跳到主要內容

臺灣博碩士論文加值系統

(44.192.44.30) 您好!臺灣時間:2024/07/25 08:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳佳晏
研究生(外文):WU, CHIA-YEN
論文名稱:嘉義地區土壤之稀土元素及鉛同位素示踪研究
論文名稱(外文):Study on Rare Earth Elements and Lead Isotopes as Tracers in Soil of Chiayi Region
指導教授:呂學諭
指導教授(外文):LU, HSUEH-YU
口試委員:趙鴻椿陳文福
口試委員(外文):CHAO, HUNG-CHUNCHEN, WEN-FU
口試日期:2023-06-21
學位類別:碩士
校院名稱:國立中正大學
系所名稱:地球與環境科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:98
中文關鍵詞:工業區重金屬連續萃取法鉛同位素稀土元素示蹤劑
外文關鍵詞:Heavy Metal ContaminationSequential ExtractionLead isotopesRare Earth ElementsNatural Tracers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
土壤為顯現岩石圈與生物圈互動的重要方式之一,但近年來隨著工業快速發展,使土壤日益受到嚴重的重金屬污染,其中嘉義縣屬臺灣中南部工業發展較為迅速之區域,因此本研究以嘉義縣水上鄉某處廢棄工廠之土壤作為主題,透過連續萃取法將不同型態之重金屬分段萃取,以探討土壤中地球化學特性,從鉛同位素比值之線性趨勢研析鉛來源,並藉由EF值評估人類活動對元素濃度之貢獻程度,再利用主成分分析討論對樣本影響程度較明顯之因子,另探討稀土元素圖譜,以示蹤元素潛在之來源及移動途徑。
從主要元素分析結果得知,鹼金屬與鹼土金屬主要存在於可交換相及碳酸鹽相,Fe、Mn、Al及重金屬元素大多以鐵錳氧化物之形式存在於礦物中,並在深部土壤2-D3、3-D3、3-D4中具有較高之濃度,推測與排放源及淋溶作用相關。
鉛同位素分析結果說明研究地點呈現典型二端元成分的混合模式,淺層土壤之鉛同位素比值受到臺灣石油燃料之影響較深,使208Pb/206Pb及207Pb/206Pb有逐漸向無鉛汽油靠近的趨勢。
由主成分分析結果顯示,多數元素於三種相態中皆具有良好之解釋性,可區分距離廠區較近及較遠的樣本之特性,並於可還原相推測由廠區所貢獻之來源為主要影響因子。
以Q-ICP-MS分析稀土元素僅在可還原相高於偵測極限,可還原相輕微之Eu正異常主要受長石礦物影響、Gd正異常可能與臺灣醫學廣泛使用之磁共振成像藥劑有關,而距離工廠排放口較近的樣本受到廢水排放之影響,因此La/Lu顯示靠近廢棄工廠之土壤其稀土元素主要為液相來源,並從稀土元素圖譜中觀察深部土壤具有較高的Ce正異常及重稀土元素富集之現象;與深層沉積物對比之結果顯示,本研究多數之土壤樣本未受到明顯外在來源之影響使其圖譜與地質背景值相似。
Soil is one of the keys to reveal the interactions between lithosphere and biosphere. However, with rapid industrial development in recent years, the environment is suffering with increasingly severe heavy metal pollution in soil. Thus, this study focuses on soil from an abandoned factory site in Shuishang, Chiayi, Taiwan. The geochemical properties of the soil are explored using a sequential extraction protocol. Lead isotopic ratios were analyzed to trace the sources of lead, while the enrichment factor (EF) values assess the contribution of human activities. Additionally, principal component analysis (PCA) was used to demonstrate the factors that significantly influence the soil samples, and rare earth elements (REEs) patterns were explored to determine potential sources and migration pathways of trace elements.
According to the results of the major elements, elements of groups IA and IIA are mainly found in the exchangeable and carbonate-bound fractions, while Fe, Mn, Al, and heavy metals are primarily extracted from the minerals of Fe-Mn oxides.
The lead isotopic ratios of soil in shallow depth are significantly influenced by Taiwanese petroleum fuels, leading to a gradual shift towards unleaded gasoline, which is evidenced by the trend towards lower 208Pb/206Pb and 207Pb/206Pb ratios.
PCA allows for categorizing soil samples into groups inside the factory and outside the factory.
REEs were only detectable in the reducible phase with Q-ICP-MS. The slight positive anomaly of Eu is mainly influenced by feldspar minerals, while the positive anomaly of Gd may be related to the widespread medical use of MRI in Taiwan. In addition, La/Lu ratios indicate that REEs of soil in the abandoned factory primarily originate from a liquid source. Moreover, the REE patterns show that deeper soil exhibits higher positive anomalies of Ce and enrichment of heavy rare earth elements. In this study, in general, the REE contents of most soil samples is similar to the geological background.
致謝 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 VIII

第一章 緒論 1
1.1研究動機與目的 1
1.2研究背景 3
1.2.1地理條件 3
1.3前人研究 5
1.3.1稀土元素之特性及應用 5
1.3.2鉛同位素之特性及應用 7

第二章 研究方法 9
2.1研究區域與樣本收集 9
2.2實驗程序 10
2.2.1連續萃取法 10
2.2.2萃取流程與步驟 12
2.3資料分析 14
2.3.1主成分分析 14
2.3.2稀土元素分析 16
2.3.3鉛同位素分析 18
2.3.4微量元素分析 23
2.4分析儀器與設備 24
2.4.1感應耦合電漿質譜儀 ICP-MS 24
2.4.2感應耦合電漿發射光譜儀 ICP-OES 28

第三章 結果與討論 31
3.1常見元素分析結果 31
3.1.1陽離子濃度分析 31
3.1.2重金屬濃度分析 33
3.2鉛同位素分析結果 41
3.3主成分分析結果 49
3.3.1可交換相及碳酸鹽相分析結果 49
3.3.2可還原相分析結果 52
3.3.3可氧化相分析結果 55
3.4常見元素之富集因子分析 58
3.5稀土元素分析結果 61

第四章 結論 69
參考文獻 71
中文文獻 71
英文文獻 72
附錄 76
王博賢(2011),台灣及香港海域珊瑚骨骼季節至百年尺度氣候與環境記錄,國立成功大學地球與環境科學系碩博士班博士論文,台南市。
何念祖、孟賜福(1987),植物營養原理,上海科學技術出版社,共438頁。
柯淳涵(2015),植生復育重金屬污染土壤及其生命周期評估期末報告,行政院環境保護署專題研究計畫期末報告,共102頁。
徐子媛(2020),海相沉積物中砷含量變化之機制研究:嘉南平原之三股岩芯為例,國立中正大學地球與環境科學研究所碩士論文,嘉義縣。
張憲卿編(2008),五萬分之一臺灣地質圖說明書-嘉義,經濟部中央地質調查所出版,共81頁。
經濟部中央地質調查所(2023),地質資料整合查詢https://gis3.moeacgs.gov.tw/gwh/gsb97-1/sys8/t3/index1.cfm
經濟部水利署(2023)。水利地理資訊服務平台https://gic.wra.gov.tw/Gis/Map
經濟部水利署第五河川局(2023),八掌溪水系https://www.wra05.gov.tw/cp.aspx?n=11444
賴允傑、 莊珮嘉、 李依庭、洪英修、黃泰祥、 陳慎德、許正一、 蔡呈奇、 余炳盛、 陳尊賢(2018),台灣土壤重金屬背景濃度之建立及探討,土壤及地下水污染整治,第5卷第3期,143-162頁。

Alloway, B. J. (1995). Soil Processes and Behavior of Heavy Metals. In B. J. Alloway (Ed.), Heavy Metals in Soils. Blackie Academic and Professional Publication, 368. https://doi.org/10.1007/978-94-011-1344-1
Ault, W. U., Senechal, R. G., & Erlebach, W. E. (1970). Isotopic composition as a natural tracer of lead in the environment. Environmental Science & Technology, 4(4), 305–313. https://doi.org/10.1021/es60039a001
Bakshi, S., Banik, C., & He, Z. (2018). The impact of heavy metal contamination on soil health. In Managing soil health for sustainable agriculture (Vol. 2, pp. 63–95). https://doi.org/10.19103/as.2017.0033.20
Barbieri, M. (2016a). The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. Journal of Geology & Geophysics, 5(1). https://doi.org/10.4172/2381-8719.1000237
Barbieri, M. (2016b). The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. Journal of Geology & Geophysics, 5(1). https://doi.org/10.4172/2381-8719.1000237
Bau, M., & Dulski, P. (1996). Anthropogenic origin of positive gadolinium anomalies in river waters. Earth and Planetary Science Letters, 143(1–4), 245–255. https://doi.org/10.1016/0012-821X(96)00127-6
Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. In Heliyon (Vol. 6, Issue 9). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2020.e04691
Burdige, D. J. (1993). The biogeochemistry of manganese and iron reduction in marine sediments. Earth-Science Reviews, 35(3), 249–284. https://doi.org/10.1016/0012-8252(93)90040-E
CHESTER, R., & STONER, J. H. (1973). Pb in Particulates from the Lower Atmosphere of the Eastern Atlantic. Nature, 245(5419), 27–28. https://doi.org/10.1038/245027b0
Choi, M. S., Yi, H. Il, Yang, S. Y., Lee, C. B., & Cha, H. J. (2007). Identification of Pb sources in Yellow Sea sediments using stable Pb isotope ratios. Marine Chemistry, 107(2), 255–274. https://doi.org/10.1016/j.marchem.2007.07.008
Chow, T. J., & Earl, J. L. (1972). Lead Isotopes in North American Coals. Science, 176(4034), 510–511. https://doi.org/10.1126/science.176.4034.510
Chow, T. J., & Johnstone, M. S. (1965). Lead Isotopes in Gasoline and Aerosols of Los Angeles Basin, California. Science, 147(3657), 502–503. https://doi.org/10.1126/science.147.3657.502
Eades, L. J., Farmer, J. G., MacKenzie, A. B., Kirika, A., & Bailey-Watts, A. E. (2002). Stable lead isotopic characterisation of the historical record of environmental lead contamination in dated freshwater lake sediment cores from northern and central Scotland. Science of The Total Environment, 292(1–2), 55–67. https://doi.org/10.1016/S0048-9697(02)00026-8
Fernández-Caliani, J. C., & Grantcharova, M. M. (2021). Enrichment and fractionation of rare earth elements in an estuarine marsh soil receiving acid discharges from legacy sulfide mine wastes. Soil Systems, 5(4). https://doi.org/10.3390/soilsystems5040066
Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental solid samples. In Journal of Environmental Monitoring (Vol. 4, Issue 6, pp. 823–857). https://doi.org/10.1039/b207574c
FRISSEL, M. J., & POELSTRA, P. (1964). A THEORETICAL APPROACH TO THE MOVEMENT OF STRONTIUM THROUGH SOILS. Soil Science, 98(4), 274–277. https://doi.org/10.1097/00010694-196410000-00010
García-Miragaya, J., & Sosa, A. M. (1994). Trace metals in Valencia lake (Venezuela) sediments. Water, Air, and Soil Pollution, 77(1–2), 141–150. https://doi.org/10.1007/BF00483054
Henderson, P. (1984). Rare earth element geochemistry. Elsevier.
Huang, Y., Zhang, S., Chen, Y., Wang, L., Long, Z., Hughes, S. S., Ni, S., Cheng, X., Wang, J., Li, T., Wang, R., & Liu, C. (2020). Tracing Pb and Possible Correlated Cd Contamination in Soils by Using Lead Isotopic Compositions. Journal of Hazardous Materials, 385. https://doi.org/10.1016/j.jhazmat.2019.121528
Hu, Z., Haneklaus, S., Sparovek, G., & Schnug, E. (2006). Rare Earth Elements in Soils. Communications in Soil Science and Plant Analysis, 37(9–10), 1381–1420. https://doi.org/10.1080/00103620600628680
Kersten, M., & Forstner, U. (1986). CHEMICAL FRACTIONATION OF HEAVY METALS IN ANOXIC ESTUARINE AND COASTAL SEDIMENTS. In Wat. Sci. Tech (Vol. 18). https://iwaponline.com/wst/article-pdf/18/4-5/121/112304/121.pdf
Khalil, A., Hanich, L., Bannari, A., Zouhri, L., Pourret, O., & Hakkou, R. (2013). Assessment of soil contamination around an abandoned mine in a semi-arid environment using geochemistry and geostatistics: Pre-work of geochemical process modeling with numerical models. Journal of Geochemical Exploration, 125, 117–129. https://doi.org/10.1016/j.gexplo.2012.11.018
Kumar, M., Furumai, H., Kurisu, F., & Kasuga, I. (2013). Tracing source and distribution of heavy metals in road dust, soil and soakaway sediment through speciation and isotopic fingerprinting. Geoderma, 211–212, 8–17. https://doi.org/10.1016/j.geoderma.2013.07.004
Lancellotti, L., Sighinolfi, S., Marchetti, A., & Tassi, L. (2020). Use of lead isotopic ratios as geographical tracer for Lambrusco PDO wines. Molecules, 25(7). https://doi.org/10.3390/molecules25071641
Laveuf, C., & Cornu, S. (2009). A review on the potentiality of Rare Earth Elements to trace pedogenetic processes. In Geoderma (Vol. 154, Issues 1–2, pp. 1–12). https://doi.org/10.1016/j.geoderma.2009.10.002
Liénard, A., Brostaux, Y., & Colinet, G. (2014a). Soil contamination near a former Zn-Pb ore-treatment plant: Evaluation of deterministic factors and spatial structures at the landscape scale. Journal of Geochemical Exploration, 147(PB), 107–116. https://doi.org/10.1016/j.gexplo.2014.07.014
Liénard, A., Brostaux, Y., & Colinet, G. (2014b). Soil contamination near a former Zn-Pb ore-treatment plant: Evaluation of deterministic factors and spatial structures at the landscape scale. Journal of Geochemical Exploration, 147(PB), 107–116. https://doi.org/10.1016/j.gexplo.2014.07.014
Linge, K. L., & Jarvis, K. E. (2009). Quadrupole ICP-MS: Introduction to Instrumentation, Measurement Techniques and Analytical Capabilities. Geostandards and Geoanalytical Research, 33(4), 445–467. https://doi.org/10.1111/j.1751-908X.2009.00039.x
MacRae, N. D., Nesbitt, H. W., & Kronberg, B. I. (1992). Development of a positive Eu anomaly during diagenesis. Earth and Planetary Science Letters, 109(3–4), 585–591. https://doi.org/10.1016/0012-821X(92)90116-D
Martínez-Toledo, Á., Montes-Rocha, A., González-Mille, D. J., Espinosa-Reyes, G., Torres-Dosal, A., Mejia-Saavedra, J. J., & Ilizaliturri-Hernández, C. A. (2017). Evaluation of enzyme activities in long-term polluted soils with mine tailing deposits of San Luis Potosí, México. Journal of Soils and Sediments, 17(2), 364–375. https://doi.org/10.1007/s11368-016-1529-8
Miller, W. P., Martens, D. C., & Zelazny, L. W. (1986). Effect of Sequence in Extraction of Trace Metals from Soils. Soil Science Society of America Journal, 50(3), 598–601. https://doi.org/10.2136/sssaj1986.03615995005000030011x
Millot, R., Allègre, C. J., Gaillardet, J., & Roy, S. (2004). Lead isotopic systematics of major river sediments: A new estimate of the Pb isotopic composition of the Upper Continental Crust. Chemical Geology, 203(1–2), 75–90. https://doi.org/10.1016/j.chemgeo.2003.09.002
Mukai, H., Furuta, N., Fujii, T., Ambe, Y., Sakamoto, K., & Hashimoto, Y. (1993). Characterization of sources of lead in the urban air of Asia using ratios of stable lead isotopes. Environmental Science & Technology, 27(7), 1347–1356. https://doi.org/10.1021/es00044a009
Mukai, H., Tanaka, A., Fujii, T., Zeng, Y., Hong, Y., Tang, J., Guo, S., Xue, H., Sun, Z., Zhou, J., Xue, D., Zhao, J., Zhai, G., Gu, J., & Zhai, P. (2001). Regional characteristics of sulfur and lead isotope ratios in the atmosphere at several Chinese urban sites. Environmental Science and Technology, 35(6), 1064–1071. https://doi.org/10.1021/es001399u
Patterson, C., Tilton, G., & Inghram, M. (1955). Age of the Earth. Science, 121(3134), 69–75. https://doi.org/10.1126/science.121.3134.69
Philomene Nyiramigisha, Komariah, & Sajidan. (2021). Harmful Impacts of Heavy Metal Contamination in the Soil and Crops Grown Around Dumpsites. Reviews in Agricultural Science, 9, 271–282.
Piper, D. Z., & Bau, M. (2013). Normalized Rare Earth Elements in Water, Sediments, and Wine: Identifying Sources and Environmental Redox Conditions. American Journal of Analytical Chemistry, 04(10), 69–83. https://doi.org/10.4236/ajac.2013.410a1009
Ramos, S. J., Dinali, G. S., Oliveira, C., Martins, G. C., Moreira, C. G., Siqueira, J. O., & Guilherme, L. R. G. (2016). Rare Earth Elements in the Soil Environment. Current Pollution Reports, 2(1), 28–50. https://doi.org/10.1007/s40726-016-0026-4
Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., & Quevauviller, Ph. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1(1), 57–61. https://doi.org/10.1039/a807854h
Reimann, C., & De Caritat, P. (2000). Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environmental Science and Technology, 34(24), 5084–5091. https://doi.org/10.1021/es001339o
Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751–767. https://doi.org/10.1107/S0567739476001551
Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851. https://doi.org/10.1021/ac50043a017
Tokalioǧlu, Ş., Kartal, Ş., & Elçi, L. (2000). Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure. Analytica Chimica Acta, 413(1–2), 33–40. https://doi.org/10.1016/S0003-2670(00)00726-1
Towell, D. G., Winchester, J. W., & Spirn, V. (1965). Rare-Earth Distributions in Some Rocks and Associated Minerals of the Batholith of Southern California. In JOURNAL OF GEOPHYSICAL RESEARCH (Vol. 70, Issue 14).
Vollprecht, D., Riegler, C., Ahr, F., Stuhlpfarrer, S., & Wellacher, M. (2020). Sequential chemical extraction and mineralogical bonding of metals from Styrian soils. International Journal of Environmental Science and Technology, 17(8), 3663–3676. https://doi.org/10.1007/s13762-020-02694-0
Wang, L., & Liang, T. (2015). Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China. Scientific Reports, 5. https://doi.org/10.1038/srep12483
White, W. M., Albarede, F., & Telouk, P. (2000). High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. In Chemical Geology (Vol. 167). www.elsevier.comrlocaterchemgeo
Wood, S. A. (1996). The role of humic substances in the transport and fixation of metals of economic interest (Au, Pt, Pd, U, V). Ore Geology Reviews, 11(1–3), 1–31. https://doi.org/10.1016/0169-1368(95)00013-5
Yao, P. H., Shyu, G. S., Chang, Y. F., Chou, Y. C., Shen, C. C., Chou, C. S., & Chang, T. K. (2015). Lead isotope characterization of petroleum fuels in Taipei, Taiwan. International Journal of Environmental Research and Public Health, 12(5), 4602–4616. https://doi.org/10.3390/ijerph120504602
Yu, E., Liu, H., Dinis, F., Zhang, Q., Jing, P., Liu, F., & Ju, X. (2022). Contamination Evaluation and Source Analysis of Heavy Metals in Karst Soil Using UNMIX Model and Pb-Cd Isotopes. International Journal of Environmental Research and Public Health, 19(19), 12478. https://doi.org/10.3390/ijerph191912478
Yu, Y., Li, Y., Li, B., Shen, Z., & Stenstrom, M. K. (2016). Metal enrichment and lead isotope analysis for source apportionment in the urban dust and rural surface soil. Environmental Pollution, 216, 764–772. https://doi.org/10.1016/j.envpol.2016.06.046


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊