|
[1]R.R. Langley, I.J. Fidler, “The biology of brain metastasis,” Clin. Chem., 59(1), 180-189, 2013. [2]H. Jiang, K. Yu, Y. Cui, X. Ren, M. Li, G. Zhang, C. Yang, X. Zhao, Q. Zhu, S. Lin, “Differential predictors and clinical implications associated with long-term survivors in IDH wildtype and mutant glioblastoma,” Front. Oncol., 11, 632663, 2021. [3]M.S. Lesniak, H. Brem, “Targeted therapy for brain tumours,” Nat. Rev. Drug Discov., 3(6), 499-508, 2004. [4]E. Ozdemir-Kaynak, A.A. Qutub, O. Yesil-Celiktas, “Advances in glioblastoma multiforme treatment: New models for nanoparticle therapy,” Front. Physiol., 9, 170, 2018. [5]S. Sathornsumetee, D.A. Reardon, A. Desjardins, J.A. Quinn, J.J. Vredenburgh, J.N. Rich, “Molecularly targeted therapy for malignant glioma,” Cancer, 110(1), 13-24, 2007. [6]A. Wong, M. Ye, A. Levy, J. Rothstein, D. Bergles, P.C. Searson, “The blood-brain barrier: an engineering perspective,” Front. Hum. Neurosci., 6, 7, 2013. [7]W. Zhang, A. Mehta, Z. Tong, L. Esser, N.H. Voelcker, “Development of polymeric nanoparticles for blood–brain barrier transfer—strategies and challenges,” Adv. Sci., 8(10), 2003937, 2021. [8]W. Tang, W. Fan, J. Lau, L. Deng, Z. Shen, X. Chen, “Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics,” Chem. Soc. Rev., 48(11), 2967-3014, 2019. [9]V.V. Jeliazkova-Mecheva, D.J. Bobilya, “A porcine astrocyte/ endothelial cell co-culture model of the blood–brain barrier,” Brain Res. Protoc., 12(2), 91-98, 2003. [10]B.V. Zlokovic, “The blood-brain barrier in health and chronic neurodegenerative disorders,” Neuron, 57(2), 178-201, 2008. [11]E. Garcia-Garcia, K. Andrieux, S. Gil, P. Couvreur, “Colloidal carriers and blood–brain barrier (BBB) translocation: a way to deliver drugs to the brain?,” Int. J. Pharm., 298(2), 274-292, 2005. [12]W.H. De Jong, P.J. Borm, “Drug delivery and nanoparticles: Applications and hazards,” Int. J. Nanomed., 3(2), 133, 2008. [13]G. Tiwari, R. Tiwari, B. Sriwastawa, L. Bhati, S. Pandey, P. Pandey, S.K. Bannerjee, “Drug delivery systems: An updated review,” Int. J. Pharm. Investig., 2(1), 2-11, 2012. [14]B. He, X. Sui, B. Yu, S. Wang, Y. Shen, H. Cong, “Recent advances in drug delivery systems for enhancing drug penetration into tumors,” Drug Deliv., 27(1), 1474-1490, 2020. [15]V. Mohanraj, Y. Chen, “Nanoparticles-a review,” Trop. J. Pharm. Res., 5(1), 561-573, 2006. [16]K. Hadinoto, A. Sundaresan, W.S. Cheow, “Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review,” Eur. J. Pharm. Biopharm., 85(3), 427-443, 2013. [17]Q. Yang, Y. Zhou, J. Chen, N. Huang, Z. Wang, Y. Cheng, “Gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound,” Int. J. Nanomed., 16, 185-199, 2021. [18]S. Shah, P. Famta, R.S. Raghuvanshi, S.B. Singh, S. Srivastava, “Lipid polymer hybrid nanocarriers: Insights into synthesis aspects, characterization, release mechanisms, surface functionalization and potential implications,” Colloids Interface Sci. Commun., 46, 100570, 2022. [19]P.T. Gomme, K.B. McCann, J. Bertolini, “Transferrin: Structure, function and potential therapeutic actions,” Drug Discov. Today, 10(4), 267-273, 2005. [20]D.F. Leitner, J.R. Connor, “Functional roles of transferrin in the brain,” Biochim. Biophys. Acta - Gen. Subj., 1820(3), 393-402, 2012. [21]K.B. Johnsen, A. Burkhart, L.B. Thomsen, T.L. Andresen, T. Moos, “Targeting the transferrin receptor for brain drug delivery,” Prog. Neurobiol., 181, 101665, 2019. [22]E. Wagner, D. Curiel, M. Cotten, “Delivery of drugs, proteins and genes into cells using transferrin as a ligand for receptor-mediated endocytosis,” Adv. Drug Deliv. Rev., 14(1), 113-135, 1994. [23]K.M. Mayle, A.M. Le, D.T. Kamei, “The intracellular trafficking pathway of transferrin,” Biochim. Biophys. Acta - Gen. Subj., 1820(3), 264-281, 2012. [24]P.D. Griffiths, A.R. Crossman, “Autoradiography of transferrin receptors in the human brain,” Neurosci. Lett., 211(1), 53-56, 1996. [25]H. Li, H. Sun, Z.M. Qian, “The role of the transferrin–transferrin-receptor system in drug delivery and targeting,” Trends Pharmacol. Sci., 23(5), 206-209, 2002. [26]H.-Y. Xie, M. Xie, Z.-L. Zhang, Y.-M. Long, X. Liu, M.-L. Tang, D.-W. Pang, Z. Tan, C. Dickinson, W. Zhou, “Wheat germ agglutinin-modified trifunctional nanospheres for cell recognition,” Bioconjug. Chem., 18(6), 1749-1755, 2007. [27]B. Ryva, K. Zhang, A. Asthana, D. Wong, Y. Vicioso, R. Parameswaran, “Wheat germ agglutinin as a potential therapeutic agent for Leukemia,” Front. Oncol., 9, 100, 2019. [28]X.-T. Li, R.-J. Ju, X.-Y. Li, F. Zeng, J.-F. Shi, L. Liu, C.-X. Zhang, M.-G. Sun, J.-N. Lou, W.-L. Lu, “Multifunctional targeting daunorubicin plus quinacrine liposomes, modified by wheat germ agglutinin and tamoxifen, for treating brain glioma and glioma stem cells,” Oncotarget, 5(15), 6497-6511, 2014. [29]C. Wang, P.C. Ho, L.Y. Lim, “Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells,” Int. J. Pharm., 400(1-2), 201-210, 2010. [30]B. Gastman, K. Wang, J. Han, Z.-y. Zhu, X. Huang, G.-Q. Wang, H. Rabinowich, E. Gorelik, “A novel apoptotic pathway as defined by lectin cellular initiation,” Biochem. Biophys. Res. Commun., 316(1), 263-271, 2004. [31]B. Nachmias, Y. Ashhab, D. Ben-Yehuda, “The inhibitor of apoptosis protein family (IAPs): An emerging therapeutic target in cancer,” Semin. Cancer Biol., 14(4), 231-243, 2004. [32]S. Kumar, “Caspase function in programmed cell death,” Cell Death Differ., 14(1), 32-43, 2007. [33]A.D. Schimmer, “Inhibitor of apoptosis proteins: Translating basic knowledge into clinical practice,” Cancer Res., 64(20), 7183-7190, 2004. [34]Y.L. Yang, X.M. Li, “The IAP family: endogenous caspase inhibitors with multiple biological activities,” Cell Res., 10(3), 169-177, 2000. [35]S. Fulda, D. Vucic, “Targeting IAP proteins for therapeutic intervention in cancer,” Nat. Rev. Drug Discov., 11(2), 109-124, 2012. [36]A.J. Kocab, C.S. Duckett, “Inhibitor of apoptosis proteins as intracellular signaling intermediates,” FEBS J., 283(2), 221-231, 2016. [37]W. Li, B. Li, N.J. Giacalone, A. Torossian, Y. Sun, K. Niu, O. Lin-Tsai, B. Lu, “BV6, an IAP antagonist, activates apoptosis and enhances radiosensitization of non-small cell lung carcinoma in vitro,” J. Thorac. Oncol., 6(11), 1801-1809, 2011. [38]S. Karmakar, N.L. Banik, S.J. Patel, S.K. Ray, “Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells,” Neurosci. Lett., 407(1), 53-58, 2006. [39]S. Czaplinski, B.A. Abhari, A. Torkov, D. Seggewiß, M. Hugle, S. Fulda, “Differential role of RIP1 in Smac mimetic-mediated chemosensitization of neuroblastoma cells,” Oncotarget, 6(39), 41522-41534, 2015. [40]Y.-C. Kuo, I.-S. Yang, R. Rajesh, “Suppressed XIAP and cIAP expressions in human brain cancer stem cells using BV6-and GDC0152-encapsulated nanoparticles,” J. Taiwan Inst. Chem. Eng., 135, 104394, 2022. [41]S. Fulda, “Promises and challenges of Smac mimetics as cancer therapeutics,” Clin. Cancer Res., 21(22), 5030-5036, 2015. [42]S. Rafat, P. Singh, K.K. Pandey, S.A. Almatroodi, M.A. Alsahli, A. Almatroudi, A.H. Rahmani, K. Dev, “SMAC mimetic BV6 co-treatment downregulates the factors involved in resistance and relapse of cancer: IAPs and autophagy,” Biology, 11(11), 1581, 2022. [43]Y.-C. Kuo, Y.-C. Chen, “Targeting delivery of etoposide to inhibit the growth of human glioblastoma multiforme using lactoferrin-and folic acid-grafted poly (lactide-co-glycolide) nanoparticles,” Int. J. Pharm., 479(1), 138-149, 2015. [44]K. Hande, “Etoposide: four decades of development of a topoisomerase II inhibitor,” Eur. J. Cancer, 34(10), 1514-1521, 1998. [45]A. Montecucco, G. Biamonti, “Cellular response to etoposide treatment,” Cancer Lett., 252(1), 9-18, 2007. [46]D. Panigrahy, A. Kaipainen, C.E. Butterfield, D.M. Chaponis, A.M. Laforme, J. Folkman, M.W. Kieran, “Inhibition of tumor angiogenesis by oral etoposide,” Exp. Ther. Med., 1(5), 739-746, 2010. [47]Y.-C. Kuo, Y.-J. Lee, R. Rajesh, “Enhanced activity of AZD5582 and SM-164 in rabies virus glycoprotein-lactoferrin-liposomes to downregulate inhibitors of apoptosis proteins in glioblastoma,” Biomater. Adv., 133, 112615, 2022. [48]H. Sun, Z. Nikolovska-Coleska, J. Lu, J.L. Meagher, C.-Y. Yang, S. Qiu, Y. Tomita, Y. Ueda, S. Jiang, K. Krajewski, “Design, synthesis, and characterization of a potent, nonpeptide, cell-permeable, bivalent Smac mimetic that concurrently targets both the BIR2 and BIR3 domains in XIAP,” J. Am. Chem. Soc., 129(49), 15279-15294, 2007. [49]J. Lu, D. McEachern, H. Sun, L. Bai, Y. Peng, S. Qiu, R. Miller, J. Liao, H. Yi, M. Liu, “Therapeutic potential and molecular mechanism of a novel, potent, nonpeptide, Smac mimetic SM-164 in combination with TRAIL for cancer treatment combination of Smac mimetic SM-164 with TRAIL,” Mol. Cancer Ther., 10(5), 902-914, 2011. [50]J. Lu, L. Bai, H. Sun, Z. Nikolovska-Coleska, D. McEachern, S. Qiu, R.S. Miller, H. Yi, S. Shangary, Y. Sun, “SM-164: A novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2 and XIAP,” Cancer Res., 68(22), 9384-9393, 2008. [51]H.A. Ebrahimi, Y. Javadzadeh, M. Hamidi, M.B. Jalali, “Repaglinide-loaded solid lipid nanoparticles: effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles,” DARU J. Pharm. Sci., 23, 1-11, 2015. [52]S. Sood, N. Jawahar, K. Jain, K. Gowthamarajan, S. Nainar Meyyanathan, “Olanzapine loaded cationic solid lipid nanoparticles for improved oral bioavailability,” Curr. Nanosci., 9(1), 26-34, 2013. [53]S. Khatak, H. Dureja, “Structural composition of solid lipid nanoparticles for invasive and non-invasive drug delivery,” Curr. Nanomater., 2(3), 129-153, 2017. [54]S.P. Akhlaghi, I.R. Ribeiro, B.J. Boyd, W. Loh, “Impact of preparation method and variables on the internal structure, morphology, and presence of liposomes in phytantriol-Pluronic® F127 cubosomes,” Colloids Surf. B, 145, 845-853, 2016. [55]L.R. Oliveira, A.C.A. Silva, N.O. Dantas, E.P. Bandarra Filho, “Thermophysical properties of TiO2-PVA/water nanofluids,” Int. J. Heat Mass Transf., 115, 795-808, 2017. [56]A.T. Alex, A. Joseph, G. Shavi, J.V. Rao, N. Udupa, “Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery,” Drug Deliv., 23(7), 2144-2153, 2016. [57]D. Hou, C. Xie, K. Huang, C. Zhu, “The production and characteristics of solid lipid nanoparticles (SLNs),” Biomaterials, 24(10), 1781-1785, 2003. [58]M. Yang, S.K. Lai, T. Yu, Y.-Y. Wang, C. Happe, W. Zhong, M. Zhang, A. Anonuevo, C. Fridley, A. Hung, “Nanoparticle penetration of human cervicovaginal mucus: The effect of polyvinyl alcohol,” J. Control. Release, 192, 202-208, 2014. [59]S. Bashiri, B. Ghanbarzadeh, A. Ayaseh, J. Dehghannya, A. Ehsani, H. Ozyurt, “Essential oil-loaded nanostructured lipid carriers: The effects of liquid lipid type on the physicochemical properties in beverage models,” Food Biosci., 35, 100526, 2020. [60]M.K. Pirouzifard, H. Hamishehkar, S. Pirsa, “Cocoa butter and cocoa butter substitute as a lipid carrier of cuminum cyminum L. essential oil; physicochemical properties, physical stability and controlled release study,” J. Mol. Liq., 314, 113638, 2020. [61]F.S. Hashemi, F. Farzadnia, A. Aghajani, F. Ahmadzadeh NobariAzar, A. Pezeshki, “Conjugated linoleic acid loaded nanostructured lipid carrier as a potential antioxidant nanocarrier for food applications,” Food Sci. Nutr., 8(8) 4185-4195, 2020. [62]A.A. Becaro, C.M. Jonsson, F.C. Puti, M.C. Siqueira, L.H. Mattoso, D.S. Correa, M.D. Ferreira, “Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans,” Environ. Nanotechnol. Monit. Manag., 3, 22-29, 2015. [63]G.D. Kalaycioglu, A.A. Elamin, H. Kinali, N. Aydogan, “pH‐sensitive polymeric poly (‐caprolactone) core‐chitosan/alginate shell particle system for oral insulin delivery,” ChemistrySelect, 6(4), 695-704, 2021. [64]H. Tian, D. Liu, Y. Yao, S. Ma, X. Zhang, A. Xiang, “Effect of sorbitol plasticizer on the structure and properties of melt processed polyvinyl alcohol films,” J. Food Sci., 82(12), 2926-2932, 2017. [65]S. Kheradmandnia, E. Vasheghani-Farahani, M. Nosrati, F. Atyabi, “Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax, Nanomedicine: Nanotechnology,” Biol. Med., 6(6), 753-759, 2010 [66]B. Zimnicka, A. Hacura, “An Investigation of molecular structure and dynamics of crude beeswax by Vibrational Spectroscopy,” Pol. J. Environ. Stud., 15(4), 112-114, 2006. [67]C. Bae, J.F. Hartwig, H. Chung, N.K. Harris, K.A. Switek, M.A. Hillmyer, “Regiospecific side‐chain functionalization of linear low‐density polyethylene with polar groups,” Angew. Chem. Int. Ed., 44(39), 6410-6413, 2005. [68]M. Dračínský, “The chemical bond: The perspective of NMR spectroscopy,” Annu. Rep. NMR Spectrosc., 90, 1-40, 2017. [69]S.-R. Chen, F.-J. Shen, S.-Q. Liu, “Synthesis of some novel 4-acyl-3-oxo-4-aza-5-pregnene-20E-oxime ester derivatives as potent 5α-reductase inhibitors,” J. Chem. Res., 38(6), 334-336, 2014. [70]T. Rajamani, S. Muthu, M. Karabacak, “Electronic absorption, vibrational spectra, nonlinear optical properties, NBO analysis and thermodynamic properties of N-(4-nitro-2-phenoxyphenyl) methanesulfonamide molecule by ab initio HF and density functional methods,” Spectrochim. Acta A Mol. Biomol. Spectrosc., 108, 186-196, 2013. [71]C.W. Anson, D.M. Thamattoor, “Influence of substituents on the through-space shielding of aromatic rings,” J. Org. Chem., 77(4), 1693-1700, 2012. [72]E. Asgharkhani, A. Fathi Azarbayjani, S. Irani, M. Chiani, Z. Saffari, D. Norouzian, A. Akbarzadeh, S.M. Atyabi, “Artemisinin-loaded niosome and pegylated niosome: physico-chemical characterization and effects on MCF-7 cell proliferation,” J. Pharm. Investig., 48, 251-256, 2018. [73]M. H. Aburahma, S. M. B. Eldin, “Compritol 888 ATO: a multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals,” Expert opin. Drug deliv., 11, 1-19, 2014. [74]W. Anwar, H.M. Dawaba, M.I. Afouna, A.M. Samy, M.H. Rashed, A.E. Abdelaziz, “Enhancing the oral bioavailability of candesartan cilexetil loaded nanostructured lipid carriers: In vitro characterization and absorption in rats after oral administration,” Pharmaceutics, 12(11), 1047, 2020. [75]Z. Knez, E. Weidner, “Precipitation of solids with dense gases,” Ind. Chem. Libr., 9, 587-611, 2001. [76]M. Mitra, F. Dilnawaz, R. Misra, A. Harilal, R.S. Verma, S.K. Sahoo, S. Krishnakumar, “Toxicogenomics of nanoparticulate delivery of etoposide: potential impact on nanotechnology in retinoblastoma therapy,” Cancer Nanotechnol., 2, 21-36, 2011. [77]S. Bhunchu, P. Rojsitthisak, P. Rojsitthisak, “Effects of preparation parameters on the characteristics of chitosan–alginate nanoparticles containing curcumin diethyl disuccinate,” J. Drug Delivery Sci. Technol., 28, 64-72, 2015. [78]F.A. Sheikh, N.A. Barakat, M.A. Kanjwal, S. Aryal, M.S. Khil, H.-Y. Kim, “Novel self-assembled amphiphilic poly (ε-caprolactone)-grafted-poly (vinyl alcohol) nanoparticles: Hydrophobic and hydrophilic drugs carrier nanoparticles,” J. Mater. Sci. - Mater. Med., 20, 821-831, 2009. [79]N. Venkatesan, S. Vyas, “Polysaccharide coated liposomes for oral immunization - development and characterization,” Int. J. Pharm., 203(1-2), 169-177, 2000. [80]Y.-C. Kuo, C.-T. Liang, “Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor,” Biomaterials, 32(12), 3340-3350, 2011. [81]M.A. Alhnan, D. Cosi, S. Murdan, A.W. Basit, “Inhibiting the gastric burst release of drugs from enteric microparticles: the influence of drug molecular mass and solubility,” J. Pharm. Sci., 99(11), 4576-4583, 2010. [82]C.-Y. Huang, C.-M. Chen, Y.-D. Lee, “Synthesis of high loading and encapsulation efficient paclitaxel-loaded poly (n-butyl cyanoacrylate) nanoparticles via miniemulsion,” Int. J. Pharm., 338(1-2), 267-275, 2007. [83]B. Srinivasan, A.R. Kolli, M.B. Esch, H.E. Abaci, M.L. Shuler, J.J. Hickman, “TEER measurement techniques for in vitro barrier model systems,” J. Lab. Autom., 20(2), 107-126, 2015. [84]A. Adamska, M. Falasca, “ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward ?,” World J. Gastroenterol., 24(29), 3222-3238, 2018. [85]F.G. Hoosain, Y.E. Choonara, L.K. Tomar, P. Kumar, C. Tyagi, L.C. du Toit, V. Pillay, “Bypassing P-glycoprotein drug efflux mechanisms: Possible applications in pharmacoresistant schizophrenia therapy,” Biomed Res. Int., 2015, 1-21, 2015. [86]D. Rafael, F. Martínez, F. Andrade, J. Seras-Franzoso, N. Garcia-Aranda, P. Gener, J. Sayós, D. Arango, I. Abasolo, S. Schwartz Jr, “Efficient EFGR mediated siRNA delivery to breast cancer cells by Cetuximab functionalized Pluronic® F127/Gelatin,” Chem. Eng. J., 340, 81-93, 2018. [87]Y. Guan, J. Huang, L. Zuo, J. Xu, L. Si, J. Qiu, G. Li, “Effect of pluronic P123 and F127 block copolymer on P-glycoprotein transport and CYP3A metabolism,” Arch. Pharmacal Res., 34, 1719-1728, 2011. [88]D.R. de Araújo, A. Oshiro, D.C. da Silva, A.C.S. Akkari, J.C. de Mello, T. Rodrigues, “Poloxamers as drug-delivery systems: physicochemical, pharmaceutical, and toxicological aspects,” Nanotoxicology, Nanomedicine and Nanotoxicology, 281-298, 2014. [89]H. He, Y. Li, X.-R. Jia, J. Du, X. Ying, W.-L. Lu, J.-N. Lou, Y. Wei, “PEGylated Poly (amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors,” Biomaterials, 32(2), 478-487, 2011. [90]J. Du, W.-L. Lu, X. Ying, Y. Liu, P. Du, W. Tian, Y. Men, J. Guo, Y. Zhang, R.-J. Li, “Dual-targeting topotecan liposomes modified with tamoxifen and wheat germ agglutinin significantly improve drug transport across the blood− brain barrier and survival of brain tumor-bearing animals,” Mol. Pharmaceutics, 6(3), 905-917, 2009. [91]C. Viegas, A.B. Patrício, J.M. Prata, A. Nadhman, P.K. Chintamaneni, P. Fonte, “Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review,” Pharmaceutics, 15(6), 1593, 2023. [92]A. Poustforoosh, M.H. Nematollahi, H. Hashemipour, A. Pardakhty, “Recent advances in Bio-conjugated nanocarriers for crossing the Blood-Brain Barrier in (pre-) clinical studies with an emphasis on vesicles,” J. Control. Release, 343, 777-797, 2022. [93]E. Leyva, J.L. Medrano‐Cerano, P. Cano‐Sánchez, I. López‐González, H. Gómez‐Velasco, F. del Río‐Portilla, E. García‐Hernández, “Bacterial expression, purification and biophysical characterization of wheat germ agglutinin and its four hevein‐like domains,” Biopolymers, 110(1), e23242, 2019. [94]G. Balčiūnaitė-Murzienė, M. Dzikaras, “Wheat germ agglutinin—From toxicity to biomedical applications,” Appl. Sci., 11(2), 884, 2021. [95]Y.-C. Kuo, L.-J. Wang, R. Rajesh, “Targeting human brain cancer stem cells by curcumin-loaded nanoparticles grafted with anti-aldehyde dehydrogenase and sialic acid: Colocalization of ALDH and CD44,” Mater. Sci. Eng. C, 102, 362-372, 2019. [96]X. Wei, X. Chen, M. Ying, W. Lu, “Brain tumor-targeted drug delivery strategies,” Acta Pharm. Sin. B, 4(3), 193-201, 2014. [97]L. Dubrez, J. Berthelet, V. Glorian, “IAP proteins as targets for drug development in oncology,” OncoTargets Ther., 1285-1304, 2013. [98]N. Festjens, T. Vanden Berghe, S. Cornelis, P. Vandenabeele, “RIP1, a kinase on the crossroads of a cell's decision to live or die,” Cell Death Differ., 14(3), 400-410, 2007. [99]D. Ofengeim, J. Yuan, “Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death,” Nat. Rev. Mol. Cell Biol., 14(11), 727-736, 2013. [100]S. Wang, “Design of small-molecule Smac mimetics as IAP antagonists, small-molecule inhibitors of protein-protein interactions,” Curr. Top. Microbiol. Immunol., 89-113, 2010. [101]F. Cossu, F. Malvezzi, G. Canevari, E. Mastrangelo, D. Lecis, D. Delia, P. Seneci, C. Scolastico, M. Bolognesi, M. Milani, “Recognition of Smac‐mimetic compounds by the BIR domain of cIAP1,” Protein Sci., 19(12), 2418-2429, 2010. [102]H. Wu, J. Tschopp, S.-C. Lin, “Smac mimetics and TNFα: A dangerous liaison ?,” Cell, 131(4), 655-658, 2007. [103]Y. Yang, S. Fang, J.P. Jensen, A.M. Weissman, J.D. Ashwell, “Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli,” Science, 288(5467), 874-877, 2000. [104]T. Tenev, K. Bianchi, M. Darding, M. Broemer, C. Langlais, F. Wallberg, A. Zachariou, J. Lopez, M. MacFarlane, K. Cain, “The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs,” Mol. Cell, 43(3), 432-448, 2011. [105]A. Montecucco, G. Biamonti, “Cellular response to etoposide treatment,” Cancer Lett., 252(1), 9-18, 2007. [106]S. Fulda, “Regulation of apoptosis pathways in cancer stem cells,” Cancer Lett., 338(1), 168-173, 2013. [107]J.C. Curtin, M.V. Lorenzi, “Drug discovery approaches to target Wnt signaling in cancer stem cells,” Oncotarget, 1(7), 563-577, 2010. [108]A. Amini, G. Mesbah, F. Tash Shamsabadi, M.A. Zeyghami, Y. Safdari, “Tumour induction in BALB/c mice for imaging studies: An improved protocol,” J. Cell. Mol. Med., 27(13), 1880-1886, 2023. [109]X. Liu, J.J. Yao, Z. Chen, W. Lei, R. Duan, Z. Yao, “Lipopolysaccharide sensitizes the therapeutic response of breast cancer to IAP antagonist,” Front. Immunol., 13, 906357, 2022. [110]R. Rathore, J.E. McCallum, E. Varghese, A.-M. Florea, D. Büsselberg, “Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs),” Apoptosis, 22(7), 898-919, 2017. [111]M. Fiandalo, N. Kyprianou, “Caspase control: Protagonists of cancer cell apoptosis,” Exp. Oncol., 34(3), 165-175, 2012. [112]M. Darding, P. Meier, “IAPs: Guardians of RIPK1,” Cell Death Differ., 19(1), 58-66, 2012. [113]P. Ghanavatian, H. Salehi-Sedeh, F. Ataei, S. Hosseinkhani, “Bioluminescent RIPoptosome assay for FADD/RIPK1 interaction based on split luciferase assay in a human neuroblastoma cell line SH-SY5Y,” Biosensors, 13(2), 297, 2023. [114]S. Najem, D. Langemann, B. Appl, M. Trochimiuk, P. Hundsdoerfer, K. Reinshagen, G. Eschenburg, “Smac mimetic LCL161 supports neuroblastoma chemotherapy in a drug class-dependent manner and synergistically interacts with ALK inhibitor TAE684 in cells with ALK mutation F1174L,” Oncotarget, 7(45), 72634-72653, 2016.
|