|
1.Nicholas Banahene, Herbert W. Kavunja and Benjamin M. Swarts, Chemical Reporters for Bacterial Glycans: Development and Applications. Chem. Rev., 2022, 122, 3336–3413. 2.Eliana Saxon and Carolyn R. Bertozzi, Cell surface engineering by a modified Staudinger reaction. Science, 2000, 287, 2007–2010. 3.Nichole J. Pedowitz and Matthew R. Pratt, Design and synthesis of metabolic chemical reporters for the visualization and identification of glycoproteins. RSC Chem. Biol., 2021, 2, 306–321. 4.Eliana Saxon, Sarah J. Luchansky, Howard C. Hang, Chong Yu, Sandy C. Lee, and Carolyn R. Bertozzi, Investigating Cellular Metabolism of Synthetic Azidosugars with the Staudinger Ligation. J. Am. Chem. Soc., 2002, 124, 14893–14902. 5.Cory D. Rillahan, Erik Schwartz, Ryan McBride, Valery V. Fokin and James C. Paulson, Click and Pick: Identification of Sialoside Analogues for Siglec-Based Cell Targeting. Angew. Chem. Int. Ed. Engl., 2012, 51, 11014–11018. 6.Nicholas J. Agard, Jennifer A. Prescher and Carolyn R. Bertozzi, A Strain-Promoted [3 + 2] Azide−Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems. J. Am. Chem. Soc., 2004, 126, 15046–15047. 7.Melissa L. Blackman, Maksim Royzen and Joseph M. Fox, Tetrazine Ligation: Fast Bioconjugation Based on Inverse-Electron-Demand Diels−Alder Reactivity. J. Am. Chem. Soc., 2008, 130, 13518–13519. 8.Jafar Mahdavi, Berit Sondén, Marina Hurtig, Farzad O. Olfat, Lina Forsberg, Niamh Roche, Jonas Ångström, Thomas Larsson, Susann Teneberg, Karl-Anders Karlsson, Siiri Altraja, Torkel Wadström, Dangeruta Kersulyte, Douglas E. Berg, Andre Dubois, Christoffer Petersson, Karl-Eric Magnusson, Thomas Norberg, Frank Lindh, Bertil B. Lundskog, Anna Arnqvist, Lennart Hammarström and Thomas Borén, Helicobacter pylori SabA Adhesin in Persistent Infection and Chronic Inflammation. Science, 2002, 297, 573–578. 9.Anthony P. Moran, Ananya Gupta and Lokesh Joshi, Sweet-talk: role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut., 2011, 60, 1412–1425. 10.Ola Blixt, Shoufa Han, Liang Liao, Ying Zeng, Julia Hoffmann, Satoshi Futakawa and James C. Paulson, Sialoside Analogue Arrays for Rapid Identification of High Affinity Siglec Ligands. J. Am. Chem. Soc., 2008, 130, 6680–6681. 11.Maria B. Koenigs, Elizabeth A. Richardson and Danielle H. Dube, Metabolic profiling of Helicobacter pylori glycosylation. Mol. BioSyst., 2009, 5, 909–912. 12.Ta-Wei Liu, Ching-Wen Ho, Hsin-Hung Huang, Sue-Ming Chang, Shide D. Popat, Yi-Ting Wang, Ming-Shiang Wu, Yu-Ju Chen and Chun-Hung Lin, Role for α-l-fucosidase in the control of Helicobacter pylori-infected gastric cancer cells. Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 14581–14586. 13.Buket Soyyılmaz, Marta H. Mikš, Christoph H. Röhrig, Martin Matwiejuk, Meszaros-Matwiejuk Agnes and Louise K. Vigsnæs, The Mean of Milk: A Review of Human Milk Oligosaccharide Concentrations throughout Lactation. Nutrients, 2021, 13, 2737–2758. 14.Yu-Jyun Cheng and Chun-Yan Yeung, Recent advance in infant nutrition: Human milk oligosaccharides. Pediatr. Neonatol., 2021, 62, 347–353. 15.Shoji Nakamori, Masao Kameyama, Shingi Imaoka, Hiroshi Furukawa, Osanni Ishikawa, Yo Sasaki, Toshiyuki Kabuto, Takeshi Iwanaga, Yoshifumi Matsushita and Tatsuro Irimura, Increased expression of sialyl Lewisx antigen correlates with poor survival in patients with colorectal carcinoma: clinicopathological and immunohistochemical study. Cancer Res., 1993, 53, 3632–3637. 16.Mai Nguyen, Naomi A. Strubel and Joyce Bischoff, A role for sialyl Lewisx/a glycoconjugates in capillary morphogenesis. Nature, 1993, 365, 267–169. 17.Artavanis-Tsakonas Spyros, Matthew D. Rand and Robert J. Lake, Notch Signaling: Cell Fate Control and Signal Integration in Development. Science, 1999, 284, 770–776. 18.Dag Ilver, Anna Arnqvist, Johan O. gren, Inga-Maria Frick, Dangeruta Kersulyte, Engin T. Incecik, Douglas E. Berg, Antonello Covacci, Lars Engstrand and Thomas Borén, Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science, 1998, 279, 373–377. 19.Daniel J. Becker and John B. Lowe, Leukocyte adhesion deficiency type II. Biochim. Biophys. Acta., 1999, 1455, 193–204. 20.Lars Bode, Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology, 2012, 22, 1147–1162. 21.Jolene M. Garber, Thierry Hennet and Christine M. Szymanski, Significance of fucose in intestinal health and disease. Mol. Microbiol., 2021, 115, 1086–1093. 22.David S. Newburg, Guillermo M. Ruiz-Palacios, Mekibib Altaye, Prasoon Chaturvedi, Meinzen-Derr Jareen, Maria de Lourdes Guerrero and Ardythe L. Morrow, Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breastfed infants. Glycobiology, 2004, 14, 253–263. 23.Alan Cartmell, Jose Muñoz-Muñoz, Jonathon A. Briggs, Didier A. Ndeh, Elisabeth C. Lowe, Arnaud Baslé, Nicolas Terrapon, Katherine Stott, Tiaan Heunis, Joe Gray, Li Yu, Paul Dupree, Pearl Z. Fernandes, Sayali Shah, Spencer J. Williams, Aurore Labourel, Matthias Trost, Bernard Henrissat and Harry J. Gilbert, Engineering a surface endogalactanase into Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nat. Microbiol., 2018, 3, 1314–1326. 24.Lora V. Hooper, Jian Xu, Per G. Falk, Tore Midtvedt and Jeffrey I. Gordon, A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 9833–9838. 25.Daniel J. Becker and John B. Lowe, Fucose: biosynthesis and biological function in mammals. Glycobiology, 2003, 13, 41R–53R. 26.Michela Tonetti, Laura Sturla, Angela Bisso, Umberto Benatti and Antonio De Flora, Synthesis of GDP-L-fucose by the Human FX Protein. J. Biol. Chem., 1996, 271, 27274–27279. 27.Thomas J. WieseS, Joyce A. Dunlap and Mark A. Yorek, L-fucose is accumulated via a specific transport system in eukaryotic cells. J. Biol. Chem., 1994, 269, 22705–22711. 28.Michael J. Coyne, Barbara Reinap, Martin M. Lee and Laurie E. Comstock, Human symbionts use a host-like pathway for surface fucosylation. Science, 2005, 307, 1778–1781. 29.Ta-Wei Liu, Hiromi Ito, Yasunori Chiba, Tomomi Kubota, Takashi Sato and Hisashi Narimatsu, Functional expression of L-fucokinase/guanosine 5'-diphosphate-L-fucose pyrophosphorylase from Bacteroides fragilis in Saccharomyces cerevisiae for the production of nucleotide sugars from exogenous monosaccharides. Glycobiology, 2011, 21, 1228–1236. 30.Wei Wang, Tianshun Hu, Patrick A. Frantom, Tianqing Zheng, Brian Gerwe, David Soriano del Amo, Sarah Garret, Ronald D. Seidel III and Peng Wu, Chemoenzymatic synthesis of GDP-L-fucose and the Lewisx glycan derivatives. Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 16096–16101. 31.Chongyun Cheng, Jianhua Gu, Jing Su, Wei Ding, Jie Yin, Wenguang Liang, Xiaoxia Yu, Jun Ma, Peng George Wang, Zhicheng Xiao and Zhi-Jie Liu, Crystallization, preliminary X-ray crystallographic and cryo-electron microscopy analysis of a bifunctional enzyme L-fucokinase/L-fucose-1-P-guanylyltransferase from Bacteroides fragilis. Acta. Cryst., 2014, 70, 1206–1210. 32.Ying Liu, Huifang Hu, Jia Wang, Qiang Zhou, Peng Wu, Nieng Yan, Hong-Wei Wang, Jia-Wei Wu and Linfeng Sun, Cryo-EM structure of L-fucokinase/ GDP-fucose pyrophosphorylase (FKP) in Bacteroides fragilis. Protein Cell, 2019, 10, 365–369. 33.Luke L. Lairson, Warren W. Wakarchukb and Stephen G. Withers, Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem., 2008, 77, 521–555. 34.Joo-Ho Lee, Ramesh Prasad Pandey, DaeHee Kim and Jae Kyung Sohn, Cloning and Functional Characterization of an α-1,3-fucosyltransferase from Bacteroides fragilis. Biotechnol. Bioproc., 2013, 18, 843–849. 35.Hsin-Hui Huang, Jia-Lin Fang, Hung-Kai Wang, Chih-Yuan Sun, Teng-Wei Tsai, Yu-Ting Huang, Cheng-Yu Kuo, Yi-Jyun Wang, Chi-Chun Liao and Ching-Ching Yu, Substrate Characterization of Bacteroides fragilis α1,3/4-Fucosyltransferase Enabling Access to Programmable One-Pot Enzymatic Synthesis of KH-1 Antigen. ACS Catal., 2019, 9, 11794–11800. 36.David A. Rasko, Ge Wang, Monica M. Palcici and Diane E. Taylor, Cloning and characterization of the alpha(1,3/4) fucosyltransferase of Helicobacter pylori. J. Biol. Chem., 2000, 275, 4988–4994. 37.Hai Yu, Yanhong Li, Zhigang Wu, Lei Li, Jie Zeng, Chao Zhao, Yijing Wu, Nova Tasnima, Jing Wang, Huaide Liu, Madhusudhan Reddy Gadi, Wanyi Guan, Peng G Wang and Xi Chen, H. pylori α1-3/4-fucosyltransferase (Hp3/4FT)-catalyzed one-pot multienzyme (OPME) synthesis of Lewis antigens and human milk fucosides. Chem. Commun., 2017, 53, 11012–11015. 38.Chenyu Ma, Hideyuki Takeuchi, Huilin Hao, Chizuko Yonekawa, Kazuki Nakajima, Masamichi Nagae, Tetsuya Okajima, Robert S. Haltiwanger and Yasuhiko Kizuka, Differential Labeling of Glycoproteins with Alkynyl Fucose Analogs. Int. J. Mol. Sci., 2020, 21, 6007–6024. 39.Masaaki Sawa, Tsui-Ling Hsu, Takeshi Itoh, Masakazu Sugiyama, Sarah R. Hanson, Peter K. Vogt and Chi-Huey Wong, Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 12371–12376. 40.David Rabuka, Sarah C. Hubbard, Scott T. Laughlin, Sulabha P. Argade and Carolyn R. Bertozzi, A Chemical Reporter Strategy to Probe Glycoprotein Fucosylation. J. Am. Chem. Soc., 2006, 128, 12078–12079. 41.Thomas Borén, Staffan Normark and Per Falk, Helicobacter pylori: molecular basis for host recognition and bacterial adherence. Trends. Microbiol., 1994, 2, 221–228. 42.Lynn A. Litterer, Judy A. Schnurr, Kathryn L. Plaisance, Kathleen K. Storey, John W. Gronwald and David A. Somers, Characterization and expression of Arabidopsis UDP-sugar pyrophosphorylase. Plant. Physiol. Biochem., 2006, 44, 171–180. 43.Susan M. Logan, Wayne J. Conlan, Mario A. Monteiro, Waren W. Wakarchuk and Eleonora Altman, Functional genomics of Helicobacter pylori: identification of a β-1,4 galactosyltransferase and generation of mutants with altered lipopolysaccharide. Mol. Microbiol., 2000, 35, 1156–1167. 44.Darius-Jean Namdjou, Hong-Ming Chen, Evguenii Vinogradov, Denis Brochu, Stephen G. Withers and Warren W. Wakarchuk, A β-1,4-galactosyltransferase from Helicobacter pylori is an efficient and versatile biocatalyst displaying a novel activity for thioglycoside synthesis. ChemBiochem., 2008, 9, 1632–1640. 45.Géza Zemplén and Alfons Kunz, Studien über Amygdalin, IV: Synthese des natürlichen l-Amygdalins. Ber. dtsch. Chem. Ges., 1924, 57, 1357–1359. 46.Ho H. Lee, Philip G. Hodgson, Ralph J. Bernacki, Walter Korytnyk and Moheswar Sharma, Analogs of cell surface carbohydrates. Synthesis of D-galactose derivatives having an ethynyl, vinyl or epoxy residue at C-5. Carbohydr, Res., 1988, 176, 59–72. 47.Yuanwei Dai, Ruth Hartke, Chao Li, Qiang Yang, Jun O Liu and Lai-Xi Wang, Synthetic Fluorinated L-Fucose Analogs Inhibit Proliferation of Cancer Cells and Primary Endothelial Cells. ACS Chem. Biol., 2020, 15, 2662–2672. 48.Nathan R. Zaccai, Katsumi Maenaka, Taeko Maenaka, Paul R. Crocker, Reinhard Brossmer, Sørge Kelm and E. Yvonne Jones, Structure-guided design of sialic acid-based Siglec inhibitors and crystallographic analysis in complex with sialoadhesin. Structure, 2003, 11, 557–567. 49.Soerge Kelm, Judith Gerlach, Reinhard Brossmer, Claus-Peter Danzer and Lars Nitschke, The Ligand-binding Domain of CD22 Is Needed for Inhibition of the B Cell Receptor Signal, as Demonstrated by a Novel Human CD22-specific Inhibitor Compound. J. Exp. Med., 2002, 195, 1207–1213. 50.Abdulhadi Suwandi, Alibek Galeev, Rene Riedel , Samriti Sharma , Katrin Seeger, Torsten Sterzenbach, Lucıa Garcıa Pastor, Erin C. Boyle, Ohad GalMor, Michael Hensel, Josep Casadesus , John F. Baines and Guntram A. Grassl, Std fimbriae-fucose interaction increases Salmonella-induced intestinal inflammation and prolongs colonization. PLoS Pathog., 2019, 15, e1007915. 51.Xiaoming Bian, Jolene M. Garber, Kerry K. Cooper, Steven Huynh, Jennifer Jones, Michael K. Mills, Daniel Rafala, Dilruba Nasrin, Karen L. Kotloff, Craig T. Parker, Sharon M. Tennant, William G. Miller and Christine M. Szymanski, Campylobacter Abundance in Breastfed Infants and Identification of a New Species in the Global Enterics Multicenter Study. Msphere., 2020, 5, 1110– 1128. 52.Yuan Guo, Hadar Feinberg, Edward Conroy, Daniel A. Mitchell, Richard Alvarez, Ola Blixt, Maureen E. Taylor, William I. Weis and Kurt Drickamer, Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat. Struct. Mol. Biol., 2004, 11, 591–598. 53.Elizabeth Yuriev, William Farrugia, Andrew M. Scott and Paul A. Ramsland, Three-dimensional structures of carbohydrate determinants of Lewis system antigens: Implications for effective antibody targeting of cancer. Immunol. Cell. Biol., 2005, 83, 709–717. 54.Hadar Feinberg, Maureen E. Taylor and William I. Weis, Scavenger receptor C-type lectin binds to the leukocyte cell surface glycan Lewisx by a novel mechanism. J. Biol. Chem., 2007, 282, 17250–17258. 55.Mirella Vivoli, Michail N. Isupov, Rebecca Nicholas, Andrew Hill, Andrew E. Scott, Paul Kosma, Joann L. Prior and Nicholas J. Harmer, Unraveling the B. pseudomallei Heptokinase WcbL: From Structure to Drug Discovery. Chem. Biol., 2015, 22, 1622–1632. 56.Han-Yu Sun, Sheng-Wei Lin, Tzu-Ping Ko, Jia-Fu Pan, Chia-Ling Liu, Chun-Nan Lin, Andrew H-J Wang and Chun-Hung Lin. Structure and mechanism of Helicobacter pylori fucosyltransferase. A basis for lipopolysaccharide variation and inhibitor design. J. Biol. Chem., 2007, 282, 9973–9982. 57.Bo Ren, Meiyan Wang, Jingyao Liu, Jiantao Ge, Xiaoling Zhanga and Dong Hai. Zemplén transesterification: a name reaction that has misled us for 90 years. Green Chem., 2015,17, 1390–1394.
|