跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 17:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳錦璇
研究生(外文):Chen, Jin-Syuan
論文名稱:探討α1,3/4岩藻糖轉移酶以鳥苷二磷酸岩藻糖衍生物對合成岩藻糖化人乳寡糖的受體耐受性
論文名稱(外文):Exploring the substrate tolerance of α1,3/4-fucosyltransferases for GDP-fucose analogs on the synthesis of fucosylated human milk oligosaccharides
指導教授:李珮甄李珮甄引用關係
指導教授(外文):Li, Pei-Jhen
口試委員:游景晴謝俊結
口試委員(外文):Yu, Ching-ChingShie, Jiun-Jie
口試日期:2023-07-26
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:225
中文關鍵詞:岩藻糖基轉移酶岩藻糖衍生物鳥苷二磷酸岩藻糖衍生物
外文關鍵詞:α1,3/4- fucosyltransferasefucose analogsGDP-fucose analogs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:3
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
岩藻糖基化是一種寡糖修飾,在多種生物和病理過程中發揮著重要作用。過去許多研究使用疊氮基(Azido group)或炔基(Alkynyl group)修飾岩藻糖進入癌細胞進行專一性聚糖標記,少有研究涉及岩藻糖衍生物(Fucose analogs)在細菌和蛋白質上的應用。
岩藻糖化糖體的應用仰賴生物合成途徑中的鳥苷二磷酸岩藻糖衍生物(GDP-Fucose analogs)。FKP 是由岩藻糖激酶(L-Fucokinase)及鳥苷二磷酸岩藻糖焦磷酸化酶(GDP-fucose pyrophosphorylase)組成的雙功能酶。FKP能將岩藻糖(L-Fucose)轉化成岩藻糖-1-磷酸 (Fuc-1-P)中間體後,進而轉化為鳥苷二磷酸岩藻糖(GDP-fucose)。FKP對於修飾後的Fucose analogs有廣泛的接受範圍。
Bf13FT和FucTa為α1,3/4-岩藻糖基轉移酶,可用於合成各種母乳岩藻糖苷,如Lewisa、Lweisx、LNFP V和LNnDFH II。我們透過基因序列比對發現Bf13FT、FucTa與Helicobacter pylori 26695 α1,3-岩藻糖轉移酶(H. pylori 26695 α1,3-FT)催化活性中心基因序列相似。H. pylori 26695 α1,3-FT能催化GDP-fucose analogs合成岩藻糖基化人乳寡糖衍生物。本論文實驗結果中證實Bf13FT及FucTa能催化GDP-fucose analogs合成岩藻糖基化人乳寡糖衍生物。
本研究利用3D結構比對推測FKP對於催化合成C-6官能基修飾GDP-fucose analogs之機制。此外我們也探討Bf13FT和 FucTa對於GDP-fucose analogs之受質耐受性及二者催化活性位置。


Fucosylation is an oligosaccharide modification that plays an essential role in a variety of biological and pathological processes. In the past, many studies utilized an azido or alkynyl substituted fucose in cancer cells for specific glycan labeling, rare researches focused on the application of fuocse analogs to bacteria and proteins.
The applications of fucose-containing glycans rely on the use of GDP-fucose analogs involved in the biosynthetic pathway. FKP is a bifunctional enzyme consisting of L-fucokinase and GDP-fucose pyrophosphorylase. FKP converts L-fucose into GDP-fucose via a fucose-1-phosphate (Fuc-1-P) intermediate. FKP is capable of accepting an even broader range of modified fucose analogs.
Bf13FT and FucTa were characterized as α1,3/4-fucosyltransferases that could be used for the synthesis of various human milk fucosides, such as Lewisa, Lweisx, LNFP V, and LNnDFH II. Through gene sequence alignments of Bf13FT, FucTa, and Helicobacter pylori 26695 α1,3- fucosyltransferase (H. pylori 26695 α1,3-FT), we discovered that the sequence of their catalytic active sites was similar. H. pylori 26695 α1,3-FT could catalyze the synthesis of fucosylated human oilgosacchsride derivatives using GDP-fucose analogs. The experiment results in this thesis confirmed that Bf13FT and FucTa could catalyze the synthesis of these derivatives.
In this work, we proposed a mechanism of FKP catalyzing the synthesis of C-6-modified GDP-fucose analogs through 3D structure alignments. In addition, we explored the substrate tolorance and catalytic activity positions of Bf13FT and FucTa for GDP-fucose analogs.

Abstract 1
摘要 2
Fucose analogs對照表 3
縮寫表 5
目錄 6
圖目錄 9
表目錄 14
流程目錄 15
第一章 緒論 16
1.1 官能基修飾糖體之生化應用 16
1.2 岩藻糖化糖體生物功能及重要性 19
1.2.1 岩藻糖化糖體對於腸道菌的作用 19
1.2.2 岩藻糖化糖體之生合成 20
1.3 L-Fucokinase/GDP-fucose pyrophosphorylase(FKP)合成GDP-fucose 22
1.3.1 FKP結構及預測催化活性位點 22
1.4 Fucosyltransferase 23
1.4.1 鬆脆桿菌α1,3/4-岩藻糖轉移酶(Bacteroides fragilis α1,3/4-fucosyltransferase , Bf13FT) 24
1.4.2 幽門螺旋桿菌α1,3/4-岩藻糖轉移酶(Helicobacter pylori UA948 α1,3/4-fucosyltransferase, FucTa) 26
1.5 研究動機 27
1.5.1 Fucose analogs之生化特性及應用 27
1.5.2 C-6修飾之Fucose analogs在酵素合成上的影響 29
1.5.3 FucTa及Bf13FT之耐受性探討 30
第二章 實驗結果與討論 31
2.1 大腸桿菌誘導表現目標蛋白質 31
2.1.1 目標基因產物之表現 31
2.1.2 酵素表達之分析 31
2.2 FKP與Fucose analogs之耐受性探討 42
2.2.1 Fucose analogs去乙醯基(O-acetyl)保護方式探討 42
2.2.2 GDP-fucose analogs之合成 54
2.2.3 FKP與Fucose analogs之機制探討 57
2.3 FucTa及Bf13FT合成Lewisx analogs及LNFP V analogs之探討 60
2.3.1 Lewisx analogs合成與鑑定 60
2.3.2 LNFP V analogs合成與鑑定 80
2.3.3 FucTa與Fucose analogs之機制探討 89
2.3.4 Bf13FT與Fucose analogs之機制探討 91
2.4 結論 94
2.4.1 FKP之酵素耐受性 94
2.4.2 FucTa及Bf13FT之酵素耐受性 95
2.5 未來展望 99
第三章 實驗材料與方法 100
3.1. Material and Methods 100
3.2. Overexpression of enzyme 101
3.2.1. Gene resource 101
3.2.2. Protein overexpression 101
3.3. Synthetic procedures and characterization 102
3.3.1. Chemical synthetic procedure of fucose analogs 102
3.3.2. Synthetic procedures of sugar nucleotides 102
3.3.3. Enzymatic synthetic of Lewisx analogs 104
3.3.4. Enzymatic synthetic of LNFP V analogs 104
3.3.5. Fucose analogs 105
3.3.6 GDP-fucose analogs 113
3.3.7 Lewisx analogs 117
3.3.8 LNFP V analogs 121
第四章 參考文獻 122
第五章 光譜及質譜附圖 130
5.1 光譜附圖目錄 130

1.Nicholas Banahene, Herbert W. Kavunja and Benjamin M. Swarts, Chemical Reporters for Bacterial Glycans: Development and Applications. Chem. Rev., 2022, 122, 3336–3413.
2.Eliana Saxon and Carolyn R. Bertozzi, Cell surface engineering by a modified Staudinger reaction. Science, 2000, 287, 2007–2010.
3.Nichole J. Pedowitz and Matthew R. Pratt, Design and synthesis of metabolic chemical reporters for the visualization and identification of glycoproteins. RSC Chem. Biol., 2021, 2, 306–321.
4.Eliana Saxon, Sarah J. Luchansky, Howard C. Hang, Chong Yu, Sandy C. Lee, and Carolyn R. Bertozzi, Investigating Cellular Metabolism of Synthetic Azidosugars with the Staudinger Ligation. J. Am. Chem. Soc., 2002, 124, 14893–14902.
5.Cory D. Rillahan, Erik Schwartz, Ryan McBride, Valery V. Fokin and James C. Paulson, Click and Pick: Identification of Sialoside Analogues for Siglec-Based Cell Targeting. Angew. Chem. Int. Ed. Engl., 2012, 51, 11014–11018.
6.Nicholas J. Agard, Jennifer A. Prescher and Carolyn R. Bertozzi, A Strain-Promoted [3 + 2] Azide−Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems. J. Am. Chem. Soc., 2004, 126, 15046–15047.
7.Melissa L. Blackman, Maksim Royzen and Joseph M. Fox, Tetrazine Ligation: Fast Bioconjugation Based on Inverse-Electron-Demand Diels−Alder Reactivity. J. Am. Chem. Soc., 2008, 130, 13518–13519.
8.Jafar Mahdavi, Berit Sondén, Marina Hurtig, Farzad O. Olfat, Lina Forsberg, Niamh Roche, Jonas Ångström, Thomas Larsson, Susann Teneberg, Karl-Anders Karlsson, Siiri Altraja, Torkel Wadström, Dangeruta Kersulyte, Douglas E. Berg, Andre Dubois, Christoffer Petersson, Karl-Eric Magnusson, Thomas Norberg, Frank Lindh, Bertil B. Lundskog, Anna Arnqvist, Lennart Hammarström and Thomas Borén, Helicobacter pylori SabA Adhesin in Persistent Infection and Chronic Inflammation. Science, 2002, 297, 573–578.
9.Anthony P. Moran, Ananya Gupta and Lokesh Joshi, Sweet-talk: role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut., 2011, 60, 1412–1425.
10.Ola Blixt, Shoufa Han, Liang Liao, Ying Zeng, Julia Hoffmann, Satoshi Futakawa and James C. Paulson, Sialoside Analogue Arrays for Rapid Identification of High Affinity Siglec Ligands. J. Am. Chem. Soc., 2008, 130, 6680–6681.
11.Maria B. Koenigs, Elizabeth A. Richardson and Danielle H. Dube, Metabolic profiling of Helicobacter pylori glycosylation. Mol. BioSyst., 2009, 5, 909–912.
12.Ta-Wei Liu, Ching-Wen Ho, Hsin-Hung Huang, Sue-Ming Chang, Shide D. Popat, Yi-Ting Wang, Ming-Shiang Wu, Yu-Ju Chen and Chun-Hung Lin, Role for α-l-fucosidase in the control of Helicobacter pylori-infected gastric cancer cells. Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 14581–14586.
13.Buket Soyyılmaz, Marta H. Mikš, Christoph H. Röhrig, Martin Matwiejuk, Meszaros-Matwiejuk Agnes and Louise K. Vigsnæs, The Mean of Milk: A Review of Human Milk Oligosaccharide Concentrations throughout Lactation. Nutrients, 2021, 13, 2737–2758.
14.Yu-Jyun Cheng and Chun-Yan Yeung, Recent advance in infant nutrition: Human milk oligosaccharides. Pediatr. Neonatol., 2021, 62, 347–353.
15.Shoji Nakamori, Masao Kameyama, Shingi Imaoka, Hiroshi Furukawa, Osanni Ishikawa, Yo Sasaki, Toshiyuki Kabuto, Takeshi Iwanaga, Yoshifumi Matsushita and Tatsuro Irimura, Increased expression of sialyl Lewisx antigen correlates with poor survival in patients with colorectal carcinoma: clinicopathological and immunohistochemical study. Cancer Res., 1993, 53, 3632–3637.
16.Mai Nguyen, Naomi A. Strubel and Joyce Bischoff, A role for sialyl Lewisx/a glycoconjugates in capillary morphogenesis. Nature, 1993, 365, 267–169.
17.Artavanis-Tsakonas Spyros, Matthew D. Rand and Robert J. Lake, Notch Signaling: Cell Fate Control and Signal Integration in Development. Science, 1999, 284, 770–776.
18.Dag Ilver, Anna Arnqvist, Johan O. gren, Inga-Maria Frick, Dangeruta Kersulyte, Engin T. Incecik, Douglas E. Berg, Antonello Covacci, Lars Engstrand and Thomas Borén, Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science, 1998, 279, 373–377.
19.Daniel J. Becker and John B. Lowe, Leukocyte adhesion deficiency type II. Biochim. Biophys. Acta., 1999, 1455, 193–204.
20.Lars Bode, Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology, 2012, 22, 1147–1162.
21.Jolene M. Garber, Thierry Hennet and Christine M. Szymanski, Significance of fucose in intestinal health and disease. Mol. Microbiol., 2021, 115, 1086–1093.
22.David S. Newburg, Guillermo M. Ruiz-Palacios, Mekibib Altaye, Prasoon Chaturvedi, Meinzen-Derr Jareen, Maria de Lourdes Guerrero and Ardythe L. Morrow, Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breastfed infants. Glycobiology, 2004, 14, 253–263.
23.Alan Cartmell, Jose Muñoz-Muñoz, Jonathon A. Briggs, Didier A. Ndeh, Elisabeth C. Lowe, Arnaud Baslé, Nicolas Terrapon, Katherine Stott, Tiaan Heunis, Joe Gray, Li Yu, Paul Dupree, Pearl Z. Fernandes, Sayali Shah, Spencer J. Williams, Aurore Labourel, Matthias Trost, Bernard Henrissat and Harry J. Gilbert, Engineering a surface endogalactanase into Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nat. Microbiol., 2018, 3, 1314–1326.
24.Lora V. Hooper, Jian Xu, Per G. Falk, Tore Midtvedt and Jeffrey I. Gordon, A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 9833–9838.
25.Daniel J. Becker and John B. Lowe, Fucose: biosynthesis and biological function in mammals. Glycobiology, 2003, 13, 41R–53R.
26.Michela Tonetti, Laura Sturla, Angela Bisso, Umberto Benatti and Antonio De Flora, Synthesis of GDP-L-fucose by the Human FX Protein. J. Biol. Chem., 1996, 271, 27274–27279.
27.Thomas J. WieseS, Joyce A. Dunlap and Mark A. Yorek, L-fucose is accumulated via a specific transport system in eukaryotic cells. J. Biol. Chem., 1994, 269, 22705–22711.
28.Michael J. Coyne, Barbara Reinap, Martin M. Lee and Laurie E. Comstock, Human symbionts use a host-like pathway for surface fucosylation. Science, 2005, 307, 1778–1781.
29.Ta-Wei Liu, Hiromi Ito, Yasunori Chiba, Tomomi Kubota, Takashi Sato and Hisashi Narimatsu, Functional expression of L-fucokinase/guanosine 5'-diphosphate-L-fucose pyrophosphorylase from Bacteroides fragilis in Saccharomyces cerevisiae for the production of nucleotide sugars from exogenous monosaccharides. Glycobiology, 2011, 21, 1228–1236.
30.Wei Wang, Tianshun Hu, Patrick A. Frantom, Tianqing Zheng, Brian Gerwe, David Soriano del Amo, Sarah Garret, Ronald D. Seidel III and Peng Wu, Chemoenzymatic synthesis of GDP-L-fucose and the Lewisx glycan derivatives. Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 16096–16101.
31.Chongyun Cheng, Jianhua Gu, Jing Su, Wei Ding, Jie Yin, Wenguang Liang, Xiaoxia Yu, Jun Ma, Peng George Wang, Zhicheng Xiao and Zhi-Jie Liu, Crystallization, preliminary X-ray crystallographic and cryo-electron microscopy analysis of a bifunctional enzyme L-fucokinase/L-fucose-1-P-guanylyltransferase from Bacteroides fragilis. Acta. Cryst., 2014, 70, 1206–1210.
32.Ying Liu, Huifang Hu, Jia Wang, Qiang Zhou, Peng Wu, Nieng Yan, Hong-Wei Wang, Jia-Wei Wu and Linfeng Sun, Cryo-EM structure of L-fucokinase/ GDP-fucose pyrophosphorylase (FKP) in Bacteroides fragilis. Protein Cell, 2019, 10, 365–369.
33.Luke L. Lairson, Warren W. Wakarchukb and Stephen G. Withers, Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem., 2008, 77, 521–555.
34.Joo-Ho Lee, Ramesh Prasad Pandey, DaeHee Kim and Jae Kyung Sohn, Cloning and Functional Characterization of an α-1,3-fucosyltransferase from Bacteroides fragilis. Biotechnol. Bioproc., 2013, 18, 843–849.
35.Hsin-Hui Huang, Jia-Lin Fang, Hung-Kai Wang, Chih-Yuan Sun, Teng-Wei Tsai, Yu-Ting Huang, Cheng-Yu Kuo, Yi-Jyun Wang, Chi-Chun Liao and Ching-Ching Yu, Substrate Characterization of Bacteroides fragilis α1,3/4-Fucosyltransferase Enabling Access to Programmable One-Pot Enzymatic Synthesis of KH-1 Antigen. ACS Catal., 2019, 9, 11794–11800.
36.David A. Rasko, Ge Wang, Monica M. Palcici and Diane E. Taylor, Cloning and characterization of the alpha(1,3/4) fucosyltransferase of Helicobacter pylori. J. Biol. Chem., 2000, 275, 4988–4994.
37.Hai Yu, Yanhong Li, Zhigang Wu, Lei Li, Jie Zeng, Chao Zhao, Yijing Wu, Nova Tasnima, Jing Wang, Huaide Liu, Madhusudhan Reddy Gadi, Wanyi Guan, Peng G Wang and Xi Chen, H. pylori α1-3/4-fucosyltransferase (Hp3/4FT)-catalyzed one-pot multienzyme (OPME) synthesis of Lewis antigens and human milk fucosides. Chem. Commun., 2017, 53, 11012–11015.
38.Chenyu Ma, Hideyuki Takeuchi, Huilin Hao, Chizuko Yonekawa, Kazuki Nakajima, Masamichi Nagae, Tetsuya Okajima, Robert S. Haltiwanger and Yasuhiko Kizuka, Differential Labeling of Glycoproteins with Alkynyl Fucose Analogs. Int. J. Mol. Sci., 2020, 21, 6007–6024.
39.Masaaki Sawa, Tsui-Ling Hsu, Takeshi Itoh, Masakazu Sugiyama, Sarah R. Hanson, Peter K. Vogt and Chi-Huey Wong, Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 12371–12376.
40.David Rabuka, Sarah C. Hubbard, Scott T. Laughlin, Sulabha P. Argade and Carolyn R. Bertozzi, A Chemical Reporter Strategy to Probe Glycoprotein Fucosylation. J. Am. Chem. Soc., 2006, 128, 12078–12079.
41.Thomas Borén, Staffan Normark and Per Falk, Helicobacter pylori: molecular basis for host recognition and bacterial adherence. Trends. Microbiol., 1994, 2, 221–228.
42.Lynn A. Litterer, Judy A. Schnurr, Kathryn L. Plaisance, Kathleen K. Storey, John W. Gronwald and David A. Somers, Characterization and expression of Arabidopsis UDP-sugar pyrophosphorylase. Plant. Physiol. Biochem., 2006, 44, 171–180.
43.Susan M. Logan, Wayne J. Conlan, Mario A. Monteiro, Waren W. Wakarchuk and Eleonora Altman, Functional genomics of Helicobacter pylori: identification of a β-1,4 galactosyltransferase and generation of mutants with altered lipopolysaccharide. Mol. Microbiol., 2000, 35, 1156–1167.
44.Darius-Jean Namdjou, Hong-Ming Chen, Evguenii Vinogradov, Denis Brochu, Stephen G. Withers and Warren W. Wakarchuk, A β-1,4-galactosyltransferase from Helicobacter pylori is an efficient and versatile biocatalyst displaying a novel activity for thioglycoside synthesis. ChemBiochem., 2008, 9, 1632–1640.
45.Géza Zemplén and Alfons Kunz, Studien über Amygdalin, IV: Synthese des natürlichen l-Amygdalins. Ber. dtsch. Chem. Ges., 1924, 57, 1357–1359.
46.Ho H. Lee, Philip G. Hodgson, Ralph J. Bernacki, Walter Korytnyk and Moheswar Sharma, Analogs of cell surface carbohydrates. Synthesis of D-galactose derivatives having an ethynyl, vinyl or epoxy residue at C-5. Carbohydr, Res., 1988, 176, 59–72.
47.Yuanwei Dai, Ruth Hartke, Chao Li, Qiang Yang, Jun O Liu and Lai-Xi Wang, Synthetic Fluorinated L-Fucose Analogs Inhibit Proliferation of Cancer Cells and Primary Endothelial Cells. ACS Chem. Biol., 2020, 15, 2662–2672.
48.Nathan R. Zaccai, Katsumi Maenaka, Taeko Maenaka, Paul R. Crocker, Reinhard Brossmer, Sørge Kelm and E. Yvonne Jones, Structure-guided design of sialic acid-based Siglec inhibitors and crystallographic analysis in complex with sialoadhesin. Structure, 2003, 11, 557–567.
49.Soerge Kelm, Judith Gerlach, Reinhard Brossmer, Claus-Peter Danzer and Lars Nitschke, The Ligand-binding Domain of CD22 Is Needed for Inhibition of the B Cell Receptor Signal, as Demonstrated by a Novel Human CD22-specific Inhibitor Compound. J. Exp. Med., 2002, 195, 1207–1213.
50.Abdulhadi Suwandi, Alibek Galeev, Rene Riedel , Samriti Sharma , Katrin Seeger, Torsten Sterzenbach, Lucıa Garcıa Pastor, Erin C. Boyle, Ohad GalMor, Michael Hensel, Josep Casadesus , John F. Baines and Guntram A. Grassl, Std fimbriae-fucose interaction increases Salmonella-induced intestinal inflammation and prolongs colonization. PLoS Pathog., 2019, 15, e1007915.
51.Xiaoming Bian, Jolene M. Garber, Kerry K. Cooper, Steven Huynh, Jennifer Jones, Michael K. Mills, Daniel Rafala, Dilruba Nasrin, Karen L. Kotloff, Craig T. Parker, Sharon M. Tennant, William G. Miller and Christine M. Szymanski, Campylobacter Abundance in Breastfed Infants and Identification of a New Species in the Global Enterics Multicenter Study. Msphere., 2020, 5, 1110– 1128.
52.Yuan Guo, Hadar Feinberg, Edward Conroy, Daniel A. Mitchell, Richard Alvarez, Ola Blixt, Maureen E. Taylor, William I. Weis and Kurt Drickamer, Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat. Struct. Mol. Biol., 2004, 11, 591–598.
53.Elizabeth Yuriev, William Farrugia, Andrew M. Scott and Paul A. Ramsland, Three-dimensional structures of carbohydrate determinants of Lewis system antigens: Implications for effective antibody targeting of cancer. Immunol. Cell. Biol., 2005, 83, 709–717.
54.Hadar Feinberg, Maureen E. Taylor and William I. Weis, Scavenger receptor C-type lectin binds to the leukocyte cell surface glycan Lewisx by a novel mechanism. J. Biol. Chem., 2007, 282, 17250–17258.
55.Mirella Vivoli, Michail N. Isupov, Rebecca Nicholas, Andrew Hill, Andrew E. Scott, Paul Kosma, Joann L. Prior and Nicholas J. Harmer, Unraveling the B. pseudomallei Heptokinase WcbL: From Structure to Drug Discovery. Chem. Biol., 2015, 22, 1622–1632.
56.Han-Yu Sun, Sheng-Wei Lin, Tzu-Ping Ko, Jia-Fu Pan, Chia-Ling Liu, Chun-Nan Lin, Andrew H-J Wang and Chun-Hung Lin. Structure and mechanism of Helicobacter pylori fucosyltransferase. A basis for lipopolysaccharide variation and inhibitor design. J. Biol. Chem., 2007, 282, 9973–9982.
57.Bo Ren, Meiyan Wang, Jingyao Liu, Jiantao Ge, Xiaoling Zhanga and Dong Hai. Zemplén transesterification: a name reaction that has misled us for 90 years. Green Chem., 2015,17, 1390–1394.

電子全文 電子全文(網際網路公開日期:20280828)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文