|
Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. International conference on machine learning, Boominathan, V., Mitra, K., & Veeraraghavan, A. (2014). Improving resolution and depth-of-field of light field cameras using a hybrid imaging system. 2014 IEEE International Conference on Computational Photography (ICCP), Cherukuri, V., Guo, T., Schiff, S. J., & Monga, V. (2019). Deep MR brain image super-resolution using spatio-structural priors. IEEE Transactions on Image Processing, 29, 1368-1383. Dong, C., Loy, C. C., He, K., & Tang, X. (2015). Image super-resolution using deep convolutional networks. IEEE transactions on pattern analysis and machine intelligence, 38(2), 295-307. Geng, T., Liu, X.-Y., Wang, X., & Sun, G. (2021). Deep shearlet residual learning network for single image super-resolution. IEEE Transactions on Image Processing, 30, 4129-4142. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., & Courville, A. B., Yoshua (2014). Generative adversarial networks. Advances in neural information processing systems, 2672-2680. Gu, J., Cai, H., Chen, H., Ye, X., Ren, J., & Dong, C. (2020). Image quality assessment for perceptual image restoration: A new dataset, benchmark and metric. arXiv preprint arXiv:2011.15002. He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Hinton, G., Vinyals, O., & Dean, J. (2015a). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, 2(7). Hinton, G., Vinyals, O., & Dean, J. (2015b). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531. Hore, A., & Ziou, D. (2010). Image quality metrics: PSNR vs. SSIM. 2010 20th international conference on pattern recognition, Huang, J.-B., Singh, A., & Ahuja, N. (2015). Single image super-resolution from transformed self-exemplars. Proceedings of the IEEE conference on computer vision and pattern recognition, Huang, S.-C., Hoang, Q.-V., & Jaw, D.-W. (2022). Self-Adaptive Feature Transformation Networks for Object Detection in low luminance Images. ACM Trans. Intell. Syst. Technol., 13(1), Article 13. https://doi.org/10.1145/3480973 Hwang, S., Park, J., Kim, N., Choi, Y., & So Kweon, I. (2015). Multispectral pedestrian detection: Benchmark dataset and baseline. Proceedings of the IEEE conference on computer vision and pattern recognition, Irani, M., & Peleg, S. (1991). Improving resolution by image registration. CVGIP: Graphical models and image processing, 53(3), 231-239. Jaderberg, M., Simonyan, K., & Zisserman, A. (2015). Spatial transformer networks. Advances in neural information processing systems, 28. Jiang, Y., Chan, K. C., Wang, X., Loy, C. C., & Liu, Z. (2022). Reference-based Image and Video Super-Resolution via C2-Matching. IEEE transactions on pattern analysis and machine intelligence. Jinjin, G., Haoming, C., Haoyu, C., Xiaoxing, Y., Ren, J. S., & Chao, D. (2020). Pipal: a large-scale image quality assessment dataset for perceptual image restoration. Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16, Keys, R. (1981). Cubic convolution interpolation for digital image processing. IEEE transactions on acoustics, speech, and signal processing, 29(6), 1153-1160. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., & Wang, Z. (2017). Photo-realistic single image super-resolution using a generative adversarial network. Proceedings of the IEEE conference on computer vision and pattern recognition, Li, Z., Kuang, Z.-S., Zhu, Z.-L., Wang, H.-P., & Shao, X.-L. (2022). Wavelet-Based Texture Reformation Network for Image Super-Resolution. IEEE Transactions on Image Processing, 31, 2647-2660. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., & Timofte, R. (2021). Swinir: Image restoration using swin transformer. Proceedings of the IEEE/CVF International Conference on Computer Vision, Lim, B., Son, S., Kim, H., Nah, S., & Mu Lee, K. (2017). Enhanced deep residual networks for single image super-resolution. Proceedings of the IEEE conference on computer vision and pattern recognition workshops, Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., & Xie, S. (2022). A convnet for the 2020s. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Lu, L., Li, W., Tao, X., Lu, J., & Jia, J. (2021). Masa-sr: Matching acceleration and spatial adaptation for reference-based image super-resolution. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Lucas, A., Lopez-Tapia, S., Molina, R., & Katsaggelos, A. K. (2019). Generative adversarial networks and perceptual losses for video super-resolution. IEEE Transactions on Image Processing, 28(7), 3312-3327. Lugmayr, A., Danelljan, M., & Timofte, R. (2020). Ntire 2020 challenge on real-world image super-resolution: Methods and results. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Matsui, Y., Ito, K., Aramaki, Y., Fujimoto, A., Ogawa, T., Yamasaki, T., & Aizawa, K. (2017). Sketch-based manga retrieval using manga109 dataset. Multimedia Tools and Applications, 76(20), 21811-21838. Misra, D., Nalamada, T., Arasanipalai, A. U., & Hou, Q. (2021). Rotate to attend: Convolutional triplet attention module. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Radenović, F., Tolias, G., & Chum, O. (2018). Fine-tuning CNN image retrieval with no human annotation. IEEE transactions on pattern analysis and machine intelligence, 41(7), 1655-1668. Sajjadi, M. S., Scholkopf, B., & Hirsch, M. (2017). Enhancenet: Single image super-resolution through automated texture synthesis. Proceedings of the IEEE international conference on computer vision, Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A. P., Bishop, R., Rueckert, D., & Wang, Z. (2016). Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. Proceedings of the IEEE conference on computer vision and pattern recognition, Shim, G., Park, J., & Kweon, I. S. (2020). Robust reference-based super-resolution with similarity-aware deformable convolution. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations. Sun, L., & Hays, J. (2012). Super-resolution from internet-scale scene matching. 2012 IEEE International conference on computational photography (ICCP), Tatem, A. J., Lewis, H. G., Atkinson, P. M., & Nixon, M. S. (2001). Super-resolution target identification from remotely sensed images using a Hopfield neural network. IEEE Transactions on Geoscience and Remote Sensing, 39(4), 781-796. Wang, X., Girshick, R., Gupta, A., & He, K. (2018). Non-local neural networks. Proceedings of the IEEE conference on computer vision and pattern recognition, Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., & Change Loy, C. (2018). Esrgan: Enhanced super-resolution generative adversarial networks. Proceedings of the European conference on computer vision (ECCV) workshops, Wang, Y., Liu, Y., Heidrich, W., & Dai, Q. (2016). The light field attachment: Turning a dslr into a light field camera using a low budget camera ring. IEEE transactions on visualization and computer graphics, 23(10), 2357-2364. Wu, J., Wang, H., Wang, X., & Zhang, Y. (2015). A novel light field super-resolution framework based on hybrid imaging system. 2015 Visual Communications and Image Processing (VCIP), Xia, B., Tian, Y., Hang, Y., Yang, W., Liao, Q., & Zhou, J. (2022). Coarse-to-fine embedded patchmatch and multi-scale dynamic aggregation for reference-based super-resolution. Proceedings of the AAAI Conference on Artificial Intelligence, Xie, Y., Xiao, J., Sun, M., Yao, C., & Huang, K. (2020). Feature representation matters: End-to-end learning for reference-based image super-resolution. Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV, Yang, F., Yang, H., Fu, J., Lu, H., & Guo, B. (2020). Learning texture transformer network for image super-resolution. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Yang, J., Wright, J., Huang, T., & Ma, Y. (2008). Image super-resolution as sparse representation of raw image patches. 2008 IEEE conference on computer vision and pattern recognition, Yang, J., Wright, J., Huang, T. S., & Ma, Y. (2010). Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 19(11), 2861-2873. Zhang, M., & Ling, Q. (2020). Supervised pixel-wise GAN for face super-resolution. IEEE Transactions on Multimedia, 23, 1938-1950. Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, O. (2018). The unreasonable effectiveness of deep features as a perceptual metric. Proceedings of the IEEE conference on computer vision and pattern recognition, Zhang, W., Liu, Y., Dong, C., & Qiao, Y. (2019). Ranksrgan: Generative adversarial networks with ranker for image super-resolution. Proceedings of the IEEE/CVF International Conference on Computer Vision, Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., & Fu, Y. (2018). Image super-resolution using very deep residual channel attention networks. Proceedings of the European conference on computer vision (ECCV), Zhang, Z., Wang, Z., Lin, Z., & Qi, H. (2019). Image super-resolution by neural texture transfer. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Zheng, H., Guo, M., Wang, H., Liu, Y., & Fang, L. (2017). Combining exemplar-based approach and learning-based approach for light field super-resolution using a hybrid imaging system. Proceedings of the IEEE international conference on computer vision workshops, Zheng, H., Ji, M., Han, L., Xu, Z., Wang, H., Liu, Y., & Fang, L. (2017). Learning Cross-scale Correspondence and Patch-based Synthesis for Reference-based Super-Resolution. BMVC, Zheng, H., Ji, M., Wang, H., Liu, Y., & Fang, L. (2018). Crossnet: An end-to-end reference-based super resolution network using cross-scale warping. Proceedings of the European conference on computer vision (ECCV),
|