[1]Gaotao. Shi, “Signal interference in Wi-Fi and ZigBee networks,” Springer Verlag, 2017.
[2]Wei Xiang, Kan Zheng, Xuemin (Sherman) Shen, “5G mobile communications,” Springer Verlag, 2017.
[3]C. E. Shannon, “A mathematical theory of communication,” in The Bell System Technical Journal, vol. 27, no. 3, pp. 379-423, Jul. 1948.
[4]C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1,” in the IEEE International Conference on Communications, Switzerland, vol. 2, pp. 1064-1070, 1993.
[5]E. Arikan, “Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels,” IEEE Transactions Information Theory, vol. 55, no. 7, pp. 3051-3073, Jul. 2009.
[6]Robert G. Gallager, “Low-density parity-check codes,” IRE Transactions Information Theory, vol. 8, no. 1, pp. 21-28, Jan. 1962.
[7]李政賢,”基於通用樹狀結構之低密度奇偶校驗碼的高效率循環搜尋演算法設計,” 國立中正大學通訊工程研究所碩士論文,Jul. 2022.[8]Massimo Battaglioni, Marco Baldi, Giovanni Cancellieri, “Improving the minimum distance of QC-LDPC codes by removing cycles,” 2020 AEIT International Annual Conference, Sep. 2020.
[9]Tao Tian, C.R. Jones, J.D. Villasenor, R.D. Wesel “Selective avoidance of cycles in irregular LDPC code construction,” IEEE Transactions on Communications, vol. 52, Issue. 8, pp. 1242 - 1247, Aug. 2004.
[10]Consultative Committee for Space Data Systems (CCSDS), “Recommendation for space data system standards,” Sep. 2017.
[11]David J. C. Mackay, http://wol.ra.phy.cam.ac.uk/mackay. Dec. 2022.
[12]Juane Li, Shu Lin, Khaled Abdel-Ghaffar, “Improved message-passing algorithm for counting short cycles in bipartite graphs,” 2015 IEEE International Symposium on Information Theory (ISIT).
[13]Mehdi Karimi, Amir H. Banihashemi, “Message-passing algorithm for counting short cycles in a graph,” IEEE Transactions on Communications, vol. 61, no. 2, pp. 485-495, Feb. 2013.
[14]D. J. C. Mackay, “Good error-correcting codes based on very sparse matrices” IEEE International Symposium on Information Theory, Germany, pp. 113, 1997.
[15]R. Michael Tanner, “A recursive approach to low complexity codes,” IEEE Transactions Information Theory, vol. 27, no. 5, pp. 533-547, Sep. 1981.
[16]M. C. Davey and D. Mackay, “Low-density parity check codes over GF(q),” IEEE Communication Letters, vol. 2, no. 6, pp. 165-167, Jun. 1998.
[17]Thomas M. Cover and Joy A. Thomas, “Element of information theory,” 2nd Edition – Wiley, 2006.
[18]Xiao-Yu Hu, E. Eleftheriou and Dieter-Michael Arnold, “Progressive edge-growth Tanner graphs,” IEEE Global Telecommunications Conference, vol. 2, pp.995- 1001, Nov. 2001.
[19]李汶羲, “非二位元低密度同位檢測碼之循環搜尋計數的研究與應用,”國立中正大學通訊工程研究所碩士論文, Jul. 2017. (指導教授:李昌明博士)[20]陳則緯,“低密度同位檢測碼之樹狀循環搜尋演算法設計,”國立中正大學通訊工程研究所碩士論文,Jul. 2020. (指導教授:李昌明博士)[21]Jinghu Chen; A. Dholakia; E. Eleftheriou; M.P.C. Fossorier; Xiao-Yu Hu, “Reduced-complexity decoding of LDPC codes,” IEEE Transactions on Communications Volume: 53, Issue: 8, pp. 1288 - 1299, Aug. 2005.
[22]王證貴,“建構長周長且可平行解碼之低密度同位檢測碼,”國立中正大學通訊工程研究所碩士論文, Jul. 2016.