跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/16 02:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李柏勳
研究生(外文):LEE, PO-HSUN
論文名稱:湖泊沉積物之稀土元素及鉛同位素研究:台灣花蓮鯉魚潭
論文名稱(外文):Study on Rare Earth Elements and Lead Isotopes in Lake Sediments of Liyu Lake, Hualien, Taiwan
指導教授:呂學諭
指導教授(外文):Lu, Hsueh-Yu
口試委員:呂學諭趙鴻椿陳文福
口試委員(外文):Lu, Hsueh-YuChao, Hung-ChunChen, Wen-Fu
口試日期:2023-07-27
學位類別:碩士
校院名稱:國立中正大學
系所名稱:地球與環境科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:118
中文關鍵詞:氣候變遷鯉魚潭連續萃取法主成分分析稀土元素鉛同位素
外文關鍵詞:Climate changeLiyu lakeSequential ExtractionPrincipal Component AnalysisRare Earth ElementsLead isotopes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:67
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
湖泊沉積物的地球化學性質是重建百年尺度地球環境變遷的可行且優良的方法之一,因其具有樣本容易取得、紀錄年代長久、環境穩定安逸、反映區域特徵等特點,使之成為了分析環境變化的理想材料。
故本研究選擇採集位於台灣花蓮縣壽豐鄉的鯉魚潭底泥沉積物岩芯作為研究樣本,其中最深的樣本年代可追溯到大約 1020 年前。所有樣本皆經由連續萃取法將其分作可交換與碳酸鹽結合相、鐵錳氧化物結合相、有機物結合相三種主要分析相態,並以感應耦合電漿放射光譜儀和感應耦合電漿質譜儀測定不同相態中總計 39 種的元素含量。此外,為了示蹤湖泊沉積物來源,本研究另外測量 208Pb、207Pb、206Pb 和 204Pb 四種鉛同位素含量以進行鉛同位素示蹤分析。最後,本研究將測得之元素含量以多種方式進行分析和討論,以此重建過去千年鯉魚潭地區環境生態變遷趨勢。
分析結果顯示,從近代至約 440 年前,湖泊沉積物中可能擁有含量較高的石英長石類礦物,且由於降雨量的增加,氣候溫暖潮溼,沉積物環境更趨於還原狀態,土壤和水體環境的 pH 值也受其影響而降低,並伴隨著腐植質含量的增加;相對的,過去約 560 至 1020 年前,湖泊沉積物中可能擁有含量較高的黏土礦物存在,由於環境較為寒冷乾燥,湖泊底泥沉積物總體處於氧化且偏鹼性的環境,且也造成腐植質的濃度與含量相對較低。
另外,根據稀土元素分析結果表明,Ce的異常值有隨著樣本深度增加而增加的趨勢,表示過去約 560 至 1020 年前,湖泊沉積物應更偏向氧化環境,與上述分析結果相同,而 Eu 有輕微正異常值,表明本研究所研究的地層中長石礦物的風化作用較為顯著。而從 HREE 富集現象能夠推斷地層中碳酸鹽礦物普遍存在,不過同時也發現約 1020 年前至 670 年前,有重稀土元素虧損的現象,推論此時期的化學風化作用程度較低。
最後,鉛同位素分析結果表明鯉魚潭沉積物主要來源於當地天然岩石的自然風化,但其中在 6 個較接近現代的淺層樣本中,發現其沉積物來源有混合來自人為鉛源的大氣氣溶膠,這表明台灣 20 世紀初期以來工業和採礦業快速發展對台灣的地球化學環境的變遷產生了顯著的影響。
Geochemical properties of sediment deposits from lake is one of the feasible and excellent methods for reconstructing the environmental changes on a centennial scale. This approach has advantages of easy sample accessibility, long-term chronological records, environmental stability, and representation of regional geology, an ideal material for analyzing environmental migration.
A sediment core from Liyu Lake in Shoufeng Township, Hualien County, Taiwan, it is conducted with geochemical analysis in this study. The deepest sample in the core dates back approximately 1020 years. All samples were processed with continuous extraction to separate them into three primary phases: exchangeable and carbonate phases, iron manganese oxide phase, and organic matter phase. A total of 40 chemical components in these phases were measured using inductively coupled plasma optical emission spectroscopy and inductively coupled plasma mass spectrometry. Additionally, to trace the source of lake sediment, lead isotopes was conducted by measuring 208Pb, 207Pb, 206Pb, and 204Pb.
The analytical results reveal that from the modern era to around 440 years ago, the lake sediments may have a high content of quartz feldspar minerals, and the sediment environment tends towards a more reducing and lower pH state, the humus content also increased, due to higher precipitation. In contrast, around 560 to 1020 years ago, lake sediments had a relatively high content of clay minerals. And because of the colder and drier conditions, the lake sediment environment was predominantly oxidizing and alkaline. This relatively lower concentrations and content of humic substances is confirmed with in this study.
The rare earth elements indicate an increasing of the Ce anomaly with sample depth, which suggests a shift towards oxidizing conditions in the period of 560 to 1020 years ago. A slight positive Eu anomaly suggests that the weathering of feldspar minerals in the studied strata is significant. Additionally, the enrichment of heavy rare earth elements illustrate the prevalence of carbonate minerals in the lake sediment. However, an absence of heavy rare earth elements from sediments around 1020 to 670 years ago suggests weaker chemical weathering during this period.
The results of lead isotope analysis indicates that the sediment in Liyu Lake primarily originates from natural weathering of local rocks. However, among the shallow samples, six are closer to modern times and exhibit a mixture of anthropogenic lead sources from atmospheric aerosols. The rapid industrial have significant effect on geochemical environments activities in Taiwan since the early 20th century.
誌謝...i
中文摘要...ii
Abstract...iii
目錄...v
圖目錄...vii
表目錄...ix
第一章 緒論...1
1.1 前言...1
1.2 研究動機與目的...2
1.3 文獻探討...3
1.3.1 大南澳片岩地層構造分析...3
1.3.2 水-岩相互作用...4
1.3.3 古土壤之相關研究...6
1.3.4 鯉魚潭之前人研究...7
第二章 研究方法...9
2.1 研究區域和地層分布...9
2.2 岩芯樣本...10
2.2.1 岩芯分樣...10
2.2.2 實驗樣本選取...10
2.3 實驗方法...12
2.3.1 方法介紹...12
2.3.2 實驗程序...14
2.4 實驗分析...19
2.4.1 主要與微量元素分析(Major and Trace Element Analysis)...19
2.4.2 主成分分析(Principal Components Analysis,PCA)...19
2.4.3 稀土元素分析(Rare Earth Element Analysis,REE Analysis)...21
2.4.4 鉛同位素分析(Lead Isotopes Analysis)...22
第三章 儀器介紹...27
3.1 感應耦合電漿放射光譜儀...27
3.1.1 儀器概述...27
3.1.2 儀器分析原理與構造...28
3.2 感應耦合電漿質譜儀...31
3.2.1 儀器概述...31
3.2.2 儀器分析原理與構造...32
第四章 結果與討論...35
4.1 主要與微量元素分析結果...52
4.1.1 可交換與碳酸鹽結合相元素分析結果...52
4.1.2 鐵錳氧化物結合相元素分析結果...53
4.1.3 有機物結合相元素分析結果...54
4.2 主成分分析結果...55
4.2.1 可交換與碳酸鹽結合相...56
4.2.2 鐵錳氧化物結合相...60
4.2.3 有機物結合相...63
4.3 稀土元素分析結果...67
4.3.1 鈰(Ce)異常現象...67
4.3.2 銪(Eu)異常現象...68
4.3.3 釓(Gd)異常現象...68
4.3.4 稀土元素富集...70
4.4 鉛同位素分析結果...72
4.4.1 鉛元素濃度分析...72
4.4.2 鉛同位素分析結果...72
4.4.3 鉛同位素示蹤分析...76
第五章 結論...79
參考文獻...80
附錄一...85
附錄二...88
附錄三...94
附錄四...104
附錄五...107

中文文獻:
王為敏(1997),臺灣澎湖群島近代土壤與古土壤之地球化學與風化化學之比較研究,國立臺灣大學農業化學系博士論文。
王博賢(2011),台灣及香港海域珊瑚骨骼季節至百年尺度氣候與環境記錄,國立成功大學地球科學系博士論文。
江芷儀(2020),台灣中部冶製廠區土壤污染稀土元素與鉛同位素研究,國立中正大學地球與環境科學研究所碩士論文。
江思宏、聶鳳軍、白大明、牛樹銀、王寶德、劉翼飛、劉妍 (2011),內蒙古白音諾爾鉛鋅礦鉛同位素研究,地球科學與環境學報,33(3),230-236。
汪良奇(2011),以湖泊沉積物內花粉與矽藻重建台灣東部晚全新世氣候與環境變遷,國立臺灣大學生命科學院生態學與演化生物學研究所博士論文。
黃婕羽(2018),鉛同位素作為銅冶煉廠的人為重金屬示蹤劑,國立中正大學地球與環境科學研究所碩士論文。
黃奕彰(2015),利用碎屑鋯石鈾鉛定年探討大南澳片岩的地層年代與構造演化,國立臺灣大學地質科學研究所碩士論文。
黃俐綺(2020),沉積環境對砷之遷移性影響研究:以嘉南平原官田岩芯為例,國立中正大學地球與環境科學研究所碩士論文。
張萬益、聶鳳軍、劉妍、江思宏、徐智、胡朋、皮曉東 (2007),內蒙古東烏旗阿爾哈達鉛-鋅-銀礦床硫和鉛同位素研究。
彭渤、唐曉燕、余昌訓、譚長銀、塗湘林、劉茜、徐婧喆 (2011),湘江入湖河段沉積物重金屬污染及其 Pb 同位素地球化學示踪,地質學報,85(2),282-299。
蘇韋宸(2021),嘉義民雄降雨化學成分及鉛同位素分析,國立中正大學地球與環境科學研究所碩士論文。

英文文獻:
Banks, D., Hall, G., Reimann, C., & Siewers, U. (1999). Distribution of rare earth elements in crystalline bedrock groundwaters: Oslo and Bergen regions, Norway. Applied Geochemistry, 14(1), 27-39.
Barbato, R. A., Jones, R. M., Douglas, T. A., Esdale, J., Foley, K., Perkins, E. J., ... & Garcia-Reyero, N. (2022). Alaskan palaeosols in modern times: Deciphering unique microbial diversity within the late-Holocene. The Holocene, 32(9), 909-923.
Bau, M. (1991). Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93(3-4), 219-230.
Bestland, E. A., Retallack, G. J., & Swisher, Iii, C. C. (1997). Stepwise climate change recorded in Eocene-Oligocene paleosol sequences from central Oregon. The Journal of Geology, 105(2), 153-172.
Bińczycki, T., Tyszka, R., & Weber, J. (2014). Heavy isotope analyses in soil sciences: possibilities and challenges. Pol J Environ St, 23, 303-307.
Braun, J. J., Pagel, M., Herbilln, A., & Rosin, C. (1993). Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: a mass balance study. Geochimica et Cosmochimica Acta, 57(18), 4419-4434.
Camuffo, D. (1995). Physical weathering of stones. Science of the total environment, 167(1-3), 1-14.
Chester, R., & Stoner, J. H. (1973). Pb in particulates from the lower atmosphere of the eastern Atlantic. Nature, 245(5419), 27-28.
Chen, Wen-Shan;HUANG,YI-JHANG;Liu, Cheng-Hao;Feng, Han-Ting;Chung, Sun-Lin;Lee, Yuan-Hsi (2014) U-Pb geochronology of the Tananao complex and implications for the evolution of the Taiwan orogeny during Mesozoic = U-Pb geochronology of the Tananao complex and implications for the evolution of the Taiwan orogeny during Mesozoic. 103 Geology and Geophysics Symposium Conference Manual. 354-355
Chen, P.Y. (1963) Mineralogy and petrology of the chloritoid rock from Shakatangchi and Laohsichi area, Hualien, Taiwan. Acta Geol. Taiwanica, 10, 11-28.
Churchman, G. J., Skjemstad, J. O., & Oades, J. M. (1993). Influence of clay minerals and organic matter on effects of sodicity on soils. Soil Research, 31(6), 779-800.
Calmano, W., Hong, J., & Förstner, U. (1993). Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water science and technology, 28(8-9), 223-235.
Cheng, M. C., You, C. F., Lin, F. J., Huang, K. F., & Chung, C. H. (2011). Sources of Cu, Zn, Cd and Pb in rainwater at a subtropical islet offshore northern Taiwan. Atmospheric Environment, 45(11), 1919-1928.
Davison, W. (1993). Iron and manganese in lakes. Earth-Science Reviews, 34(2), 119-163.
Duan, P., Wang, W., Sang, S., Ma, M., Wang, J., & Zhang, W. (2019). Modes of occurrence and removal of toxic elements from high‐uranium coals of Rongyang Mine by stepped release flotation. Energy Science & Engineering, 7(5), 1678-1686.
Dwyer, F. (Ed.). (2012). Chelating agents and metal chelates. Elsevier.
Galán, E. (2006). Genesis of clay minerals. Developments in clay science, 1, 1129-1162.
Hakimi, M. H., Abdullah, W. H., Alqudah, M., Makeen, Y. M., & Mustapha, K. A. (2016). Reducing marine and warm climate conditions during the Late Cretaceous, and their influence on organic matter enrichment in the oil shale deposits of North Jordan. International Journal of Coal Geology, 165, 173-189.
He, X. T., Logan, T. J., and Traina, S. J. (1995). Physical and chemical characteristics of selected US municipal solid waste composts. Journal of Environmental Quality, 24(3), 543-552.
Hiraide, M. (1992). Heavy metals complexed with humic substances in fresh water. Analytical sciences, 8(4), 453-459.
Hsu, S. C., Liu, S. C., Jeng, W. L., Chou, C. C., Hsu, R. T., Huang, Y. T., & Chen, Y. W. (2006). Lead isotope ratios in ambient aerosols from Taipei, Taiwan: Identifying long-range transport of airborne Pb from the Yangtze Delta. Atmospheric Environment, 40(28), 5393-5404.
Kojima, T., Nagamine, A., Ueno, N., & Uemiya, S. (1997). Absorption and fixation of carbon dioxide by rock weathering. Energy Conversion and Management, 38, S461-S466
Komárek, M., Ettler, V., Chrastný, V., & Mihaljevič, M. (2008). Lead isotopes in environmental sciences: a review. Environment international, 34(4), 562-577.
Lian, J., Duan, X., Ma, J., Peng, P., Kim, T., & Zheng, W. (2009). Hematite (α-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties. ACS nano, 3(11), 3749-3761.
Ma, J. L., Wei, G. J., Xu, Y. G., Long, W. G., & Sun, W. D. (2007). Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China. Geochimica et Cosmochimica Acta, 71(13), 3223-3237.
Maleki, S., Khormali, F., Kehl, M., Azizi, G., Shahpouri, F., Shahbazi, R., & Frechen, M. (2023). A loess-paleosol record of climate and vegetation change during the past 27,000 years from South-East of the Caspian Sea, Iran. Quaternary International.
Maiz, I., Esnaola, M. V., & Millan, E. (1997). Evaluation of heavy metal availability in contaminated soils by a short sequential extraction procedure. Science of the Total Environment, 206(2-3), 107-115.
MESEROLE, F. B., GLOVER, R. L., & STEWART, D. A. (1982). Studies of the major factors affecting magnesium limestone dissolution. 99-111.
Morgan, B., Rate, A. W., Burton, E. D., & Smirk, M. N. (2012). Enrichment and fractionation of rare earth elements in FeS-and organic-rich estuarine sediments receiving acid sulfate soil drainage. Chemical Geology, 308, 60-73.
Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering geology, 60(1-4), 193-207.
Nagamine , A. , Kojima , T. and Uemiya , S. (1994) “ Absorption of CO2 by Rock Weathering “ , in Japanese , presented in Tsukuba meeting of Soc. Chem. Eng. Jpn.
Otsuki, A., & Wetzel, R. G. (1974). Calcium and total alkalinity budgets and calcium carbonate precipitation of a small hard-water lake. Archiv für Hydrobiologie, 14-30.
Piper, D. Z., & Bau, M. (2013). Normalized rare earth elements in water, sediments, and wine: identifying sources and environmental redox conditions. American Journal of Analytical Chemistry, 2013.
Pourret, O., Davranche, M., Gruau, G., & Dia, A. (2008). New insights into cerium anomalies in organic-rich alkaline waters. Chemical Geology, 251(1-4), 120-127.
Prochnow, S. J., Nordt, L. C., Atchley, S. C., & Hudec, M. R. (2006). Multi-proxy paleosol evidence for middle and late Triassic climate trends in eastern Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(1), 53-72.
Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., & Quevauviller, P. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of environmental monitoring, 1(1), 57-61.
Rickard, D. (1995). Kinetics of FeS precipitation: Part 1. Competing reaction mechanisms. Geochimica et cosmochimica acta, 59(21), 4367-4379.
Simon, D. E., & Anderson, M. S. (1990, February). Stability of clay minerals in acid. In SPE International Conference and Exhibition on Formation Damage Control (pp. SPE-19422). SPE.
Smith, M., Kynicky, J., Xu, C., Song, W., Spratt, J., Jeffries, T., ... & Cangelosi, D. (2018). The origin of secondary heavy rare earth element enrichment in carbonatites: Constraints from the evolution of the Huanglongpu district, China. Lithos, 308, 65-82.
Tessier, A. P. G. C., Campbell, P. G., & Bisson, M. J. A. C. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical chemistry, 51(7), 844-851.
Wang, J., Yamada, O., Nakazato, T., Zhang, Z. G., Suzuki, Y., & Sakanishi, K. (2008). Statistical analysis of the concentrations of trace elements in a wide diversity of coals and its implications for understanding elemental modes of occurrence. Fuel, 87(10-11), 2211-2222.
Wang, L. C., Lee, T. Q., Chen, S. H., & Wu, J. T. (2010). Diatoms in Liyu lake, eastern Taiwan. Taiwania, 55(3), 228-242.
Wang, L. C., Wu, J. T., Lee, T. Q., Lee, P. F., & Chen, S. H. (2011). Climate changes inferred from integrated multi-site pollen data in northern Taiwan. Journal of Asian Earth Sciences, 40(6), 1164-1170.
Wang, L. C., Behling, H., Lee, T. Q., Li, H. C., Huh, C. A., Shiau, L. J., & Chang, Y. P. (2014). Late Holocene environmental reconstructions and their implications on flood events, typhoon, and agricultural activities in NE Taiwan. Climate of the Past, 10(5), 1857-1869.
Wang, L. C., Behling, H., Kao, S. J., Li, H. C., Selvaraj, K., Hsieh, M. L., & Chang, Y. P. (2015). Late Holocene environment of subalpine northeastern Taiwan from pollen and diatom analysis of lake sediments. Journal of Asian Earth Sciences, 114, 447-456.
Wang, L. C., Chang, Y. P., Li, H. C., Chen, S. H., Wu, J. T., Lee, T. Q., & Shiau, L. J. (2020). Revealing the vegetation, fire and human activities in the lowland of eastern Taiwan during Late Holocene. Quaternary International, 544, 32-40.
Wang, L. C., Chou, Y. M., Chen, H. F., Chang, Y. P., Chiang, H. W., Yang, T. N., ... & Chen, Y. G. (2021). Paleolimnological evidence for lacustrine environmental evolution and paleo-typhoon records during the late Holocene in eastern Taiwan. Journal of Paleolimnology, 1-17.
White, W. M., Albarède, F., & Télouk, P. (2000). High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chemical Geology, 167(3-4), 257-270.
Wu, P. C., & Huang, K. F. (2021). Tracing local sources and long-range transport of PM10 in central Taiwan by using chemical characteristics and Pb isotope ratios. Scientific Reports, 11(1), 7593.
Xie, M., Liu, F., Zhao, H., Ke, C., & Xu, Z. (2021). Mineral phase transformation in coal gangue by high temperature calcination and high-efficiency separation of alumina and silica minerals. Journal of Materials Research and Technology, 14, 2281-2288.
Yang, H., & Rose, N. (2005). Trace element pollution records in some UK lake sediments, their history, influence factors and regional differences. Environment international, 31(1), 63-75.
Yen, T. P. (1963). The metamorphic belts within the Tananao Schist terrain of Taiwan. Geological Society of China. 72-74
Yui, T. F., Heaman, L., & Lan, C. Y. (1996). U-Pb and Sr isotopic studies on granitoids from Taiwan and Chinmen-Lieyü and tectonic implications. Tectonophysics, 263(1-4), 61-76.
Zhao, Z. Q., Zhang, W., Li, X. D., Yang, Z., Zheng, H. Y., Ding, H., ... & Fu, P. Q. (2015). Atmospheric lead in urban Guiyang, Southwest China: Isotopic source signatures. Atmospheric environment, 115, 163-169.
Zhai, D. G., Liu, J. J., Wang, J. P., Yao, M. J., Wu, S. H., Fu, C., ... & Li, Y. X. (2013). Fluid evolution of the Jiawula Ag–Pb–Zn deposit, Inner Mongolia: mineralogical, fluid inclusion, and stable isotopic evidence. International Geology Review, 55(2), 204-224.
Zhang, Y., Zhang, S., Wang, R., Cai, J., Zhang, Y., Li, H., ... & Jiang, Y. (2016). Impacts of fertilization practices on pH and the pH buffering capacity of calcareous soil. Soil Science and Plant Nutrition, 62(5-6), 432-439.
Zhang, Z., Zheng, G., Takahashi, Y., Wu, C., Zheng, C., Yao, J., & Xiao, C. (2016). Extreme enrichment of rare earth elements in hard clay rocks and its potential as a resource. Ore Geology Reviews, 72, 191-212.
Zhenhua, Z., Xiaolin, X., Xiaodong, H., Yixian, W., Qiang, W., Zhiwei, B., & Jahn, B. (2002). Controls on the REE tetrad effect in Evidence from the Qianlishan and Baerzhe granites: Granites, China. Geochemical journal, 36(6), 527-543.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊