11), 1581, 2022.
[43]Y.-C. Kuo, Y.-C. Chen, “Targeting delivery of etoposide to inhibit the growth of human glioblastoma multiforme using lactoferrin-and folic acid-grafted poly (lactide-co-glycolide) nanoparticles,” Int. J. Pharm., 479(1), 138-149, 2015.
[44]K. Hande, “Etoposide: four decades of development of a topoisomerase II inhibitor,” Eur. J. Cancer, 34(10), 1514-1521, 1998.
[45]A. Montecucco, G. Biamonti, “Cellular response to etoposide treatment,” Cancer Lett., 252(1), 9-18, 2007.
[46]D. Panigrahy, A. Kaipainen, C.E. Butterfield, D.M. Chaponis, A.M. Laforme, J. Folkman, M.W. Kieran, “Inhibition of tumor angiogenesis by oral etoposide,” Exp. Ther. Med., 1(5), 739-746, 2010.
[47]Y.-C. Kuo, Y.-J. Lee, R. Rajesh, “Enhanced activity of AZD5582 and SM-164 in rabies virus glycoprotein-lactoferrin-liposomes to downregulate inhibitors of apoptosis proteins in glioblastoma,” Biomater. Adv., 133, 112615, 2022.
[48]H. Sun, Z. Nikolovska-Coleska, J. Lu, J.L. Meagher, C.-Y. Yang, S. Qiu, Y. Tomita, Y. Ueda, S. Jiang, K. Krajewski, “Design, synthesis, and characterization of a potent, nonpeptide, cell-permeable, bivalent Smac mimetic that concurrently targets both the BIR2 and BIR3 domains in XIAP,” J. Am. Chem. Soc., 129(49), 15279-15294, 2007.
[49]J. Lu, D. McEachern, H. Sun, L. Bai, Y. Peng, S. Qiu, R. Miller, J. Liao, H. Yi, M. Liu, “Therapeutic potential and molecular mechanism of a novel, potent, nonpeptide, Smac mimetic SM-164 in combination with TRAIL for cancer treatment combination of Smac mimetic SM-164 with TRAIL,” Mol. Cancer Ther., 10(5), 902-914, 2011.
[50]J. Lu, L. Bai, H. Sun, Z. Nikolovska-Coleska, D. McEachern, S. Qiu, R.S. Miller, H. Yi, S. Shangary, Y. Sun, “SM-164: A novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2 and XIAP,” Cancer Res., 68(22), 9384-9393, 2008.
[51]H.A. Ebrahimi, Y. Javadzadeh, M. Hamidi, M.B. Jalali, “Repaglinide-loaded solid lipid nanoparticles: effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles,” DARU J. Pharm. Sci., 23, 1-11, 2015.
[52]S. Sood, N. Jawahar, K. Jain, K. Gowthamarajan, S. Nainar Meyyanathan, “Olanzapine loaded cationic solid lipid nanoparticles for improved oral bioavailability,” Curr. Nanosci., 9(1), 26-34, 2013.
[53]S. Khatak, H. Dureja, “Structural composition of solid lipid nanoparticles for invasive and non-invasive drug delivery,” Curr. Nanomater., 2(3), 129-153, 2017.
[54]S.P. Akhlaghi, I.R. Ribeiro, B.J. Boyd, W. Loh, “Impact of preparation method and variables on the internal structure, morphology, and presence of liposomes in phytantriol-Pluronic® F127 cubosomes,” Colloids Surf. B, 145, 845-853, 2016.
[55]L.R. Oliveira, A.C.A. Silva, N.O. Dantas, E.P. Bandarra Filho, “Thermophysical properties of TiO2-PVA/water nanofluids,” Int. J. Heat Mass Transf., 115, 795-808, 2017.
[56]A.T. Alex, A. Joseph, G. Shavi, J.V. Rao, N. Udupa, “Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery,” Drug Deliv., 23(7), 2144-2153, 2016.
[57]D. Hou, C. Xie, K. Huang, C. Zhu, “The production and characteristics of solid lipid nanoparticles (SLNs),” Biomaterials, 24(10), 1781-1785, 2003.
[58]M. Yang, S.K. Lai, T. Yu, Y.-Y. Wang, C. Happe, W. Zhong, M. Zhang, A. Anonuevo, C. Fridley, A. Hung, “Nanoparticle penetration of human cervicovaginal mucus: The effect of polyvinyl alcohol,” J. Control. Release, 192, 202-208, 2014.
[59]S. Bashiri, B. Ghanbarzadeh, A. Ayaseh, J. Dehghannya, A. Ehsani, H. Ozyurt, “Essential oil-loaded nanostructured lipid carriers: The effects of liquid lipid type on the physicochemical properties in beverage models,” Food Biosci., 35, 100526, 2020.
[60]M.K. Pirouzifard, H. Hamishehkar, S. Pirsa, “Cocoa butter and cocoa butter substitute as a lipid carrier of cuminum cyminum L. essential oil; physicochemical properties, physical stability and controlled release study,” J. Mol. Liq., 314, 113638, 2020.
[61]F.S. Hashemi, F. Farzadnia, A. Aghajani, F. Ahmadzadeh NobariAzar, A. Pezeshki, “Conjugated linoleic acid loaded nanostructured lipid carrier as a potential antioxidant nanocarrier for food applications,” Food Sci. Nutr., 8(8) 4185-4195, 2020.
[62]A.A. Becaro, C.M. Jonsson, F.C. Puti, M.C. Siqueira, L.H. Mattoso, D.S. Correa, M.D. Ferreira, “Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans,” Environ. Nanotechnol. Monit. Manag., 3, 22-29, 2015.
[63]G.D. Kalaycioglu, A.A. Elamin, H. Kinali, N. Aydogan, “pH‐sensitive polymeric poly (‐caprolactone) core‐chitosan/alginate shell particle system for oral insulin delivery,” ChemistrySelect, 6(4), 695-704, 2021.
[64]H. Tian, D. Liu, Y. Yao, S. Ma, X. Zhang, A. Xiang, “Effect of sorbitol plasticizer on the structure and properties of melt processed polyvinyl alcohol films,” J. Food Sci., 82(12), 2926-2932, 2017.
[65]S. Kheradmandnia, E. Vasheghani-Farahani, M. Nosrati, F. Atyabi, “Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax, Nanomedicine: Nanotechnology,” Biol. Med., 6(6), 753-759, 2010
[66]B. Zimnicka, A. Hacura, “An Investigation of molecular structure and dynamics of crude beeswax by Vibrational Spectroscopy,” Pol. J. Environ. Stud., 15(4), 112-114, 2006.
[67]C. Bae, J.F. Hartwig, H. Chung, N.K. Harris, K.A. Switek, M.A. Hillmyer, “Regiospecific side‐chain functionalization of linear low‐density polyethylene with polar groups,” Angew. Chem. Int. Ed., 44(39), 6410-6413, 2005.
[68]M. Dračínský, “The chemical bond: The perspective of NMR spectroscopy,” Annu. Rep. NMR Spectrosc., 90, 1-40, 2017.
[69]S.-R. Chen, F.-J. Shen, S.-Q. Liu, “Synthesis of some novel 4-acyl-3-oxo-4-aza-5-pregnene-20E-oxime ester derivatives as potent 5α-reductase inhibitors,” J. Chem. Res., 38(6), 334-336, 2014.
[70]T. Rajamani, S. Muthu, M. Karabacak, “Electronic absorption, vibrational spectra, nonlinear optical properties, NBO analysis and thermodynamic properties of N-(4-nitro-2-phenoxyphenyl) methanesulfonamide molecule by ab initio HF and density functional methods,” Spectrochim. Acta A Mol. Biomol. Spectrosc., 108, 186-196, 2013.
[71]C.W. Anson, D.M. Thamattoor, “Influence of substituents on the through-space shielding of aromatic rings,” J. Org. Chem., 77(4), 1693-1700, 2012.
[72]E. Asgharkhani, A. Fathi Azarbayjani, S. Irani, M. Chiani, Z. Saffari, D. Norouzian, A. Akbarzadeh, S.M. Atyabi, “Artemisinin-loaded niosome and pegylated niosome: physico-chemical characterization and effects on MCF-7 cell proliferation,” J. Pharm. Investig., 48, 251-256, 2018.
[73]M. H. Aburahma, S. M. B. Eldin, “Compritol 888 ATO: a multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals,” Expert opin. Drug deliv., 11, 1-19, 2014.
[74]W. Anwar, H.M. Dawaba, M.I. Afouna, A.M. Samy, M.H. Rashed, A.E. Abdelaziz, “Enhancing the oral bioavailability of candesartan cilexetil loaded nanostructured lipid carriers: In vitro characterization and absorption in rats after oral administration,” Pharmaceutics, 12(11), 1047, 2020.
[75]Z. Knez, E. Weidner, “Precipitation of solids with dense gases,” Ind. Chem. Libr., 9, 587-611, 2001.
[76]M. Mitra, F. Dilnawaz, R. Misra, A. Harilal, R.S. Verma, S.K. Sahoo, S. Krishnakumar, “Toxicogenomics of nanoparticulate delivery of etoposide: potential impact on nanotechnology in retinoblastoma therapy,” Cancer Nanotechnol., 2, 21-36, 2011.
[77]S. Bhunchu, P. Rojsitthisak, P. Rojsitthisak, “Effects of preparation parameters on the characteristics of chitosan–alginate nanoparticles containing curcumin diethyl disuccinate,” J. Drug Delivery Sci. Technol., 28, 64-72, 2015.
[78]F.A. Sheikh, N.A. Barakat, M.A. Kanjwal, S. Aryal, M.S. Khil, H.-Y. Kim, “Novel self-assembled amphiphilic poly (ε-caprolactone)-grafted-poly (vinyl alcohol) nanoparticles: Hydrophobic and hydrophilic drugs carrier nanoparticles,” J. Mater. Sci. - Mater. Med., 20, 821-831, 2009.
[79]N. Venkatesan, S. Vyas, “Polysaccharide coated liposomes for oral immunization - development and characterization,” Int. J. Pharm., 203(1-2), 169-177, 2000.
[80]Y.-C. Kuo, C.-T. Liang, “Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor,” Biomaterials, 32(12), 3340-3350, 2011.
[81]M.A. Alhnan, D. Cosi, S. Murdan, A.W. Basit, “Inhibiting the gastric burst release of drugs from enteric microparticles: the influence of drug molecular mass and solubility,” J. Pharm. Sci., 99(11), 4576-4583, 2010.
[82]C.-Y. Huang, C.-M. Chen, Y.-D. Lee, “Synthesis of high loading and encapsulation efficient paclitaxel-loaded poly (n-butyl cyanoacrylate) nanoparticles via miniemulsion,” Int. J. Pharm., 338(1-2), 267-275, 2007.
[83]B. Srinivasan, A.R. Kolli, M.B. Esch, H.E. Abaci, M.L. Shuler, J.J. Hickman, “TEER measurement techniques for in vitro barrier model systems,” J. Lab. Autom., 20(2), 107-126, 2015.
[84]A. Adamska, M. Falasca, “ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward ?,” World J. Gastroenterol., 24(29), 3222-3238, 2018.
[85]F.G. Hoosain, Y.E. Choonara, L.K. Tomar, P. Kumar, C. Tyagi, L.C. du Toit, V. Pillay, “Bypassing P-glycoprotein drug efflux mechanisms: Possible applications in pharmacoresistant schizophrenia therapy,” Biomed Res. Int., 2015, 1-21, 2015.
[86]D. Rafael, F. Martínez, F. Andrade, J. Seras-Franzoso, N. Garcia-Aranda, P. Gener, J. Sayós, D. Arango, I. Abasolo, S. Schwartz Jr, “Efficient EFGR mediated siRNA delivery to breast cancer cells by Cetuximab functionalized Pluronic® F127/Gelatin,” Chem. Eng. J., 340, 81-93, 2018.
[87]Y. Guan, J. Huang, L. Zuo, J. Xu, L. Si, J. Qiu, G. Li, “Effect of pluronic P123 and F127 block copolymer on P-glycoprotein transport and CYP3A metabolism,” Arch. Pharmacal Res., 34, 1719-1728, 2011.
[88]D.R. de Araújo, A. Oshiro, D.C. da Silva, A.C.S. Akkari, J.C. de Mello, T. Rodrigues, “Poloxamers as drug-delivery systems: physicochemical, pharmaceutical, and toxicological aspects,” Nanotoxicology, Nanomedicine and Nanotoxicology, 281-298, 2014.
[89]H. He, Y. Li, X.-R. Jia, J. Du, X. Ying, W.-L. Lu, J.-N. Lou, Y. Wei, “PEGylated Poly (amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors,” Biomaterials, 32(2), 478-487, 2011.
[90]J. Du, W.-L. Lu, X. Ying, Y. Liu, P. Du, W. Tian, Y. Men, J. Guo, Y. Zhang, R.-J. Li, “Dual-targeting topotecan liposomes modified with tamoxifen and wheat germ agglutinin significantly improve drug transport across the blood− brain barrier and survival of brain tumor-bearing animals,” Mol. Pharmaceutics, 6(3), 905-917, 2009.
[91]C. Viegas, A.B. Patrício, J.M. Prata, A. Nadhman, P.K. Chintamaneni, P. Fonte, “Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review,” Pharmaceutics, 15(6), 1593, 2023.
[92]A. Poustforoosh, M.H. Nematollahi, H. Hashemipour, A. Pardakhty, “Recent advances in Bio-conjugated nanocarriers for crossing the Blood-Brain Barrier in (pre-) clinical studies with an emphasis on vesicles,” J. Control. Release, 343, 777-797, 2022.
[93]E. Leyva, J.L. Medrano‐Cerano, P. Cano‐Sánchez, I. López‐González, H. Gómez‐Velasco, F. del Río‐Portilla, E. García‐Hernández, “Bacterial expression, purification and biophysical characterization of wheat germ agglutinin and its four hevein‐like domains,” Biopolymers, 110(1), e23242, 2019.
[94]G. Balčiūnaitė-Murzienė, M. Dzikaras, “Wheat germ agglutinin—From toxicity to biomedical applications,” Appl. Sci., 11(2), 884, 2021.
[95]Y.-C. Kuo, L.-J. Wang, R. Rajesh, “Targeting human brain cancer stem cells by curcumin-loaded nanoparticles grafted with anti-aldehyde dehydrogenase and sialic acid: Colocalization of ALDH and CD44,” Mater. Sci. Eng. C, 102, 362-372, 2019.
[96]X. Wei, X. Chen, M. Ying, W. Lu, “Brain tumor-targeted drug delivery strategies,” Acta Pharm. Sin. B, 4(3), 193-201, 2014.
[97]L. Dubrez, J. Berthelet, V. Glorian, “IAP proteins as targets for drug development in oncology,” OncoTargets Ther., 1285-1304, 2013.
[98]N. Festjens, T. Vanden Berghe, S. Cornelis, P. Vandenabeele, “RIP1, a kinase on the crossroads of a cell's decision to live or die,” Cell Death Differ., 14(3), 400-410, 2007.
[99]D. Ofengeim, J. Yuan, “Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death,” Nat. Rev. Mol. Cell Biol., 14(11), 727-736, 2013.
[100]S. Wang, “Design of small-molecule Smac mimetics as IAP antagonists, small-molecule inhibitors of protein-protein interactions,” Curr. Top. Microbiol. Immunol., 89-113, 2010.
[101]F. Cossu, F. Malvezzi, G. Canevari, E. Mastrangelo, D. Lecis, D. Delia, P. Seneci, C. Scolastico, M. Bolognesi, M. Milani, “Recognition of Smac‐mimetic compounds by the BIR domain of cIAP1,” Protein Sci., 19(12), 2418-2429, 2010.
[102]H. Wu, J. Tschopp, S.-C. Lin, “Smac mimetics and TNFα: A dangerous liaison ?,” Cell, 131(4), 655-658, 2007.
[103]Y. Yang, S. Fang, J.P. Jensen, A.M. Weissman, J.D. Ashwell, “Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli,” Science, 288(5467), 874-877, 2000.
[104]T. Tenev, K. Bianchi, M. Darding, M. Broemer, C. Langlais, F. Wallberg, A. Zachariou, J. Lopez, M. MacFarlane, K. Cain, “The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs,” Mol. Cell, 43(3), 432-448, 2011.
[105]A. Montecucco, G. Biamonti, “Cellular response to etoposide treatment,” Cancer Lett., 252(1), 9-18, 2007.
[106]S. Fulda, “Regulation of apoptosis pathways in cancer stem cells,” Cancer Lett., 338(1), 168-173, 2013.
[107]J.C. Curtin, M.V. Lorenzi, “Drug discovery approaches to target Wnt signaling in cancer stem cells,” Oncotarget, 1(7), 563-577, 2010.
[108]A. Amini, G. Mesbah, F. Tash Shamsabadi, M.A. Zeyghami, Y. Safdari, “Tumour induction in BALB/c mice for imaging studies: An improved protocol,” J. Cell. Mol. Med., 27(13), 1880-1886, 2023.
[109]X. Liu, J.J. Yao, Z. Chen, W. Lei, R. Duan, Z. Yao, “Lipopolysaccharide sensitizes the therapeutic response of breast cancer to IAP antagonist,” Front. Immunol., 13, 906357, 2022.
[110]R. Rathore, J.E. McCallum, E. Varghese, A.-M. Florea, D. Büsselberg, “Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs),” Apoptosis, 22(7), 898-919, 2017.
[111]M. Fiandalo, N. Kyprianou, “Caspase control: Protagonists of cancer cell apoptosis,” Exp. Oncol., 34(3), 165-175, 2012.
[112]M. Darding, P. Meier, “IAPs: Guardians of RIPK1,” Cell Death Differ., 19(1), 58-66, 2012.
[113]P. Ghanavatian, H. Salehi-Sedeh, F. Ataei, S. Hosseinkhani, “Bioluminescent RIPoptosome assay for FADD/RIPK1 interaction based on split luciferase assay in a human neuroblastoma cell line SH-SY5Y,” Biosensors, 13(2), 297, 2023.
[114]S. Najem, D. Langemann, B. Appl, M. Trochimiuk, P. Hundsdoerfer, K. Reinshagen, G. Eschenburg, “Smac mimetic LCL161 supports neuroblastoma chemotherapy in a drug class-dependent manner and synergistically interacts with ALK inhibitor TAE684 in cells with ALK mutation F1174L,” Oncotarget, 7(45), 72634-72653, 2016.
電子全文 電子全文(網際網路公開日期:20280816)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 利用Apolipoprotein E與Folic acid修飾固態脂質奈米粒子且包覆GSK1838705A和NVP-ADW742抑制IGF-2並促進PTEN誘導GBM凋亡
2. 功能化奈米粒子用於靶向遞送和提高迷迭香酸和白藜蘆醇對1-甲基-4-苯基吡啶誘導SH-SY5Y細胞神經變性的治療效率
3. 由白蜂蠟和聚乙烯基吡咯烷酮所製成的脂質聚合物包覆視黃酸及FGF7結合反轉膠體結晶支架促進分化胰島細胞
4. 表面修飾C型利鈉肽和乳鐵蛋白之奈米粒子包覆薑黃素與二甲雙胍活化Akt路徑保護多巴胺神經元及降低α突觸核蛋白過度表現
5. 由固體脂質奈米粒子包覆 TD139 和 afatinib 及接枝麥胚凝集素、抗核仁素 適體和 C 型利鈉肽以抑制半乳糖凝集素 3 和表皮生長因子受體使膠質母細胞瘤 凋亡
6. 應用雙功能瘦蛋白和乳鐵蛋白並包覆薑黃素和表沒食子兒茶素沒食子酸酯之奈米粒子穿透血腦屏障刺激多巴胺生成並調節α突觸核蛋白的表現量
7. 熟米麴丙酮萃取物抑制經脂多醣刺激小鼠RAW 264.7巨噬細胞產生之發炎反應
8. 應用創新趨勢分析法探討濁水溪沖積扇淺 含水層地下水位變化趨勢
9. 科技製造業職場霸凌、主觀幸福感及離職傾向 之影響-以社會支持及性平意識為調節變項
10. 比較不同濃度鈣透析液對血液透析病人之 自覺症狀、疲憊、睡眠品質及心率變異之差異
11. 平板式脫硝觸媒製備及性能測試
12. 動態伸展結合震動按摩槍或震動滾筒於女性排球員在 柔軟度和運動表現之立即效益
13. 以雙功能磷脂絲胺酸微脂粒接枝瘦蛋白和麥胚凝集素並包覆黃芪甲苷IV和攝食抑制蛋白-1活化抗凋亡路徑來激發多巴胺的生成和阻斷磷酸化蛋白表現量
14. 以不同比例之羽毛與頭髮角蛋白製備褐藻酸鈉/角蛋白複合絕緣材料之探討
15. 智慧城市路邊停車物聯網應用