跳到主要內容

臺灣博碩士論文加值系統

(44.192.44.30) 您好!臺灣時間:2024/07/25 08:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李豐銘
研究生(外文):Fong Ming Lee
論文名稱:由丙烯酸+丙酸混合物中利用三相結晶純化丙烯酸
論文名稱(外文):Purification of acrylic acid from the mixture containing propionic acid by three-phase crystallization
指導教授:蕭立鼎
指導教授(外文):L. D. Shiau
口試委員:李度蕭立鼎蔣文欽
口試委員(外文):T. LeeL. D. ShiauW. C. Jiang
口試日期:2023-07-10
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:114
中文關鍵詞:丙烯酸三相結晶汽化純化熱力學過程
外文關鍵詞:acrylic acidcrystallizationvaporizationpurificationthermodynamics process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:42
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對由丙烯酸 (AA) 和丙酸 (PA) 組成的二成分系統,採用三相結晶 (TPC) 進行丙烯酸的純化。由於AA和PA的沸點非常接近(AA為141.6℃,PA為140.8℃),傳統的蒸餾方法難以有效分離這兩種化學物質。因此根據文獻實驗之實際固液平衡線和Raoult’s law預測的汽液平衡,確定了一系列三相轉變條件,並進行TPC實驗。與傳統熔體結晶中的固液轉變不同,TPC在冷卻過程中,會在低壓下發生一系列三相轉變。我們研究了這些轉變過程中所獲得的最終丙烯酸產品的實驗產量和純度。同時,我們將實驗結果與基於質量平衡和能量平衡的計算結果進行了比較,以驗證我們實驗的準確性和可靠性。這項研究對於解決AA和PA這種難以分離的二成分系統具有重要意義,為工業生產中丙烯酸的純化提供了可行的方法。透過TPC技術,我們能夠控制和調節系統參數,實現更高的產量和產品純度。本研究的結果對於改進丙烯酸純化過程以及相關領域的研究有著重要的啟示和應用價值。
Three-phase crystallization (TPC) was applied in this study to purify acrylic acid (AA) from the binary system consisting of AA and propionic acid (PA). As the boiling points of AA (141.6℃) and PA (141.8℃) are extremely close, it is difficult to separate these two chemicals by distillation. According to the solid-liquid equilibrium reported in the literature and the vapor-liquid equilibrium predicted by the Raoult’s law, a series of three-phase transformation conditions were determined to perform the batch TPC experiments. As opposed to the solid-liquid transformation in melt crystallization, a series of three-phase transformations occurred at low pressures during the TPC cooling process. The experimental yield and purity for the final AA product during TPC were investigated. A comparison was made between the experimental results and the calculated results based on the material and energy balances.
中文摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
第一章 緒論 1
第二章 文獻回顧 3
2-1 丙烯酸簡介 3
2-1-1 丙烯酸來源製程 4
2-2 丙酸簡介 5
2-3 丙烯酸-丙酸系統分離純化技術 7
第三章 三相結晶法 9
3-1 三相結晶法簡介 9
3-2 三相結晶法原理 12
3-3 三相結晶法的優點與特色 14
3-4 相圖介紹與繪製 17
3-4-1 AA/PA雙成分相圖繪製 19
3-5 三相結晶系統之程序分析 24
3-5-1 利用固液平衡(SLE)求得液相組成與壓力 28
3-5-3 利用汽液平衡(VLE)與文獻求組成與模擬壓力 36
3-5-4 利用質量和能量平衡求得固、液、氣含量 38
第四章 實驗設備與方法 41
4-1 實驗藥品與器材 41
4-1-1 實驗藥品 41
4-1-2 實驗器材與設備 42
4-2 三相結晶實驗設備介紹 43
4-3 三相結晶實驗相關設備 47
4-4 分析儀器原理與操作條件 50
4-4-1 氣相層析儀原理 50
4-4-2 氣相層析儀操作流程 52
4-4-3 分析條件 53
4-4-4 檢量線製作及濃度分析 54
4-5 實驗方法 56
第五章 結果與討論 57
5-1 純化丙烯酸混合物 AA模擬結果 57
5-2 模擬計算出AA的濃度和產量分布 73
5-3 三相結晶實驗產物回收率及純度的統計學相關分析 80
5-4 AA三相結晶實驗產量和模擬產量比較 83
5-5 AA三相結晶產物純度和模擬純度比較 85
5-6 AA之三相結晶產物 87
第六章 結論 88
符號說明 90
參考文獻 92

圖目錄
圖 2-1 丙烯氧化至丙烯酸生產流程 4
圖 2-2純化丙烯酸與丙酸設備圖 (Chen et al., 2006) 8
圖 3-1傳統結晶法與三相結晶法 11
圖 3-2三相結晶法的優點和特色 16
圖 3-3 A成分沸點高於B成分沸點雙成份相圖。 18
圖 3-4 A成分沸點低於B成分沸點雙成份相圖。 18
圖 3-5壓力為0.101MPa的丙烯酸與丙酸之預測相圖 21
圖 3-6壓力為256.8 Pa的丙烯酸與丙酸之預測相圖 22
圖 3-7壓力為65 Pa的丙烯酸與丙酸之預測相圖 23
圖 3-8三相結晶法雙成份系統操作程序的單元分析圖 25
圖 3-9三相結晶法操作程序的單元示意圖 26
圖 3-10冷卻過程中P(T),XB(T)和YB(T)的熱力學計算 27
圖 3-11丙烯酸與丙酸系統的真實固液平衡線(Lohmann et al, 1998) 34
圖 3-12成份組成對活性係數作圖 35
圖 3-13三相結晶過程示意圖 40
圖 4-1低溫三相結晶設備示意圖 45
圖 4-2低溫三相結晶設備實照 46
圖 4-3 CHINA CHROMATOGRAPHY 2000 氣相層析儀實照 51
圖 4-4丙烯酸純度為0.70至1.00之檢量線 55
圖 5-1模擬預測的AA濃度與產量分布XB= 0.70 74
圖 5-2模擬預測的AA濃度與產量分布XB= 0.75 75
圖 5-3模擬預測的AA濃度與產量分布XB= 0.80 76
圖 5-4模擬預測的AA濃度與產量分布XB= 0.85 77
圖 5-5模擬預測的AA濃度與產量分布XB= 0.90 78
圖 5-6模擬預測的AA濃度與產量分布XB= 0.95 79
圖 5-7三相結晶實驗產物產量與模擬程序產量之比較 84
圖 5-8三相結晶實驗產物純度與模擬產物純度之比較 86
圖 5-9三相結晶實驗後產物實拍圖 87

表目錄
表 2-1 丙烯酸用途 3
表 2-2丙烯酸與丙酸的物理性質比較 6
表 3-1丙烯酸與丙酸系統的固液平衡實驗數據(Lohmann et al, 1998) 32
表 3-2 多項次回歸式計算出組成對應之活性係數值(γ) 32
表 3-3 Wilson equation計算出組成對應之活性係數值(γ) 33
表 3-4丙烯酸及丙酸Antoine equation之參數 37
表 5-1 10 g的70 % AA和30 % PA之進料利用Wilson equation模擬操作條件 61
表 5-2 10 g的75 % AA和25 % PA之進料利用Wilson equation模擬操作條件 62
表 5-3 10 g的80 % AA和20 % PA之進料利用Wilson equation模擬操作條件 63
表 5-4 10 g的85 % AA和15 % PA之進料利用Wilson equation模擬操作條件 64
表 5-5 10 g的90 % AA和10 % PA之進料利用Wilson equation模擬操作條件 65
表 5-6 10 g的95 % AA和5 % PA之進料利用Wilson equation模擬操作條件 66
表 5-7 10 g的70 % AA和30 % PA之進料利用多項次回歸式模擬操作條件 67
表 5-8 10 g的75 % AA和25 PA之進料利用多項次回歸式模擬操作條件 68
表 5-9 10 g的80 % AA和20 % PA之進料利用多項次回歸式模擬操作條件 69
表 5-10 10 g的85 % AA和15 % PA之進料利用多項次回歸式模擬操作條件 70
表 5-11 10 g的90 % AA和10 % PA之進料利用多項次回歸式模擬操作條件 71
表 5-12 10 g的95 % AA和5 % PA之進料利用多項次回歸式模擬操作條件 72
表 5-13 AA實驗產物產量的統計學相關分析數據 81
表 5-14 AA實驗產物純度的統計學相關分析數據 82
Leffingwell, J.C., Shackelford, R.E. Laevo-menthol-syntheses and organoleptic properties. Cosmet. Perfumery. 1974, 89, 69-89.
Fredenslund, A., Jones, R. L., & Prausnitz, J. M. Group‐contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE Journal, 1975, 21(6), 1086-1099.
Tani, K., Yamagata, T., Otsuka, S., Akutagawa, S., Kumobayashi, H. Cationic Rhodium(I) Complex-catalysed Asymmetric Isomerisation of Allylamines to Optically Active Enamines. J. Chem. Soc. Chem. Commun. 1982, 11, 600-601.
Wangnick, K., Ulrich, J. A model for the calculation of the purification efficiency of a solid layer melt crystallization process. Crystal Research and Technology. 1994, 29, 349-356.
Slaughter, D.W., Doherty, M.F. Calculation of solid-liquid equilibrium and crystallization paths for melt crystallization processes. Chemical Engineering Science. 1995, 50, 1679-1694.
Stinson, S.C. Chiral drugs.Chemical and Engineering News. 1995, 73, 44-50.
Verdoes, N., Arkenbout, G.J., Bruinsma, O.S.L., Koutsoukos, P.G., Ulrich, J. Improved procedures for separating crystals from the melt. Appl. Therm. Eng. 1997, 17, 879–888.
Kumobayashi, H., Sayo, N., Akutagawa, S., Sakaguchi, T., Tsuruta, H. Industrial asymmetric synthesis by use of metal-BINAP catalysts. J. Chem. Soc. Chem. Commun. 1997, 12, 835−846.
Lohmann, J.; Ropke, T., Gmehling, J., Solid-liquid equilibria of several binary system with organic compounds. J. Chem. Eng. Data, 1998, 43, 586-860.
Stepanski, M. Economic recovery of meta-xylene. Sulzer Tech. Rev. 2000, 3, 8-9.
Inoue MRY. Chiral Recognition Thermodynamics of â-Cyclodextrin: The Thermodynamic Origin of Enantioselectivity and the Enthalpy-Entropy Compensation Effect. 2000.
Shackleford D. M., Hayball P. J., Reynolds G. D., Hamon DPG., Evans A. M., Milne R.W. A small-scale synthesis and enantiomeric resolution of (RS)-[1-14C]-2-Phenylpropionic acid and biosynthesis of its diastereomeric acyl glucuronides. Journal of Labelled Compounds and Radiopharmaceuticals. 2001, 44, (3), 225-34.
König A., Schreiner, A. Purification potential of melt crystallization. Powder Technol. 2001, 121, 88–92.
Srinivas, N.R., Barbhaiya, R.H., Midha, K.K. Enantiomeric drug development: Issues, considerations, andregulatory requirements. Journal of Pharmaceutical Sciences. 2001, 90(9), 1205-1215.
Kim, K.J., Ulrich, J. A quantitative estimation of purity and yield of crystalline layers concerning sweating operations. J Cryst Growth. 2002, 234, 551-560.
Clifford S.L., Ramjugernath D., Raal J.D. Subatmospheric Vapor Pressure Curves for Propionic Acid, Butyric Acid, Isobutyric Acid, Valeric Acid, Isovaleric Acid, Hexanoic Acid, and Heptanoic Acid, J. Chem. Eng. Data 2004, 49, 1189-1192.
Shiau, L.D., Wen, C.C., Lin, B. S. Separation and purfication of p-xylene from the mixture of m-xylene and p-xylene by distillative freezing. Ind. Eng. Chem. Res. 2005, 44(7), 2258-2265.
Ward, T. J. Chiral separations.Analytical Chemistry. 2006, 78, 3947-3956.
Shiau, L.D., Wen, C.C., Lin, B.S. Application of distillative freezing in the separation of o-xylene and p-xylene. AIChE. Journal. 2006, 52(5), 1962-1967.
Huang, J., Yu, L. Effect of molecular chirality on racemate stability: α-amino acids with nonpolar R groups. Journal of the American Chemical Society. 2006, 128(6), 1873-1878.
Chen, L., Li, J., Matsuoka, M. Experimental and theoretical investigation of the purification process of organic materials in a continuous inclined column crystallizer. Industrial & engineering chemistry research, 2006, 45(8), 2818-2823.
Shiau, L.D., Wen, C. C., Lin, B.S. Separation of p-xylene from the multicomponent xylene system by stripping crystallization. AIChE. Journal. 2008, 54(1), 337-342.
Lemmerer A., Bathori N. B., Bourne S. A. Chiral carboxylic acids and their effects on melting-point behaviour in co-crystals with isonicotinamide. Acta Crystallogr B. 2008, 64, (Pt 6), 780-90.
Shiau, L.D., Liu, K.F., Jang, S. M., Wu, S. C. Separation of diethylbenzene isomers by distillative freezing. J. Chin. Inst. Chem. Engrs. 2008, 39, 59-65.
Shiau, L.D., Yu, C.C. Separation of the benzene/cyclohexane mixture by stripping crystallization. Sep. Purif. Technol. 2009, 66, 422-426.
Szaleniec, M., Dudzik, A., Pawul, M., Kozik, B. Quantitative structure enantioselective retention relationship for high-performance liquid chromatography chiral separation of 1-phenylethanol derivatives. Journal of Chromatography A. 2009, 1216, 6224-6235.
Monteiro, C. M., Lourenco, N. M. T., Afonso, C. A. M. Separation of secondary alcohols via enzymatic kinetic resolution using fatty esters as reusable acylating agents. Tetrahedron: Asymmetry. 2010, 21, 952–956.
McCoy, M. Hot Market For A Cool Chemical. Chem. Eng. News. 2010, 88, 15-16.
Nakahara, M., Nomura, K., Koizumi, T. Purification Rate of Uranyl Nitrate Hexahydrate Crystal for Transuranium Elements on Isothermal Sweating Phenomenon, Ind. Eng. Chem. Res. 2010, 49, 11661-11666.
Huang G.Q.; Yao S.P.; Zhao Y.C.; Liu L.Y. Isobaric Vapor-Liquid Equilibrium for Binary Systems of Toluene+Acrylic Acid, Toluene+Acetic Acid, and Cyclohexane+Acrylic Acid, J. Chem. Eng. Data 2011, 56, 3914-3919.
Shiau, L.D.; Yen, C.C. Purification of the 2,6-xylenol/m-cresol mixture by a new separation technique combining distillation and crystallization. J. Chem. Eng. Jap. 2011, 44(9), 623-627.
Shiau, L.D., Lai, M.H., Liu, K.F. Purification of C9 Arenes by stripping crystallization. Chem. Eng. Tech. 2011, 34(8), 1335-1340.
Shiau, L.D, Huang, C.H., Liu, K. F. Separation of the cresol isomers by stripping crystallization. Asia-Pac. J. Chem. Eng. 2012, 7, S26-S31.
Shiau, L.D., Zeng, S.L. Separation of the catechol/4-methoxyphenol mixture by stripping crystallization. J. Ind. Eng. Chem. 2012, 18(3), 963-968.
Mostefa M. L. P., Muhr H., Plasari E., Fauconet M. Determination of the Solid−Liquid Phase Diagram of the Binary System Acrylic Acid + Propionic Acid, J. Chem. Eng. Data 2012, 57, 1209−1212
Li, J., Wang, B., Qi, Y., Jia, X., Luo, J. Phosphoric acid purification by suspension melt crystallization: Parametric study of the crystallization and sweating steps. Crystal. Res. Technol. 2012, 47, 1113-1120.
Sadowski, G., Beierling T., Osiander, Jan. Melt crystallization of isomeric long-chain aldehydes from hydroformylation. Separation and Purification Technology. 2013, 118, 13–24.
Schäfer, B. Mint versus Tagasako process: Menthol. Chemie in Unserer Zeit. 2013, 47, 174-182.
Shiau, L.D., Liu, K.F. Investigations into the effects of the cooling rate on stripping crystallization. Ind. Eng. Chem. Res. 2013, 52, 1716-1722.
Shiau, L.D., Liu, K.F., Huang, P.H. Purification of hydrobenzoin enantiomers by stripping crystallization. Journal of the Taiwan Institute of Chemical Engineers. 2013, 44, 707-712.
Le Page Mostefa M.; Muhr H.; Plasari E.; Fauconet M. A purification route of bio-acrylic acid by melt crystallization respectful of environmental constraints, Powder Technol. 2014, 255, 98-102.
Liu, Z., Liu T. Production of acrylic acid and propionic acid by constructing a portion of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula in Escherichia coli, J. Ind. Microbiol. Biotechnol. 2016, 43, 1659-1670.
Shiau L. D., Liu K. F., Hsu Y. C. Chiral purification of S-ibuprofen from ibuprofen enantiomers by stripping crystallization. Chemical Engineering Research and Design. 2017, 117-301-8.
Stejfa, V., Bazyleva, A., Fulem, M., Rohlicek, J., Skorepova, E., Ruzicka, K., Blokhin, A.V. Polymorphism and thermophysical properties of L- and DL-menthol. J. Chem. Thermodynamics. 2019, 131, 524-543.
Fan Y., Xing Q., Zhang J., Wang Y., Liang Y., Qi W. Self-Assembly of Peptide Chiral Nanostructures with Sequence-Encoded Enantioseparation Capability. Langmuir : the ACS journal of surfaces and colloids. 2020, 36, (35), 10361-70.
Ren X., Luo Q., Zhou D., Zhang K., Gao D., Fu Q. Thermoresponsive chiral stationary phase functionalized with the copolymer of β-cyclodextrin and N-isopropylacrylamide for high performance liquid chromatography. Journal of Chromatography A. 2020, 1618.
Bhoi, B. R., Mali, N. A., & Joshi, S. S. Experimental analysis of vapour-liquid phase equilibria for binary systems of diethyl carbonate with methyl, ethyl, isopropyl, n-butyl and isoamyl acetates at 95 kPa. The Journal of Chemical Thermodynamics, 2020, 150, 106189.
Shiau, L. D. Purification of m-xylene from the mixed xylenes by stripping crystallization. Sep. Purif. Technol. 2021, 255, 117688.
Fouilloux H., Thomas C. M. Production and polymerization of biobased arylates and analogs, Macromol. Rapid Commun. 2021, 42, 2000530.
Shiau, L. D., Wang, P. C. Chiral purification of S-2-phenylpropionic acid from an enantiomer mixture by stripping crystallization. Industrial and Engineering Chemistry Research. 2022, 61(28), 10224-10232.
Shiau L.D. The correlation for effective distribution coefficient with initial impurity concentration and growth rate for acrylic acid in melt crystallization, Crystals 2022, 12, 709.
Zhang, B., Yang, L., Wang. H., Shen, C., Li, Y., Cheng, J., Yang, C. Experiment and modeling of static layer melt crystallization in a crystallizer with an inner cooling tube. J. Cryst. Growth 2022, 593, 126739.
Rodrigues, V. H. S., Almeida, R. N., Vargas, R. M., & Cassel, E. Vapor pressure and vapor-liquid equilibrium data for eugenol/caryophyllene binary system at low pressures by experimental and predictive methods. The Journal of Chemical Thermodynamics, 2022, 168, 106725.
Prigogine, I., Defay, R. Chemical Thermodynamics. London: Longmans. 1967.
Jacques, J., Collet, A., Wilen, S.H. Enantiomers, Racemates and Resolutions. New York: John Wiley & Sons. 1981.
Daubert T.E.; Danner R.H. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation; Hemisphere Pub. Crop, New York: 1989.
Merck, The Merck Index, 13th ed., Whitehouse Station, NJ. 2001.
Mullin, J.W. Crystallization, 4th. Butterworth-Heinemann, Oxford.2001.
Sandler, S.I. Chemical, Biochemical, and Engineering Thermodynamics, 4th ed., John Wiley & Sons, Asia. 2006.
McMurry, J. Organic Chemistry. Australia. Belmont, CA : Thomson Brooks/Cole. 2008.
林致良,2007,<利用蒸餾結晶法分離丙烯酸+丙酸混合物>,長庚大學化工與材料工程研究所,碩士論文。
劉耕福,2013,<三相平衡的結晶程序>,庚大學化工與材料工程研究所,博士論文。
許承哲,2016,<丙烯酸在熔融結晶中的成長動力學>,長庚大學化工與材料工程研究所,碩士論文。
朱奕宣,2018,<探討熔融結晶中丙烯酸的純化與結晶成長動力學>,長庚大學化工與材料工程研究所,碩士論文。
張哲維,2019,<蒸餾結晶分離鏡像異構物的產率,純度和有效雜質分布係數 >,長庚大學化工與材料工程研究所,碩士論文。
王柏峻,2021,<利用蒸餾結晶法分離2-苯丙酸的鏡像異構物>,長庚大學化工與材料工程研究所,碩士論文。
許銘宏,2022,<利用蒸餾結晶法分離2-氯丙酸甲酯的鏡像異構物>,長庚大學化工與材料工程研究所,碩士論文。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊