跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.173) 您好!臺灣時間:2023/10/02 05:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉芷如
研究生(外文):LIU, CHIH-JU
論文名稱:利用黑麴黴分泌的酵素水解菊糖產生菊寡糖
論文名稱(外文):Enzymes from Aspergillus niger for the hydrolysis of inulin to produce inulo-oligosaccharides
指導教授:李文乾王逢盛
指導教授(外文):Lww, Wen-ChienWANG,FONG-SHENG
口試委員:許梅娟陳浩仁
口試委員(外文):SYU,MEI-JYUANCHEN,HAO-REN
口試日期:2023-07-21
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:105
中文關鍵詞:菊芋菊粉酶蔗糖酶內切菊粉酶外切菊粉酶黑麴黴基因重組
外文關鍵詞:Jerusalem artichokeinulinaseinvertaseendo-inulinaseexo-inulinaseAspergillus nigergenetic recombination
相關次數:
  • 被引用被引用:0
  • 點閱點閱:13
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
菊糖為一種線性 β-(2-1)-連接的果糖聚合物,由n個果糖和末端一個葡萄糖線性組合成的GFn長鏈,醣類組成聚合度 (DP) 在 2 到 60 之間,可從菊芋、菊苣、牛蒡和蒜頭等菊科植物的根和塊莖中獲得。經由不同微生物的水解可產生寡糖(oligofructose),此種寡糖DP在3~7之間,可作為甜味劑添加在食品中,有助於改善消化系統及降低血糖等功效。本研究利用菊芋當作碳源,使黑麴黴Aspergillus niger CCU分泌出的兩種酵素,菊粉酶(inulinase)和轉化酶(invertase)。
本研究的實驗分為兩部份:第一部份,透過測量菊糖(I)和蔗糖(S)兩種基質中釋放還原糖的濃度來分析菊粉酶與轉化酶活性,將每12小時取的上清液加入菊粉和蔗糖基質進行反應,接著利用3,5-二硝基水楊酸(DNS)與還原糖進行反應可測得I及S活性,再利用I/S比值區分酵素,當I/S比值>10-2為菊粉酶,當I/S比值<10-2為蔗糖酶。然後利用不同基質濃度(20 g/L、50 g/L或100 g/L)、培養基體積(50 ml或100 ml)和pH值(5、6.5或9)找出最佳的菊粉酶生產條件,結果發現在50 g/L、100 ml及pH6.5的搖瓶培養之下可產出最大菊粉酶活性為29.98±1.54 U/ml,轉化酶活性為29.50±1.76 U/ml ,I/S比值為0.94±0.12。最後利用十二烷基硫酸鈉聚丙烯醯胺凝膠電泳,將A. niger CCU所分泌的菊粉酶分離成內切菊粉酶及外切菊粉酶。從膠片中可得到三個蛋白質條帶,將條帶切下進行酵素反應發現其中二個條帶具有菊粉酶活性。接著經蛋白質鑑定後發現,外切菊粉酶蛋白質分子量為63kDa,內切菊粉酶蛋白質分子量為35kDa。因A. niger CCU會分泌較多的外切菊粉酶,不利於利用菊粉生產寡糖,會導致產物中含有大量果糖,本研究第二部份利用基因重組技術將分泌內切菊粉酶基因片段合成後接至質體pET15b(+)上,得到的重組菌可表現內切菊粉酶。

Inulin is a linear β-(2-1)-linked fructose polymer composed of n fructose units with a terminal glucose unit, forming a GFn chain. The degree of polymerization (DP) of carbohydrates in this chain ranges from 2 to 60. Inulin can be obtained from the roots and tubers of plants in the Asteraceae family, such as Jerusalem artichoke, chicory, burdock, and garlic. Oligofructose, a shorter chain variant of inulin with a DP of 3 to 7, can be produced through enzymatic hydrolysis by various microorganisms. Oligofructose serves as a sweetener in foods and offers benefits such as improving the digestive system and lowering blood sugar levels.

This study utilizes Jerusalem artichoke as a carbon source to induce the secretion of two enzymes, inulinase and invertase, from the filamentous fungus Aspergillus niger CCU. The experiment is divided into two parts. In the first part, the activity of inulinase and invertase is analyzed by measuring the concentration of released reducing sugars from two substrates: inulin (I) and sucrose (S). The clear supernatant obtained every 12 hours is added to the inulin and sucrose substrates for reaction. The reaction mixture is then assayed using 3,5-dinitrosalicylic acid (DNS) with reducing sugars to determine the activity of I and S. The I/S ratio is used to differentiate the enzymes: an I/S ratio >10^-2 indicates inulinase, while an I/S ratio <10^-2 indicates invertase.

Various conditions are tested, including substrate concentrations (20 g/L, 50 g/L, or 100 g/L), culture volumes (50 ml or 100 ml), and pH values (5, 6.5, or 9), to identify the optimal conditions for inulinase production. The results show that under conditions of 50 g/L substrate concentration, 100 ml culture volume, and pH 6.5, the highest inulinase activity is 29.98 ± 1.54 U/ml, invertase activity is 29.50 ± 1.76 U/ml, and I/S ratio is 0.94 ± 0.12. Gel electrophoresis using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is used to separate the inulinase secreted by A. niger CCU into endoinulinase and exoinulinase. Two of the three protein bands on the gel exhibit inulinase activity upon enzyme reaction. Protein identification reveals that the exoinulinase has a molecular weight of 63 kDa, while the endoinulinase has a molecular weight of 35 kDa.

Since A. niger CCU predominantly secretes exoinulinase, which is less favorable for oligofructose production from inulin due to higher levels of fructose in the resulting product, the second part of the study employs recombinant gene technology to synthesize the gene fragment of endoinulinase and express it in a vector (pET15b(+)) to obtain a recombinant strain capable of producing endoinulinase.
致謝 i
中文摘要 ii
Abstract iv
目錄 vi
圖目錄 xi
表目錄 xiv
1 第一章研究動機及目的 16
2 第二章文獻回顧 17
2.1 菊糖 (lnulin) 17
2.1.1 菊芋介紹 17
2.1.2 菊芋粉處理 18
2.2 Fructooligosaccharide (FOS) 20
2.3 Inulo-oligosaccharides (IOS) 21
2.4 黑麴黴(Aspergillus niger) 22
2.5 菊粉酶(inulinase) 23
2.6 轉化酶(Invertase) 26
2.7 生產內切菊粉酶 27
2.7.1 內切菊粉酶(Inu)的重因重組 27
2.7.2 蛋白質純化 28
2.7.3 SDS-PAGE分析 30
3 第三章 實驗藥品及器材 32
3.1 實驗藥品 32
3.1.1 菌種來源 32
3.1.2 基因重組 33
3.1.3 SDS-PAGE所需藥品 34
3.2 實驗設備 35
4 第四章 實驗步驟 37
4.1.1 A. niger CCU生產酵素方法 37
4.1.2 菊芋處理 37
4.1.3 A. niger CCU培養及醱酵 37
4.1.4 酵素活性測定 38
4.1.5 蛋白質定量 41
4.1.6 利用A. niger生產之酵素生產菊寡糖 43
4.1.7 組成分析 43
4.1.8 菊粉酶的蛋白質SDS-PAGE分析 43
(1)膠片製作 44
(2)膠體電泳 45
(3)膠片後續處理 46
(4)膠片蛋白質的活性分析 46
4.2 建構表達菊粉內切酶基因的重組菌 46
4.2.1 重組菌的建構 46
4.2.2 熱休克轉型法Heat-shock 47
4.2.3 菌落PCR (Colony PCR) 48
4.2.4 驗證: 49
(1)pET15b(+)-InuA染色體萃取 49
(2)DNA 純化 50
(3)PCR 51
(4)瓊脂膠體電泳分析 53
4.3 培養和誘導E. coli DH5α-inuA以及酵素活性分析 54
4.3.1 E. coli DH5α-inuA培養 54
4.3.2 酵素活性測定 56
4.3.3 酵素反應生產菊寡糖 57
5 第五章 結果與討論 58
5.1 不同反應條件下,菊粉酶活性和菊寡糖產量的影響 58
5.1.1 不同培養基體積下,菊粉酶活性和菊寡糖產量的影響 58
5.1.2 不同菊芋粉濃度下,菊粉酶活性和菊寡糖產量的影響 62
5.1.3 不同pH值對菊粉酶活性和菊寡糖產量的影響 65
5.1.4 不同菊芋粉處理方式對菊粉酶活性和菊寡糖產量的影響 69
5.1.5 利用A. niger生產之酵素生產菊寡糖 74
5.1.6 A. niger 分泌蛋白質的SDS-PAGE分析 76
5.1.7 內切菊粉酶基因的DNA合成 79
5.1.8 熱休克轉型法(heat shock method) 80
5.1.9 染色體萃取和菌落 PCR (Colony PCR) 80
5.1.10 重組菌E. coli DH5α-pET15b(+)-inuA蛋白質SDS-PAGE分析 82
5.1.11 重組菌的目標基因DNA定序 83
5.1.12 E. coli DH5α-pET15b(+)-inuA之測定 88
(1)E. coli DH5α-pET15b(+)-inuA酵素活性、蛋白質濃度和比活性測定 88
(2) 利用E. coli DH5α-pET15b(+)-inuA生產之酵素生產菊寡糖 89
5.1.13 E. coli BL21(DE3)-pET15b(+)-inuA測定 90
(1) E. coli BL21(DE3)-pET15b(+)-inuA分泌蛋白質的SDS-PAGE分析 90
E. coli BL21(DE3)-pET15b(+)-inuA酵素活性、蛋白質濃度和比活性測定 91
(3)利用E. coli BL21(DE3)-pET15b(+)-inuA生產之酵素生產菊寡糖 92
6 結論 94
7 參考文獻 96
8 附錄A A. niger CCU 的內切菊粉酶DNA序列定序結果及其與文獻比對 102
9 附錄B A. niger CCU的內切菊粉酶胺基酸序列及其與文獻比對 104
10 附錄C 不同比例DNS檢量線 105
11 附錄D HPLC個成份檢量線(粗體數字為滯留時間(min)) 106

[1]Accensi, F., Cano, J., Figuera, L., Abarca, M. L., & Cabaes, F. J. (1999). New PCR method to differentiate species in theAspergillus nigeraggregate. FEMS Microbiology Letters, 180(2), 191–196.
[2]Bailey, M. J. (1988). A note on the use of dinitrosalicylic acid for determining the products of enzymatic reactions. Applied Microbiology and Biotechnology, 29(5), 494–496.
[3]Chen, H.-Q., Chen, X.-M., Li, Y., Wang, J., Jin, Z.-Y., Xu, X.-M., Zhao, J.-W., Chen, T.-X., & Xie, Z.-J. (2009). Purification and characterisation of exo- and endo-inulinase from Aspergillus ficuum JNSP5-06. Food Chemistry, 115(4), 1206–1212.
[4]Chen, M., Xiao, L., Chen, C., Zhang, S., Xie, J., & Wei, D. (2014a). Cloning, Overexpression, and Characterization of a Highly Active Endoinulinase Gene from Aspergillus fumigatus Cl1 for Production of Inulo-Oligosaccharides. Applied Biochemistry and Biotechnology, 175(2), 1153–1167.
[5]Chen, M., Xiao, L., Chen, C., Zhang, S., Xie, J., & Wei, D. (2014b). Cloning, Overexpression, and Characterization of a Highly Active Endoinulinase Gene from Aspergillus fumigatus Cl1 for Production of Inulo-Oligosaccharides. Applied Biochemistry and Biotechnology, 175(2), 1153–1167.
[6]Chen, X.-M., Xu, X.-M., Jin, Z.-Y., & Chen, H.-Q. (2012). Expression of an endoinulinase from Aspergillus ficuum JNSP5-06 in Escherichia coli and its characterization. Carbohydrate Polymers, 88(2), 748–753.
[7]Deshavath, N. N., Mukherjee, G., Goud, V. V., Veeranki, V. D., & Sastri, C. V. (2020). Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. International Journal of Biological Macromolecules, 156, 180–185.
[8]Dinarvand, M., Rezaee, M., & Foroughi, M. (2017). Optimizing culture conditions for production of intra and extracellular inulinase and invertase from Aspergillus niger ATCC 20611 by response surface methodology (RSM). Brazilian Journal of Microbiology, 48, 427–441.
[9]Erdal, S., Canli, O., & Algur, Ö. (2011). Inulinase production by Geotrichum candidum using Jerusalem artichoke as sole carbon source. ROMANIAN BIOTECHNOLOGICAL LETTERS, 16(4).
[10]Ettalibi, M., & Baratti, J. C. (1987). Purification, properties and comparison of invertase, exoinulinases and endoinulinases of Aspergillus ficuum. Applied Microbiology and Biotechnology, 26(1), 13–20.
[11]Hemant Kumar Rawat, Mohd Anis Ganaie, & Naveen Kango. (2015). Production of inulinase, fructosyltransferase and sucrase from fungi on low-value inulin-rich substrates and their use in generation of fructose and fructo-oligosaccharides. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 107(3), 799–811.
[12]Jiang, X., Zhu, Y., Zhang, W., Guang, C., Zhang, T., & Mu, W. (2019). Efficient production of inulooligosaccharides from inulin by endoinulinase from Aspergillus arachidicola. Carbohydrate Polymers, 208, 70–76.
[13]Jing, W., Zhengyu, J., Bo, J., & Augustine, A. (2003). Production and separation of exo- and endoinulinase from Aspergillus ficuum. Process Biochemistry, 39(1), 5–11.
[14]Kango, N. (2008). Production of inulinase using tap roots of dandelion (Taraxacum officinale) by Aspergillus niger. Journal of Food Engineering, 85(3), 473–478.
[15]Lin, S.-C., & Lee, W.-C. (1998). Separation of a fructo-oligosaccharide mixture by hydrophilic interaction chromatography using silica-based micropellicular sorbents. Journal of Chromatography A, 803(1), 302–306.
[16]Liu, G.-L., & Chi, Z.-M. (2012). Molecular characterization and expression of microbial inulinase genes. 39(2), 152–165.
[17]Liu, Y., Zhou, S.-H., Cheng, Y.-R., Chi, Z., Chi, Z.-M., & Liu, G.-L. (2016). Synergistic effect between the recombinant exo-inulinase and endo-inulinase on inulin hydrolysis. Journal of Molecular Catalysis B: Enzymatic, 128, 27–38.
[18]Mao, W., Han, Y., Wang, X., Zhao, X., Chi, Z., Chi, Z., & Liu, G. (2019). A new engineered endo-inulinase with improved activity and thermostability: Application in the production of prebiotic fructo-oligosaccharides from inulin. Food Chemistry, 294, 293–301.
[19]Mhetras, N. C., Bastawde, K. B., & Gokhale, D. V. (2009). Purification and characterization of acidic lipase from Aspergillus niger NCIM 1207. Bioresource Technology, 100(3), 1486–1490.
[20]Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428.
[21]Mostafa, M., Fakharany, A., & Abbas, M. (2021). Effect of some treatments of Jerusalem artichoke tubers on the resulted powder for food process uses. Fayoum Journal of Agricultural Research and Development, 35(2), 274–290.
[22]Mustafa Germec, Hilal Nur Gürler, Ozcan, A., Selime Benemir Erkan, Ercan Karahalil, & Irfan Turhan. (2019). Medium optimization and kinetic modeling for the production of Aspergillus niger inulinase. Bioprocess and Biosystems Engineering, 43(2), 217–232.
[23]Pouyez, J., Mayard, A., Vandamme, A.-M., Roussel, G., Perpète, E. A., Wouters, J., Housen, I., & Michaux, C. (2012). First crystal structure of an endo-inulinase, INU2, from Aspergillus ficuum: Discovery of an extra-pocket in the catalytic domain responsible for its endo-activity. Biochimie, 94(11), 2423–2430.
[24]Saqib, A. A. N., & Whitney, P. J. (2011). Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono- and di-saccharide sugars. Biomass and Bioenergy, 35(11), 4748–4750.
[25]Singh, R. S., & Singh, R. P. (2010). Production of Fructooligosaccharides from Inulin by Endoinulinases and Their Prebiotic Potential. Food Technology and Biotechnology, 48(4), 435–450.
[26]Singh, R. S., Singh, T., & Kennedy, J. F. (2020). Purification, thermodynamics and kinetic characterization of fungal endoinulinase for the production of fructooligosaccharides from inulin. International Journal of Biological Macromolecules, 164, 3535–3545.
[27]Sirisansaneeyakul, S., Worawuthiyanan, N., Vanichsriratana, W., Srinophakun, P., & Chisti, Y. (2006). Production of fructose from inulin using mixed inulinases from Aspergillus niger and Candida guilliermondii. World Journal of Microbiology and Biotechnology, 23(4), 543–552.
[28]Vinoth Kumar, V., Premkumar, M. P., Sathyaselvabala, V. kumar, Dineshkirupha, S., Nandagopal, J., & Sivanesan, S. (2011). Aspergillus niger exo-inulinase purification by three phase partitioning. Engineering in Life Sciences, 11(6), 607–614.
[29]Wang, P., Ma, J., Zhang, Y., Zhang, M., Wu, M., Dai, Z., & Jiang, M. (2016). Efficient Secretory Overexpression of Endoinulinase in Escherichia coli and the Production of Inulooligosaccharides. Applied Biochemistry and Biotechnology, 179(5), 880–894.
[30]Xu, Y., Zheng, Z., Xu, Q., Yong, Q., & Ouyang, J. (2016). Efficient Conversion of Inulin to Inulooligosaccharides through Endoinulinase from Aspergillus niger. Journal of Agricultural and Food Chemistry, 64(12), 2612–2618.
[31]Yedahalli, S. S., Rehmann, L., & Bassi, A. (2016). Expression of exo-inulinase gene fromAspergillus niger12 inE. colistrain Rosetta-gami B (DE3) and its characterization. Biotechnology Progress, 32(3), 629–637.
[32]Thi Ngoc Anh, Optimization of Functional Oligosaccharides Production with Pham, Aspergillus Niger CCU, National Chung Cheng University, Chia-Yi 621, Taiwan, (2019).
[33]施建茂,「構建重組大腸桿菌表達內切型木聚醣酶以生產鳳梨皮渣來源的木寡糖」,國立中正大學化學工程學系研究所碩士論文,2022。
[34]吳佩錚,「瘤胃大腸桿菌CCU-8代謝途徑重建與基因剔除及其攝取不同碳源之乳酸醱酵研究」,國立中正大學化學工程學系研究所碩士論文,2022。
[35]翁明清,「琥珀酸放線桿菌在生物膜反應器中醱酵生產琥珀酸並構建重組質體用以剔除其基因之研究」,國立中正大學化學工程學系研究所碩士論文,2022。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top