跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 23:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳宇翔
研究生(外文):WU,YU-HSIANG
論文名稱:大氣壓氦氣電漿噴流應用紫外線吸收光譜量測OH粒子濃度
論文名稱(外文):Measurement of OH Particle Concentration by Ultraviolet Absorption Spectroscopy in Atmospheric Pressure Helium Plasma Jet Flow
指導教授:林昆模
指導教授(外文):LIN,KUN-MO
口試委員:林昱辰黃正良
口試委員(外文):LIN,YU-CHENHUANG,CHENG-LIANG
口試日期:2023-07-20
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:66
中文關鍵詞:大氣氦氣電漿噴流OH 粒子濃度紫外光吸收光譜阿貝爾轉換
外文關鍵詞:Atmospheric helium plasma jetOH particle concentrationultraviolet absorption spectrumAbel InversionICCDGFM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
近年來電漿噴流因為具有噴射面積小,可以進行比較精準的局部處理以及會產生許多活性粒子可以進行氧化還原或是殺菌、促使細胞活化的優點,所以在表面處理及生醫領域得到廣泛的運用。其中電漿產生的OH粒子有促進傷口癒合以及誘導癌細胞凋亡的特色,因此OH粒子為主要的研究項目之一。本研究使用氦氣電漿噴流,反應器由一玻璃管構成,玻璃管下方放置裝有純水的培養皿,提供生成OH的水氣來源以提高OH的產量。另外我們使用UV-LED配合高解析度的光譜儀來量測通過水面上方1 mm處電漿反應區的OH粒子的吸收光譜,進而得出OH粒子的吸收率,並利用比爾¬¬-朗伯定律 (Beer-Lambert law) 計算OH粒子的絕對濃度。由於我們使用的反應器是由圓形玻璃管構成,須配合Abel Inversion以計算得出徑向OH粒子濃度分布。本研究也進行了OH發射光譜的量測,量測到的發射光譜在X軸方向的徑向強度分布與OH粒子吸收率及OH粒子絕對濃度分布呈現相同趨勢。測量到在玻璃管中心處OH粒子絕對濃度達到2.2×1019 m-3。本研究也使用ICCD (intensified CCD)相機探討電漿離開玻璃管口後的強度及動態分布,進而討論強度分布與OH濃度的關聯。結果顯示越往管中心處電漿強度越強,OH粒子的濃度也隨之升高。另外使用CFD-ACE軟體去建立反應器的氣體流體模型去模擬實際狀況下的水面濕氣、氦氣及溫度分布。氦氣濃度最高的區域約等於電漿噴流產生的範圍,而玻璃管中心的水氣為0.14 %。比較濕度分布、OH粒子濃度、ICCD結果後可以發現越往玻璃管壁處濕度會越高,但電漿強度會減弱以至於OH粒子濃度不會隨之提升。
In recent years, plasma jets have been widely used in surface treatment and biomedicine fields because of their small spray area, relatively precise local treatment, and the generation of many active particles that can be used for oxidation, reduction, sterilization, and cell activation. Among them, OH particles generated by plasma have the characteristics of promoting wound healing and inducing apoptosis of cancer cells, so OH particles are one of the main research projects. This study uses a helium plasma jet. The reactor consisted of a glass tube, and a petri dish filled with pure water was placed under the glass tube to provide a source of water vapor to generate OH to increase the production of OH. In addition, we use UV-LED with a high-resolution spectrometer to measure the intensity of ultraviolet light and the intensity of pure ultraviolet light passing through the plasma reaction zone 1 mm above the water surface, then obtain the absorption rate of OH particles, and use Beer-Lambert's law calculates the absolute concentration of OH particles. Since the reactor we use is composed of a circular glass tube, it is necessary to make use of Abel Inversion to calculate the OH concentration in the radial direction. In this study, the measurement of the OH emission spectrum was also carried out. The radial intensity distribution of the measured emission spectrum showed the same trend as the absorption rate and the absolute concentration distribution of OH species. It is measured that the absolute concentration of OH particles in the center of the glass tube reaches 2.2×1019 m-3. This study also uses an ICCD (intensified CCD) camera to investigate the intensity and dynamic distribution of the plasma after it leaves the glass nozzle and then discusses the relationship between the intensity distribution and the OH concentration. The results show that the plasma intensity becomes stronger toward the center of the tube, and the concentration of OH particles increases accordingly. In addition, the CFD-ACE software is used to establish the gas flow model (GFM) of the reactor to simulate the water surface moisture, helium, and temperature distribution under actual conditions. The area with the highest helium concentration is approximately equal to the range generated by the plasma jet, while the water vapor in the center of the glass tube is 0.14%. Comparing the humidity distribution, OH particle concentration, and ICCD results, it can be found that the closer to the glass tube wall, the higher the humidity will be, but the plasma intensity will weaken so that the OH particle concentration will not increase accordingly.
摘要
目錄
圖目錄
第一章 研究背景及目標
1-1研究背景
1-2研究動機
1-3文獻回顧
1-4研究目的
第二章 研究流程及方法
2-1實驗架構
2-2電漿反應模組設計
2-3 UVAS
2-4 量測方法
2-4-1 OH濃度計算
2-4-2 Abel Inversion
2-4-3 電漿反應區域功率計算
2-5 氣體流體模型
2-5-1 2D軸對稱模型
2-5-2 統御方程式
2-5-3 邊界條件設定
2-5-4 離散化與數值算法
第三章 結果
3-1電壓電流量測結果
3-2 OH發射光譜強度
3-3 OH吸收光譜強度比較
3-4 Abel Inversion轉換結果
3-5 OH粒子濃度分布
3-6 ICCD拍攝結果
3-7 GFM熱流場模擬結果
3-8 GFM水面濕度模擬結果
3-9 電漿強度、濕度分布及OH粒子濃度分布結果討論
第四章 結論
第五章 未來工作
參考文獻
附錄一
附錄二


W. Ensinger, "Semiconductor processing by plasma immersion ion implantation," Materials Science & Engineering A: Structural Materials: Properties," Microstructure and Processing, 1998, 253, 258-268.
P. L. G. Ventzek S. Rauf, P.J. Stout, D. Zhang, W. Dauksher, E. Hall, "Application and simulation of low temperature plasma processes in semiconductor manufacturing," Applied Surface Science, 2002, 192, 201-215.
D. J. Economou, "Pulsed plasma etching for semiconductor manufacturing," Journal of Physics D: Applied Physics, 2014, 47, 303001.
B. N. Nobrega, W. Ristow, R. Machado, " MIM processing and plasma sintering of nickel base superalloys for aerospace and automotive applications," Powder Metallurgy, 2008, 51, 107-110.
S. J. Scott, C. C. Figgures, D. G. Dixon, " Dielectric barrier discharge processing of aerospace materials," Plasma Sources Science and Technology, 2004, 13, 461-465.
Y. Chen, L. M. He, L. Fei, J. Deng, J. P. Lei, H. Yu, "Experimental study of dielectric barrier discharge plasmaassisted combustion in an aero-engine combustor," Aero Sci Technol, 2020, 105765.
S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, J. Azizkhan-Clifford, "Effects of non-thermal plasma on mammalian cells," Plos One, 2011, 6, 16270.
S. Kubinova, K. Zaviskova, L. Uherkova, V. Zablotskii, O. Churpita, O. Lunov, A. Dejneka, "Non-thermal air plasma promotes the healing of acute skin wounds in rats," Scientific Reports, 2017, 7, 45183.
T. Bell, Y. Sun, A. Suhadi, "Environmental and technical aspects of plasma nitrocarburizing," Vacuum, 2000, 59, 14-23.
E. Tatarova, N. Bundaleska, J. P. Sarrette, C. M. Ferreira, "Plasmas for environmental issues: from hydrogen production to 2D materials assembly," Plasma Sources Science and Technology, 2014, 23, 063002.
F. Feng, L. L. Ye, J. Liu, K. P. Yan, "Non-thermal plasma generation by using back corona discharge on catalyst," Journal of Electrostatics. 2013, 71, 179-184.
G. Neretti, M. Ricco, "Self-tuning high-voltage and high-frequency sinusoidal power supply for dielectric barrier discharge plasma generation," Electronics, 2019, 8, 1137.
S. L. Chen, S. H. Wang, Y. B. Wang, B. H. Guo, G. Q. Li, Z. S. Chang, and G. J. Zhang, " Surface modification of epoxy resin using He/CF4 atmospheric pressure plasma jet for flashover withstanding characteristics improvement in vacuum," Applied Surface Science, 2017, 414, 107–113.
J. Winter, R. Brandenburg, K. D. Weltmann, "Atmospheric pressure plasma jets: an overview of devices and new directions," Plasma Sources Science and Technology, 2015, 24, 064001.
J. Y. Kim, J. Ballato, P. Foy, T. Hawkins, Y. Z. Wei, J. H. Li, S. O. Kim, "Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma," Biosensors & Bioelectronics, 2011, 28, 333-338.
X. L. Strudwick, J. D. Whittle, A. J. Cowin, L. E. Smith, "Plasma-Functionalised Dressings for Enhanced Wound Healing," International Journal of Molecular Sciences, 2023, 24, 797.
I. Yagi, R. Ono, T. Oda, K. Takaki, "Two-dimensional LIF measurements of humidity and OH density resulting from evaporated water from a wet surface in plasma for medical use," Plasma Sources Science and Technology, 2015, 24, 015002.
Y. F. Yue, V. S. S. K. Kondeti, N. Sadeghi, P. J. Bruggeman, "Plasma dynamics, instabilities and OH generation in a pulsed atmospheric pressure plasma with liquid cathode: a diagnostic study," Plasma Sources Science and Technology, 2022, 31, 025008.
Y. J. Du, G. Nayak, G. Oinuma, Z. M. Peng, P. J. Bruggeman, "Effect of water vapor on plasma morphology, OH and H2O2 production in He and Ar atmospheric pressure dielectric barrier discharges," J. Phys. D: Appl. Phys., 2017, 50, 145201.
Q. Xiong, Z. Q. Yang, P. J. Bruggeman, "Absolute OH density measurements in an atmospheric pressure DC glow discharge with water electrode by broadband UV absorption spectroscopy," J. Phys. D: Appl. Phys., 2015, 48, 424008.
L. Invernizzi, N. Sadeghi, F. P. Sainct, P. Guillot, "Study of He+0.2% O-2 plasma jet impinging on liquid surface from He(23S1) metastable atoms density measurements," Plasma Sources Science and Technology, 2022, 31, 035002.
R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of O3, NOx, HOx, and SOx species," Atmospheric Chemistry and Physics, 2004, 4, 1461-1738.
D. R. Boreham, J. A. Dolling, S. R. Maves, S. Miller, D. P. Morrison, R. E. J. Mitchel, "Heat-induced thermal tolerance and radiation resistance to apoptosis in human lymphocytes," Biochemistry and Cell Biology, 1997, 75, 393-397.
S. A. Norberg, W. Tian, E. Johnsen, M. J. Kushner, "Atmospheric pressure plasma jets interacting with liquid covered tissue: touching and not-touching the liquid," J. Phys. D: Appl. Phys., 2014, 47, 475203.
G. Dilecce, P. F. Ambrico, M. Simek, S. De Benedictis, "OH density measurement by time-resolved broadband absorption spectroscopy in an Ar–H2O dielectric barrier discharge," J. Phys. D: Appl. Phys., 2012, 45, 125203.
H. P. Dorn, R. Neuroth, A. Hofzumahaus, "Investigation of OH absorption cross sections of rotational transitions in the A^2 Σ^+, ν" ‘"=0←" " "X" ^"2 " Π, ν" ‘’"=0 band under atmospheric conditions: implications for tropospheric long-path absorption measurements," Journal of Geophysical Research, 1995, 100, 7397-7409.
W. He, G. Mauer, R. Vassen, "Excitation temperature and constituent concentration profiles of the plasma jet under plasma spray-PVD conditions," Plasma Chemistry and Plasma Processing, 2017, 37, 1293-1311.
D. E. Ashpis, M. C. Laun, E. L. Griebeleer, "Progress toward accurate measurements of power consumptions of DBD plasma actuators," American Institute of Aeronautics and Astronautics paper, 2012, 823.
CFD-ACE+ 2015 Module manual, ESI CFD Inc., Version 2015.
G. Mauer, A. Hospach, R. Vassen, "Process development and coating characteristics of plasma spray-PVD," Surface & Coatings Technology, 2023, 22, 83–89.
Y. J. Du, Z. M. Peng, Y. J. Ding, N. Sadeghi, P. J. Bruggeman, "Is it possible to deduce the ground state OH density from relative optical emission intensities of the OH(A2Σ+-X2Πi) transition in atmospheric pressure non-equilibrium plasmas?—An analysis of self-absorption," Plasma Sources Science and Technology, 2016, 25, 04LT02.
C. J. Wang, W. Wu, "Simultaneous measurements of OH(A) and OH(X) radicals in microwave plasma jet-assisted combustion of methane/air mixtures around the lean-burn limit using optical emission spectroscopy and cavity ringdown spectroscopy," J. Phys. D: Appl. Phys., 2013, 46, 464008.
歐家均, "大氣壓氦氣/水氣介電質電漿應用紫外線吸收光譜量測氫氧根粒子濃度," 國立中正大學機械工程學系碩士論文, 台灣, 2021.
S. Zhang, "Atmospheric pressure RF plasma jet: characterization of flow and O2 chemistry," Ph.D. Thesis, Eindhoven University of Technology, 2015.
Pretzler G, "A new method for numerical Abel-inversion," Z Naturforsch A Phys Sci, 1991, 46, 639–641.
C. Killer, "Abel Inversion Algorithm," https://cn.mathworks.com/matlabcentral/ fileexchange/43639-abel-inversion-algorithm," Accessed 20 Mar 2016.
J. Winter, J. Santos Sousa, N. Sadeghi, A. Schmidt-Bleker, S. Reuter, V. Puech, "The spatio-temporal distribution of He(23S1) metastable atoms in a MHz-driven helium plasma jet is influenced by the oxygen/nitrogen ratio of the surrounding atmosphere," Plasma Sources Science and Technology, 2015, 24, 025105.
K. Niemi, J. Waskoenig, N. Sadeghi, T. Gans, D. O'Connell, "The role of helium metastable states in radio-frequency driven helium-oxygen atmospheric pressure plasma jets: measurement and numerical simulation," Plasma Sources Science and Technology, 2011, 20, 055005.
C. R. Chu, M. H. Li, Y. Y. Chen, "A wind tunnel experiment on the evaporation rate of Class A evaporation pan," Journal of Hydrology, 2010, 381, 221-224.
S. A. Norberg, E. Johnsen, M. J. Kushner, "Helium atmospheric pressure plasma jets interacting with wet cells: delivery of electric fields," J. Phys. D: Appl. Phys., 2016, 49, 185201.
J. Y. Lin, C. L. Huang, K. M. Lin, C. C. Ou, Y. H. Wu, "Characterization of OH species in kHz He/H2O atmospheric pressure dielectric barrier discharges," Plasma Sources Science and Technology, 2022, 31, 075005.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top